effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Pure
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_arithmetic_right a s = Mk (shift_arithmetic_right (v a) (UInt32.v s))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c)) let shift_arithmetic_right a s =
false
null
false
Mk (shift_arithmetic_right (v a) (UInt32.v s))
{ "checked_file": "FStar.Int64.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int64.fst" }
[]
[ "FStar.Int64.t", "FStar.UInt32.t", "FStar.Int64.Mk", "FStar.Int.shift_arithmetic_right", "FStar.Int64.n", "FStar.Int64.v", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s)) let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
false
false
FStar.Int64.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
[]
FStar.Int64.shift_arithmetic_right
{ "file_name": "ulib/FStar.Int64.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
{ "end_col": 79, "end_line": 70, "start_col": 33, "start_line": 70 }
Prims.Pure
val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div a b = Mk (div (v a) (v b))
val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c)) let div a b =
false
null
false
Mk (div (v a) (v b))
{ "checked_file": "FStar.Int64.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int64.fst" }
[]
[ "FStar.Int64.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Int64.v", "FStar.Int64.Mk", "FStar.Int.div", "FStar.Int64.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b))
false
false
FStar.Int64.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c))
[]
FStar.Int64.div
{ "file_name": "ulib/FStar.Int64.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
{ "end_col": 34, "end_line": 54, "start_col": 14, "start_line": 54 }
Prims.Pure
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand x y = Mk (logand (v x) (v y))
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) let logand x y =
false
null
false
Mk (logand (v x) (v y))
{ "checked_file": "FStar.Int64.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int64.fst" }
[]
[ "FStar.Int64.t", "FStar.Int64.Mk", "FStar.Int.logand", "FStar.Int64.n", "FStar.Int64.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b))
false
false
FStar.Int64.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
[]
FStar.Int64.logand
{ "file_name": "ulib/FStar.Int64.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Int64.t -> y: FStar.Int64.t -> Prims.Pure FStar.Int64.t
{ "end_col": 40, "end_line": 58, "start_col": 17, "start_line": 58 }
Prims.Pure
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rem a b = Mk (mod (v a) (v b))
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c)) let rem a b =
false
null
false
Mk (mod (v a) (v b))
{ "checked_file": "FStar.Int64.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int64.fst" }
[]
[ "FStar.Int64.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Int64.v", "FStar.Int64.Mk", "FStar.Int.mod", "FStar.Int64.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b))
false
false
FStar.Int64.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires (size (v a / v b) n)) (ensures (fun c -> FStar.Int.mod (v a) (v b) = v c))
[]
FStar.Int64.rem
{ "file_name": "ulib/FStar.Int64.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int64.t -> b: FStar.Int64.t{FStar.Int64.v b <> 0} -> Prims.Pure FStar.Int64.t
{ "end_col": 34, "end_line": 56, "start_col": 14, "start_line": 56 }
Prims.Pure
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c)) let shift_left a s =
false
null
false
Mk (shift_left (v a) (UInt32.v s))
{ "checked_file": "FStar.Int64.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int64.fst" }
[]
[ "FStar.Int64.t", "FStar.UInt32.t", "FStar.Int64.Mk", "FStar.Int.shift_left", "FStar.Int64.n", "FStar.Int64.v", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int64 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s))
false
false
FStar.Int64.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
[]
FStar.Int64.shift_left
{ "file_name": "ulib/FStar.Int64.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Int64.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int64.t
{ "end_col": 55, "end_line": 68, "start_col": 21, "start_line": 68 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2
let list_disjoint_or_eq_def (ptrs: list b8) =
false
null
false
forall (p1: b8) (p2: b8). {:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Prims.list", "Vale.Interop.Types.b8", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "FStar.List.Tot.Base.memP", "Vale.Interop.Heap_s.disjoint_or_eq_b8", "Prims.logical" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_disjoint_or_eq_def : ptrs: Prims.list Vale.Interop.Types.b8 -> Prims.logical
[]
Vale.Interop.Heap_s.list_disjoint_or_eq_def
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptrs: Prims.list Vale.Interop.Types.b8 -> Prims.logical
{ "end_col": 46, "end_line": 20, "start_col": 2, "start_line": 18 }
Prims.Tot
val addrs_of_mem (m: interop_heap) : addr_map
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m
val addrs_of_mem (m: interop_heap) : addr_map let addrs_of_mem (m: interop_heap) : addr_map =
false
null
false
InteropHeap?.addrs m
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Interop.Heap_s.__proj__InteropHeap__item__addrs", "Vale.Interop.Types.addr_map" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addrs_of_mem (m: interop_heap) : addr_map
[]
Vale.Interop.Heap_s.addrs_of_mem
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Vale.Interop.Heap_s.interop_heap -> Vale.Interop.Types.addr_map
{ "end_col": 74, "end_line": 42, "start_col": 54, "start_line": 42 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def
let list_disjoint_or_eq =
false
null
false
opaque_make list_disjoint_or_eq_def
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Def.Opaque_s.opaque_make", "Prims.list", "Vale.Interop.Types.b8", "Prims.logical", "Vale.Interop.Heap_s.list_disjoint_or_eq_def" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_disjoint_or_eq : _: Prims.list Vale.Interop.Types.b8 -> Prims.logical
[]
Vale.Interop.Heap_s.list_disjoint_or_eq
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.list Vale.Interop.Types.b8 -> Prims.logical
{ "end_col": 80, "end_line": 21, "start_col": 45, "start_line": 21 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2
let disjoint_or_eq_b8 (ptr1 ptr2: b8) =
false
null
false
B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Types.b8", "Prims.l_or", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_buffer", "Vale.Interop.Types.base_typ_as_type", "Vale.Interop.Types.__proj__Buffer__item__src", "Vale.Interop.Types.b8_preorder", "Vale.Interop.Types.__proj__Buffer__item__writeable", "Vale.Interop.Types.__proj__Buffer__item__bsrc", "Prims.eq2", "Prims.logical" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__]
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val disjoint_or_eq_b8 : ptr1: Vale.Interop.Types.b8 -> ptr2: Vale.Interop.Types.b8 -> Prims.logical
[]
Vale.Interop.Heap_s.disjoint_or_eq_b8
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr1: Vale.Interop.Types.b8 -> ptr2: Vale.Interop.Types.b8 -> Prims.logical
{ "end_col": 14, "end_line": 15, "start_col": 2, "start_line": 14 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let correct_down (mem:interop_heap) (h:machine_heap) = Set.equal (addrs_set mem) (Map.domain h) /\ (forall p.{:pattern (L.memP p (ptrs_of_mem mem))} L.memP p (ptrs_of_mem mem) ==> correct_down_p mem h p)
let correct_down (mem: interop_heap) (h: machine_heap) =
false
null
false
Set.equal (addrs_set mem) (Map.domain h) /\ (forall p. {:pattern (L.memP p (ptrs_of_mem mem))} L.memP p (ptrs_of_mem mem) ==> correct_down_p mem h p)
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.l_and", "FStar.Set.equal", "Prims.int", "Vale.Interop.Heap_s.addrs_set", "FStar.Map.domain", "Vale.Def.Types_s.nat8", "Prims.l_Forall", "Vale.Interop.Types.b8", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Vale.Interop.Heap_s.ptrs_of_mem", "Vale.Interop.Heap_s.correct_down_p", "Prims.logical" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc) let addrs_set (mem:interop_heap) : GTot (Set.set int) = L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty let correct_down_p (mem:interop_heap) (h:machine_heap) (p:b8) = let b = get_downview p.bsrc in let length = DV.length b in let contents = DV.as_seq (hs_of_mem mem) b in let addr = addrs_of_mem mem p in (forall i.{:pattern (Seq.index contents i)} 0 <= i /\ i < length ==> h.[addr + i] == UInt8.v (FStar.Seq.index contents i))
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val correct_down : mem: Vale.Interop.Heap_s.interop_heap -> h: Vale.Arch.MachineHeap_s.machine_heap -> Prims.logical
[]
Vale.Interop.Heap_s.correct_down
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
mem: Vale.Interop.Heap_s.interop_heap -> h: Vale.Arch.MachineHeap_s.machine_heap -> Prims.logical
{ "end_col": 58, "end_line": 65, "start_col": 2, "start_line": 63 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let down_mem_t = m:interop_heap -> GTot (h:machine_heap{correct_down m h})
let down_mem_t =
false
null
false
m: interop_heap -> GTot (h: machine_heap{correct_down m h})
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Interop.Heap_s.correct_down" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc) let addrs_set (mem:interop_heap) : GTot (Set.set int) = L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty let correct_down_p (mem:interop_heap) (h:machine_heap) (p:b8) = let b = get_downview p.bsrc in let length = DV.length b in let contents = DV.as_seq (hs_of_mem mem) b in let addr = addrs_of_mem mem p in (forall i.{:pattern (Seq.index contents i)} 0 <= i /\ i < length ==> h.[addr + i] == UInt8.v (FStar.Seq.index contents i)) let correct_down (mem:interop_heap) (h:machine_heap) = Set.equal (addrs_set mem) (Map.domain h) /\ (forall p.{:pattern (L.memP p (ptrs_of_mem mem))} L.memP p (ptrs_of_mem mem) ==> correct_down_p mem h p)
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val down_mem_t : Type
[]
Vale.Interop.Heap_s.down_mem_t
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type
{ "end_col": 74, "end_line": 67, "start_col": 17, "start_line": 67 }
FStar.Pervasives.Lemma
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def
let list_disjoint_or_eq_reveal =
false
null
true
opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "lemma" ]
[ "Vale.Def.Opaque_s.opaque_revealer", "Prims.list", "Vale.Interop.Types.b8", "Prims.logical", "Vale.Interop.Heap_s.list_disjoint_or_eq", "Vale.Interop.Heap_s.list_disjoint_or_eq_def" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_disjoint_or_eq_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Interop.Heap_s.list_disjoint_or_eq == Vale.Interop.Heap_s.list_disjoint_or_eq_def)
[]
Vale.Interop.Heap_s.list_disjoint_or_eq_reveal
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Interop.Heap_s.list_disjoint_or_eq == Vale.Interop.Heap_s.list_disjoint_or_eq_def)
{ "end_col": 128, "end_line": 22, "start_col": 45, "start_line": 22 }
Prims.Tot
val hs_of_mem (m: interop_heap) : HS.mem
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m
val hs_of_mem (m: interop_heap) : HS.mem let hs_of_mem (m: interop_heap) : HS.mem =
false
null
false
InteropHeap?.hs m
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Interop.Heap_s.__proj__InteropHeap__item__hs", "FStar.Monotonic.HyperStack.mem" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hs_of_mem (m: interop_heap) : HS.mem
[]
Vale.Interop.Heap_s.hs_of_mem
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Vale.Interop.Heap_s.interop_heap -> FStar.Monotonic.HyperStack.mem
{ "end_col": 66, "end_line": 40, "start_col": 49, "start_line": 40 }
Prims.GTot
val mk_addr_map (ptrs: list b8 {list_disjoint_or_eq ptrs}) : GTot addr_map
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map
val mk_addr_map (ptrs: list b8 {list_disjoint_or_eq ptrs}) : GTot addr_map let mk_addr_map (ptrs: list b8 {list_disjoint_or_eq ptrs}) : GTot addr_map =
false
null
false
global_addrs_map
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "sometrivial" ]
[ "Prims.list", "Vale.Interop.Types.b8", "Vale.Interop.Heap_s.list_disjoint_or_eq", "Vale.Interop.Heap_s.global_addrs_map", "Vale.Interop.Types.addr_map" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_addr_map (ptrs: list b8 {list_disjoint_or_eq ptrs}) : GTot addr_map
[]
Vale.Interop.Heap_s.mk_addr_map
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptrs: Prims.list Vale.Interop.Types.b8 {Vale.Interop.Heap_s.list_disjoint_or_eq ptrs} -> Prims.GTot Vale.Interop.Types.addr_map
{ "end_col": 18, "end_line": 31, "start_col": 2, "start_line": 31 }
Prims.GTot
val mem_of_hs_roots (ptrs: list b8 {list_disjoint_or_eq ptrs}) (h: HS.mem{list_live h ptrs}) : GTot interop_heap
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mem_of_hs_roots (ptrs:list b8{list_disjoint_or_eq ptrs}) (h:HS.mem{list_live h ptrs}) : GTot interop_heap = InteropHeap ptrs (mk_addr_map ptrs) h
val mem_of_hs_roots (ptrs: list b8 {list_disjoint_or_eq ptrs}) (h: HS.mem{list_live h ptrs}) : GTot interop_heap let mem_of_hs_roots (ptrs: list b8 {list_disjoint_or_eq ptrs}) (h: HS.mem{list_live h ptrs}) : GTot interop_heap =
false
null
false
InteropHeap ptrs (mk_addr_map ptrs) h
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "sometrivial" ]
[ "Prims.list", "Vale.Interop.Types.b8", "Vale.Interop.Heap_s.list_disjoint_or_eq", "FStar.Monotonic.HyperStack.mem", "Vale.Interop.Heap_s.list_live", "Vale.Interop.Heap_s.InteropHeap", "Vale.Interop.Heap_s.mk_addr_map", "Vale.Interop.Heap_s.interop_heap" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc) let addrs_set (mem:interop_heap) : GTot (Set.set int) = L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty let correct_down_p (mem:interop_heap) (h:machine_heap) (p:b8) = let b = get_downview p.bsrc in let length = DV.length b in let contents = DV.as_seq (hs_of_mem mem) b in let addr = addrs_of_mem mem p in (forall i.{:pattern (Seq.index contents i)} 0 <= i /\ i < length ==> h.[addr + i] == UInt8.v (FStar.Seq.index contents i)) let correct_down (mem:interop_heap) (h:machine_heap) = Set.equal (addrs_set mem) (Map.domain h) /\ (forall p.{:pattern (L.memP p (ptrs_of_mem mem))} L.memP p (ptrs_of_mem mem) ==> correct_down_p mem h p) let down_mem_t = m:interop_heap -> GTot (h:machine_heap{correct_down m h}) let mem_of_hs_roots (ptrs:list b8{list_disjoint_or_eq ptrs}) (h:HS.mem{list_live h ptrs}) : GTot interop_heap
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mem_of_hs_roots (ptrs: list b8 {list_disjoint_or_eq ptrs}) (h: HS.mem{list_live h ptrs}) : GTot interop_heap
[]
Vale.Interop.Heap_s.mem_of_hs_roots
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptrs: Prims.list Vale.Interop.Types.b8 {Vale.Interop.Heap_s.list_disjoint_or_eq ptrs} -> h: FStar.Monotonic.HyperStack.mem{Vale.Interop.Heap_s.list_live h ptrs} -> Prims.GTot Vale.Interop.Heap_s.interop_heap
{ "end_col": 39, "end_line": 72, "start_col": 2, "start_line": 72 }
Prims.Tot
val ptrs_of_mem (m: interop_heap) : l: list b8 {list_disjoint_or_eq l}
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m
val ptrs_of_mem (m: interop_heap) : l: list b8 {list_disjoint_or_eq l} let ptrs_of_mem (m: interop_heap) : l: list b8 {list_disjoint_or_eq l} =
false
null
false
InteropHeap?.ptrs m
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Interop.Heap_s.__proj__InteropHeap__item__ptrs", "Prims.list", "Vale.Interop.Types.b8", "Vale.Interop.Heap_s.list_disjoint_or_eq" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptrs_of_mem (m: interop_heap) : l: list b8 {list_disjoint_or_eq l}
[]
Vale.Interop.Heap_s.ptrs_of_mem
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Vale.Interop.Heap_s.interop_heap -> l: Prims.list Vale.Interop.Types.b8 {Vale.Interop.Heap_s.list_disjoint_or_eq l}
{ "end_col": 96, "end_line": 41, "start_col": 77, "start_line": 41 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc
let list_live mem (ptrs: list b8) =
false
null
false
forall (p: b8). {:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperStack.mem", "Prims.list", "Vale.Interop.Types.b8", "Prims.l_Forall", "Prims.l_imp", "FStar.List.Tot.Base.memP", "LowStar.Monotonic.Buffer.live", "Vale.Interop.Types.base_typ_as_type", "Vale.Interop.Types.__proj__Buffer__item__src", "Vale.Interop.Types.b8_preorder", "Vale.Interop.Types.__proj__Buffer__item__writeable", "Vale.Interop.Types.__proj__Buffer__item__bsrc", "Prims.logical" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold
false
true
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_live : mem: FStar.Monotonic.HyperStack.mem -> ptrs: Prims.list Vale.Interop.Types.b8 -> Prims.logical
[]
Vale.Interop.Heap_s.list_live
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
mem: FStar.Monotonic.HyperStack.mem -> ptrs: Prims.list Vale.Interop.Types.b8 -> Prims.logical
{ "end_col": 78, "end_line": 26, "start_col": 2, "start_line": 26 }
Prims.GTot
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let correct_down_p (mem:interop_heap) (h:machine_heap) (p:b8) = let b = get_downview p.bsrc in let length = DV.length b in let contents = DV.as_seq (hs_of_mem mem) b in let addr = addrs_of_mem mem p in (forall i.{:pattern (Seq.index contents i)} 0 <= i /\ i < length ==> h.[addr + i] == UInt8.v (FStar.Seq.index contents i))
let correct_down_p (mem: interop_heap) (h: machine_heap) (p: b8) =
false
null
false
let b = get_downview p.bsrc in let length = DV.length b in let contents = DV.as_seq (hs_of_mem mem) b in let addr = addrs_of_mem mem p in (forall i. {:pattern (Seq.index contents i)} 0 <= i /\ i < length ==> h.[ addr + i ] == UInt8.v (FStar.Seq.index contents i))
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "sometrivial" ]
[ "Vale.Interop.Heap_s.interop_heap", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Interop.Types.b8", "Prims.l_Forall", "Prims.int", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.l_or", "FStar.UInt.size", "FStar.UInt8.n", "Vale.Def.Words_s.pow2_8", "Vale.Arch.MachineHeap_s.op_String_Access", "Vale.Def.Types_s.nat8", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Base.index", "Vale.Def.Words_s.nat64", "Vale.Interop.Heap_s.addrs_of_mem", "FStar.Seq.Properties.lseq", "LowStar.BufferView.Down.length", "LowStar.BufferView.Down.as_seq", "Vale.Interop.Heap_s.hs_of_mem", "Prims.nat", "LowStar.BufferView.Down.buffer", "Vale.Interop.Types.get_downview", "Vale.Interop.Types.__proj__Buffer__item__src", "Vale.Interop.Types.b8_preorder", "Vale.Interop.Types.__proj__Buffer__item__writeable", "Vale.Interop.Types.base_typ_as_type", "Vale.Interop.Types.__proj__Buffer__item__bsrc", "Prims.logical" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc) let addrs_set (mem:interop_heap) : GTot (Set.set int) = L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val correct_down_p : mem: Vale.Interop.Heap_s.interop_heap -> h: Vale.Arch.MachineHeap_s.machine_heap -> p: Vale.Interop.Types.b8 -> Prims.GTot Prims.logical
[]
Vale.Interop.Heap_s.correct_down_p
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
mem: Vale.Interop.Heap_s.interop_heap -> h: Vale.Arch.MachineHeap_s.machine_heap -> p: Vale.Interop.Types.b8 -> Prims.GTot Prims.logical
{ "end_col": 57, "end_line": 60, "start_col": 63, "start_line": 54 }
Prims.GTot
val addrs_set (mem: interop_heap) : GTot (Set.set int)
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addrs_set (mem:interop_heap) : GTot (Set.set int) = L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty
val addrs_set (mem: interop_heap) : GTot (Set.set int) let addrs_set (mem: interop_heap) : GTot (Set.set int) =
false
null
false
L.fold_right_gtot (ptrs_of_mem mem) (addrs_ptr 0 (addrs_of_mem mem)) Set.empty
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "sometrivial" ]
[ "Vale.Interop.Heap_s.interop_heap", "FStar.List.Tot.Base.fold_right_gtot", "Vale.Interop.Types.b8", "FStar.Set.set", "Prims.int", "Vale.Interop.Heap_s.ptrs_of_mem", "Vale.Interop.Heap_s.addrs_ptr", "Vale.Interop.Heap_s.addrs_of_mem", "FStar.Set.empty" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc)
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addrs_set (mem: interop_heap) : GTot (Set.set int)
[]
Vale.Interop.Heap_s.addrs_set
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
mem: Vale.Interop.Heap_s.interop_heap -> Prims.GTot (FStar.Set.set Prims.int)
{ "end_col": 80, "end_line": 52, "start_col": 2, "start_line": 52 }
Prims.GTot
val addrs_ptr (i: nat) (addrs: addr_map) (ptr: b8{i <= DV.length (get_downview ptr.bsrc)}) (acc: Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i))
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.Interop.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) = if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc)
val addrs_ptr (i: nat) (addrs: addr_map) (ptr: b8{i <= DV.length (get_downview ptr.bsrc)}) (acc: Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) let rec addrs_ptr (i: nat) (addrs: addr_map) (ptr: b8{i <= DV.length (get_downview ptr.bsrc)}) (acc: Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i)) =
false
null
false
if i = DV.length (get_downview ptr.bsrc) then acc else addrs_ptr (i + 1) addrs ptr (Set.union (Set.singleton (addrs ptr + i)) acc)
{ "checked_file": "Vale.Interop.Heap_s.fst.checked", "dependencies": [ "Vale.Interop.Types.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Interop.Heap_s.fst" }
[ "sometrivial", "" ]
[ "Prims.nat", "Vale.Interop.Types.addr_map", "Vale.Interop.Types.b8", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowStar.BufferView.Down.length", "FStar.UInt8.t", "Vale.Interop.Types.get_downview", "Vale.Interop.Types.__proj__Buffer__item__src", "Vale.Interop.Types.b8_preorder", "Vale.Interop.Types.__proj__Buffer__item__writeable", "Vale.Interop.Types.base_typ_as_type", "Vale.Interop.Types.__proj__Buffer__item__bsrc", "FStar.Set.set", "Prims.int", "Prims.op_Equality", "Prims.bool", "Vale.Interop.Heap_s.addrs_ptr", "Prims.op_Addition", "FStar.Set.union", "FStar.Set.singleton" ]
[]
module Vale.Interop.Heap_s open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Arch.MachineHeap_s include Vale.Interop.Types module L = FStar.List.Tot module B = LowStar.Buffer module DV = LowStar.BufferView.Down module HS = FStar.HyperStack [@__reduce__] let disjoint_or_eq_b8 (ptr1 ptr2:b8) = B.loc_disjoint (B.loc_buffer ptr1.bsrc) (B.loc_buffer ptr2.bsrc) \/ ptr1 == ptr2 let list_disjoint_or_eq_def (ptrs:list b8) = forall (p1 p2:b8).{:pattern (L.memP p1 ptrs); (L.memP p2 ptrs)} L.memP p1 ptrs /\ L.memP p2 ptrs ==> disjoint_or_eq_b8 p1 p2 [@"opaque_to_smt"] let list_disjoint_or_eq = opaque_make list_disjoint_or_eq_def irreducible let list_disjoint_or_eq_reveal = opaque_revealer (`%list_disjoint_or_eq) list_disjoint_or_eq list_disjoint_or_eq_def unfold let list_live mem (ptrs:list b8) = forall (p:b8).{:pattern (L.memP p ptrs)} L.memP p ptrs ==> B.live mem p.bsrc assume val global_addrs_map : addr_map let mk_addr_map (ptrs:list b8{list_disjoint_or_eq ptrs}) : GTot addr_map = global_addrs_map noeq type interop_heap = | InteropHeap : ptrs : list b8{list_disjoint_or_eq ptrs} -> addrs : addr_map{addrs == mk_addr_map ptrs} -> hs : HS.mem{list_live hs ptrs} -> interop_heap unfold let hs_of_mem (m:interop_heap) : HS.mem = InteropHeap?.hs m unfold let ptrs_of_mem (m:interop_heap) : l:list b8{list_disjoint_or_eq l} = InteropHeap?.ptrs m unfold let addrs_of_mem (m:interop_heap) : addr_map = InteropHeap?.addrs m let rec addrs_ptr (i:nat) (addrs:addr_map) (ptr:b8{i <= DV.length (get_downview ptr.bsrc)}) (acc:Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i))
false
false
Vale.Interop.Heap_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addrs_ptr (i: nat) (addrs: addr_map) (ptr: b8{i <= DV.length (get_downview ptr.bsrc)}) (acc: Set.set int) : GTot (Set.set int) (decreases (DV.length (get_downview ptr.bsrc) - i))
[ "recursion" ]
Vale.Interop.Heap_s.addrs_ptr
{ "file_name": "vale/specs/interop/Vale.Interop.Heap_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Prims.nat -> addrs: Vale.Interop.Types.addr_map -> ptr: Vale.Interop.Types.b8 {i <= LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview (Buffer?.bsrc ptr))} -> acc: FStar.Set.set Prims.int -> Prims.GTot (FStar.Set.set Prims.int)
{ "end_col": 82, "end_line": 49, "start_col": 2, "start_line": 48 }
FStar.HyperStack.ST.Stack
val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sign_compute_s r hs a s = push_frame (); let aq = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes aq a; Hacl.Impl.BignumQ.Mul.mul_modq aq hs aq; Hacl.Impl.BignumQ.Mul.add_modq aq r aq; assert_norm (0x100000000000000 == pow2 56); Hacl.Impl.Store56.store_56 s aq; pop_frame ()
val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q)) let sign_compute_s r hs a s =
true
null
false
push_frame (); let aq = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes aq a; Hacl.Impl.BignumQ.Mul.mul_modq aq hs aq; Hacl.Impl.BignumQ.Mul.add_modq aq r aq; assert_norm (0x100000000000000 == pow2 56); Hacl.Impl.Store56.store_56 s aq; pop_frame ()
{ "checked_file": "Hacl.Impl.Ed25519.Sign.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.Store56.fst.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Sign.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Store56.store_56", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Hacl.Impl.BignumQ.Mul.add_modq", "Hacl.Impl.BignumQ.Mul.mul_modq", "Hacl.Impl.Load56.load_32_bytes", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Sign open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s))) [@CInline] let point_mul_g_compress out s = push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame () inline_for_extraction noextract val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
false
false
Hacl.Impl.Ed25519.Sign.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
[]
Hacl.Impl.Ed25519.Sign.sign_compute_s
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Sign.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> hs: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> a: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 53, "start_col": 2, "start_line": 46 }
FStar.HyperStack.ST.Stack
val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s)))
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_mul_g_compress out s = push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame ()
val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s))) let point_mul_g_compress out s =
true
null
false
push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame ()
{ "checked_file": "Hacl.Impl.Ed25519.Sign.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.Store56.fst.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Sign.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Ed25519.PointCompress.point_compress", "Hacl.Impl.Ed25519.Ladder.point_mul_g", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Sign open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s))) [@CInline]
false
false
Hacl.Impl.Ed25519.Sign.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s)))
[]
Hacl.Impl.Ed25519.Sign.point_mul_g_compress
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Sign.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 32, "start_col": 2, "start_line": 28 }
FStar.HyperStack.ST.Stack
val sign_expanded: signature:lbuffer uint8 64ul -> expanded_keys:lbuffer uint8 96ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> Stack unit (requires fun h -> live h signature /\ live h msg /\ live h expanded_keys /\ disjoint signature msg /\ disjoint signature expanded_keys) (ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\ as_seq h1 signature == Spec.Ed25519.sign_expanded (as_seq h0 (gsub expanded_keys 0ul 32ul)) (as_seq h0 (gsub expanded_keys 32ul 32ul)) (as_seq h0 (gsub expanded_keys 64ul 32ul)) (as_seq h0 msg))
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sign_expanded signature expanded_keys msg_len msg = push_frame (); let rs = sub signature 0ul 32ul in let ss = sub signature 32ul 32ul in let rq = create 5ul (u64 0) in let hq = create 5ul (u64 0) in let rb = create 32ul (u8 0) in // expanded_keys = [ public_key; s; prefix ] let public_key = sub expanded_keys 0ul 32ul in let s = sub expanded_keys 32ul 32ul in let prefix = sub expanded_keys 64ul 32ul in Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre rb rq prefix msg_len msg; point_mul_g_compress rs rb; Hacl.Impl.SHA512.ModQ.sha512_modq_pre_pre2 hq rs public_key msg_len msg; sign_compute_s rq hq s ss; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 signature) (Spec.Ed25519.sign_expanded (as_seq h1 public_key) (as_seq h1 s) (as_seq h1 prefix) (as_seq h1 msg)); pop_frame ()
val sign_expanded: signature:lbuffer uint8 64ul -> expanded_keys:lbuffer uint8 96ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> Stack unit (requires fun h -> live h signature /\ live h msg /\ live h expanded_keys /\ disjoint signature msg /\ disjoint signature expanded_keys) (ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\ as_seq h1 signature == Spec.Ed25519.sign_expanded (as_seq h0 (gsub expanded_keys 0ul 32ul)) (as_seq h0 (gsub expanded_keys 32ul 32ul)) (as_seq h0 (gsub expanded_keys 64ul 32ul)) (as_seq h0 msg)) let sign_expanded signature expanded_keys msg_len msg =
true
null
false
push_frame (); let rs = sub signature 0ul 32ul in let ss = sub signature 32ul 32ul in let rq = create 5ul (u64 0) in let hq = create 5ul (u64 0) in let rb = create 32ul (u8 0) in let public_key = sub expanded_keys 0ul 32ul in let s = sub expanded_keys 32ul 32ul in let prefix = sub expanded_keys 64ul 32ul in Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre rb rq prefix msg_len msg; point_mul_g_compress rs rb; Hacl.Impl.SHA512.ModQ.sha512_modq_pre_pre2 hq rs public_key msg_len msg; sign_compute_s rq hq s ss; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 signature) (Spec.Ed25519.sign_expanded (as_seq h1 public_key) (as_seq h1 s) (as_seq h1 prefix) (as_seq h1 msg)); pop_frame ()
{ "checked_file": "Hacl.Impl.Ed25519.Sign.fst.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.Store56.fst.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Sign.fst" }
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Sequence.eq_intro", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Spec.Ed25519.sign_expanded", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Ed25519.Sign.sign_compute_s", "Hacl.Impl.SHA512.ModQ.sha512_modq_pre_pre2", "Hacl.Impl.Ed25519.Sign.point_mul_g_compress", "Hacl.Impl.SHA512.ModQ.store_sha512_modq_pre", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.U64", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Ed25519.Sign open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s))) [@CInline] let point_mul_g_compress out s = push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame () inline_for_extraction noextract val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q)) let sign_compute_s r hs a s = push_frame (); let aq = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes aq a; Hacl.Impl.BignumQ.Mul.mul_modq aq hs aq; Hacl.Impl.BignumQ.Mul.add_modq aq r aq; assert_norm (0x100000000000000 == pow2 56); Hacl.Impl.Store56.store_56 s aq; pop_frame () inline_for_extraction noextract val sign_expanded: signature:lbuffer uint8 64ul -> expanded_keys:lbuffer uint8 96ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> Stack unit (requires fun h -> live h signature /\ live h msg /\ live h expanded_keys /\ disjoint signature msg /\ disjoint signature expanded_keys) (ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\ as_seq h1 signature == Spec.Ed25519.sign_expanded (as_seq h0 (gsub expanded_keys 0ul 32ul)) (as_seq h0 (gsub expanded_keys 32ul 32ul)) (as_seq h0 (gsub expanded_keys 64ul 32ul)) (as_seq h0 msg))
false
false
Hacl.Impl.Ed25519.Sign.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sign_expanded: signature:lbuffer uint8 64ul -> expanded_keys:lbuffer uint8 96ul -> msg_len:size_t -> msg:lbuffer uint8 msg_len -> Stack unit (requires fun h -> live h signature /\ live h msg /\ live h expanded_keys /\ disjoint signature msg /\ disjoint signature expanded_keys) (ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\ as_seq h1 signature == Spec.Ed25519.sign_expanded (as_seq h0 (gsub expanded_keys 0ul 32ul)) (as_seq h0 (gsub expanded_keys 32ul 32ul)) (as_seq h0 (gsub expanded_keys 64ul 32ul)) (as_seq h0 msg))
[]
Hacl.Impl.Ed25519.Sign.sign_expanded
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Sign.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> expanded_keys: Lib.Buffer.lbuffer Lib.IntTypes.uint8 96ul -> msg_len: Lib.IntTypes.size_t -> msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 94, "start_col": 2, "start_line": 74 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data
let scratch_b_data (rev_bytes rev_blocks: bool) (scratch_in_b: buffer128) (scratch_len count: int) (heap_s: vale_heap) (layout: vale_heap_layout) (ptr: int) (data: seq quad32) =
false
null
false
validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.buffer128", "Prims.int", "Vale.X64.InsBasic.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "FStar.Seq.Base.seq", "Vale.X64.Decls.quad32", "Prims.l_and", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.AES.X64.AESopt2.scratch_b_blocks", "Prims.logical" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32)
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scratch_b_data : rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> scratch_in_b: Vale.X64.Memory.buffer128 -> scratch_len: Prims.int -> count: Prims.int -> heap_s: Vale.X64.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> ptr: Prims.int -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Prims.logical
[]
Vale.AES.X64.AESopt2.scratch_b_data
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> scratch_in_b: Vale.X64.Memory.buffer128 -> scratch_len: Prims.int -> count: Prims.int -> heap_s: Vale.X64.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> ptr: Prims.int -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Prims.logical
{ "end_col": 82, "end_line": 70, "start_col": 2, "start_line": 69 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_subscript_FStar__Seq__Base__seq = Seq.index
let va_subscript_FStar__Seq__Base__seq =
false
null
false
Seq.index
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "FStar.Seq.Base.index", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50"
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_subscript_FStar__Seq__Base__seq : s: FStar.Seq.Base.seq _ -> i: Prims.nat{i < FStar.Seq.Base.length s} -> _
[]
Vale.AES.X64.AESopt2.va_subscript_FStar__Seq__Base__seq
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq _ -> i: Prims.nat{i < FStar.Seq.Base.length s} -> _
{ "end_col": 57, "end_line": 39, "start_col": 48, "start_line": 39 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6
let hkeys_b_powers (hkeys_b: buffer128) (heap0: vale_heap) (layout: vale_heap_layout) (ptr: int) (h: poly) =
false
null
false
validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.InsBasic.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Prims.int", "Vale.Math.Poly2_s.poly", "Prims.l_and", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Prims.eq2", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.X64.Decls.buffer128_read", "Vale.AES.GHash.gf128_power", "Prims.logical" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hkeys_b_powers : hkeys_b: Vale.X64.Memory.buffer128 -> heap0: Vale.X64.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> ptr: Prims.int -> h: Vale.Math.Poly2_s.poly -> Prims.logical
[]
Vale.AES.X64.AESopt2.hkeys_b_powers
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> heap0: Vale.X64.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> ptr: Prims.int -> h: Vale.Math.Poly2_s.poly -> Prims.logical
{ "end_col": 63, "end_line": 48, "start_col": 2, "start_line": 42 }
Prims.Tot
val index_opt_rev (b: bool) (len n i: int) : int
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i
val index_opt_rev (b: bool) (len n i: int) : int let index_opt_rev (b: bool) (len n i: int) : int =
false
null
false
if b then len - 1 - i else len - n + i
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val index_opt_rev (b: bool) (len n i: int) : int
[]
Vale.AES.X64.AESopt2.index_opt_rev
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Prims.bool -> len: Prims.int -> n: Prims.int -> i: Prims.int -> Prims.int
{ "end_col": 40, "end_line": 54, "start_col": 2, "start_line": 54 }
Prims.Tot
val quad32_opt_rev (b: bool) (q: quad32) : quad32
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q
val quad32_opt_rev (b: bool) (q: quad32) : quad32 let quad32_opt_rev (b: bool) (q: quad32) : quad32 =
false
null
false
if b then reverse_bytes_quad32 q else q
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Decls.quad32", "Vale.Def.Types_s.reverse_bytes_quad32" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val quad32_opt_rev (b: bool) (q: quad32) : quad32
[]
Vale.AES.X64.AESopt2.quad32_opt_rev
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Prims.bool -> q: Vale.X64.Decls.quad32 -> Vale.X64.Decls.quad32
{ "end_col": 41, "end_line": 51, "start_col": 2, "start_line": 51 }
Prims.Tot
val va_wp_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (())))
val va_wp_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let n:Prims.nat = FStar.Seq.Base.length #quad32 data in let scratch_index:int = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl: Vale.X64.Flags.t) (va_x_r10: nat64) (va_x_r11: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let n:Prims.nat = FStar.Seq.Base.length #quad32 data in let scratch_index:int = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.nat64", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.l_imp", "Prims.eq2", "Prims.int", "Prims.l_not", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.AES.X64.AESopt2.hkeys_b_powers", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Vale.AES.X64.AESopt2.scratch_b_data", "Vale.X64.Machine_s.rRdi", "Prims.op_Addition", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.X64.Decls.va_get_xmm", "Prims.nat", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rR11", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.Mkfour", "Vale.AES.X64.AESopt2.index_opt_rev", "FStar.Seq.Base.length", "Vale.AES.GHash.poly128", "Vale.AES.GHash.fun_seq_quad32_LE_poly128", "Vale.Def.Types_s.reverse_bytes_quad32", "Prims.l_Forall", "Vale.X64.Flags.t", "Vale.Def.Types_s.quad32", "Vale.AES.GHash.ghash_incremental", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR10", "Vale.X64.Decls.va_upd_flags" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32))
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_GhashUnroll_n
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> exactly6: Prims.bool -> scratch_len: Vale.X64.Memory.nat64 -> hkeys_b: Vale.X64.Memory.buffer128 -> scratch_in_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 21, "end_line": 357, "start_col": 2, "start_line": 328 }
Prims.Tot
val va_wp_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0)))))))))))) in va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) ==> va_k va_sM (())))
val va_wp_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let h:poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` (va_get_reg64 rRdx va_s0) < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051) /\ (forall (va_x_rdx: nat64) (va_x_r11: nat64) (va_x_r10: nat64) (va_x_efl: Vale.X64.Flags.t) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0)))))))))))) in va_get_ok va_sM /\ (let h:poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.X64.AESopt2.hkeys_b_powers", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRdx", "Vale.Arch.HeapTypes_s.Secret", "Prims.eq2", "Prims.nat", "Vale.X64.Decls.buffer_length", "Vale.X64.Memory.vuint128", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Multiply", "Vale.X64.Machine_s.pow2_64", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.Mkfour", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.Bits_s.of_quad32", "Prims.l_Forall", "Vale.X64.Memory.nat64", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.AES.GHash.ghash_incremental0", "Vale.X64.Decls.s128", "Prims.int", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR11" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_Ghash_register : hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_register hkeys_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_register ())) = (va_QProc (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev)) //-- //-- Ghash_buffer val va_code_Ghash_buffer : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_buffer : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_buffer : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_buffer ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0)))))))))))))))) [@ va_qattr] let va_wp_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32)
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_Ghash_buffer
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> in_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 68, "end_line": 507, "start_col": 2, "start_line": 488 }
Prims.Tot
val va_wp_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (())))
val va_wp_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl: Vale.X64.Flags.t) (va_x_r11: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)) )))))))) in va_get_ok va_sM /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Vale.AES.X64.AESopt2.hkeys_b_powers", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Prims.eq2", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.X64.Decls.va_get_xmm", "Prims.int", "Vale.AES.GHash.poly128", "Vale.AES.GHash.fun_seq_quad32_LE_poly128", "Vale.Def.Types_s.reverse_bytes_quad32", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.create", "Prims.l_Forall", "Vale.X64.Flags.t", "Vale.X64.Memory.nat64", "Prims.l_imp", "Vale.AES.GHash.ghash_incremental", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Decls.va_upd_flags" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state)
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_Ghash_register
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 25, "end_line": 439, "start_col": 2, "start_line": 416 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i))
let scratch_b_blocks (rev_bytes rev_blocks: bool) (scratch_in_b: buffer128) (scratch_len count: int) (heap_s: vale_heap) (data: seq quad32) =
false
null
false
(forall (i: nat). {:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.buffer128", "Prims.int", "Vale.X64.InsBasic.vale_heap", "FStar.Seq.Base.seq", "Vale.X64.Decls.quad32", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "Vale.X64.Decls.buffer128_read", "Vale.AES.X64.AESopt2.index_opt_rev", "Vale.AES.X64.AESopt2.quad32_opt_rev", "FStar.Seq.Base.index", "Prims.logical" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32)
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scratch_b_blocks : rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> scratch_in_b: Vale.X64.Memory.buffer128 -> scratch_len: Prims.int -> count: Prims.int -> heap_s: Vale.X64.InsBasic.vale_heap -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Prims.logical
[]
Vale.AES.X64.AESopt2.scratch_b_blocks
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> scratch_in_b: Vale.X64.Memory.buffer128 -> scratch_len: Prims.int -> count: Prims.int -> heap_s: Vale.X64.InsBasic.vale_heap -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Prims.logical
{ "end_col": 46, "end_line": 63, "start_col": 2, "start_line": 60 }
Prims.Tot
val va_wp_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (())))
val va_wp_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let n:Prims.nat = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl: Vale.X64.Flags.t) (va_x_xmm0: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let n:Prims.nat = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Prims.eq2", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Words_s.Mkfour", "Prims.op_GreaterThan", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2_s.add", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.Math.Poly2_s.shift", "Vale.AES.GHash.ghash_unroll_back", "Prims.op_Subtraction", "Prims.nat", "FStar.Seq.Base.length", "Prims.int", "Vale.AES.GHash.poly128", "Vale.AES.GHash.fun_seq_quad32_LE_poly128", "Vale.Def.Types_s.reverse_bytes_quad32", "Prims.l_Forall", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.Def.Types_s.quad32", "Vale.Math.Poly2.Bits_s.to_quad32", "Vale.AES.GHash.ghash_incremental", "Vale.X64.Decls.va_if", "Prims.l_not", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_flags" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32))
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_ReduceLast
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
last_adds: Prims.bool -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 64, "end_line": 268, "start_col": 2, "start_line": 243 }
Prims.Tot
val va_quick_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data))
val va_quick_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) let va_quick_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) =
false
null
false
(va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0 ]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.nat", "Prims.int", "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Memory.buffer128", "Vale.Math.Poly2_s.poly", "FStar.Seq.Base.seq", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_MulAdd_step", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_mod_xmm", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_MulAdd_step", "Vale.AES.X64.AESopt2.va_wpProof_MulAdd_step", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c))
[]
Vale.AES.X64.AESopt2.va_quick_MulAdd_step
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Prims.nat -> power_index: Prims.int -> a0: Vale.X64.Decls.va_operand_xmm -> a1: Vale.X64.Decls.va_operand_xmm -> a2: Vale.X64.Decls.va_operand_xmm -> a3: Vale.X64.Decls.va_operand_xmm -> b: Vale.X64.Decls.va_operand_xmm -> c: Vale.X64.Decls.va_operand_xmm -> hkeys_b: Vale.X64.Memory.buffer128 -> scratch_b: Vale.X64.Memory.buffer128 -> h: Vale.Math.Poly2_s.poly -> prev: Vale.Math.Poly2_s.poly -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)
{ "end_col": 35, "end_line": 203, "start_col": 2, "start_line": 199 }
Prims.Tot
val va_quick_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data))
val va_quick_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) let va_quick_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) =
false
null
false
(va_QProc (va_code_ReduceLast last_adds) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags ]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_ReduceLast", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_flags", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_ReduceLast", "Vale.AES.X64.AESopt2.va_wpProof_ReduceLast", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) :
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_ReduceLast (last_adds: bool) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds))
[]
Vale.AES.X64.AESopt2.va_quick_ReduceLast
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
last_adds: Prims.bool -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_ReduceLast last_adds)
{ "end_col": 68, "end_line": 282, "start_col": 2, "start_line": 280 }
Prims.Tot
val va_wp_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (())))
val va_wp_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0: va_value_xmm) (va_x_a1: va_value_xmm) (va_x_a2: va_value_xmm) (va_x_a3: va_value_xmm) (va_x_b: va_value_xmm) (va_x_c: va_value_xmm) (va_x_efl: Vale.X64.Flags.t) (va_x_xmm0: quad32) (va_x_xmm4: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64) ) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.nat", "Prims.int", "Vale.X64.Decls.va_operand_xmm", "Vale.X64.Memory.buffer128", "Vale.Math.Poly2_s.poly", "FStar.Seq.Base.seq", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Vale.X64.Decls.va_is_dst_xmm", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.l_imp", "Prims.eq2", "Vale.X64.Decls.validSrcAddrs128", "Vale.X64.Decls.va_get_mem_heaplet", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Machine_s.rRbp", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Vale.Math.Poly2_s.add", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.Math.Poly2_s.shift", "Vale.X64.Decls.va_get_xmm", "Vale.AES.GHash.ghash_unroll_back", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.va_eval_xmm", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.X64.AESopt2.va_subscript_FStar__Seq__Base__seq", "Vale.AES.GHash.gf128_power", "Prims.op_Addition", "Vale.X64.Decls.buffer128_read", "Vale.X64.Decls.va_if", "Prims.op_Equality", "Prims.l_not", "Vale.AES.GHash.poly128", "Vale.AES.GHash.fun_seq_quad32_LE_poly128", "Prims.l_Forall", "Vale.X64.Decls.va_value_xmm", "Vale.X64.Flags.t", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_operand_xmm" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_MulAdd_step (m: nat) (power_index: int) (a0 a1 a2 a3 b c: va_operand_xmm) (hkeys_b scratch_b: buffer128) (h prev: poly) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_MulAdd_step
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Prims.nat -> power_index: Prims.int -> a0: Vale.X64.Decls.va_operand_xmm -> a1: Vale.X64.Decls.va_operand_xmm -> a2: Vale.X64.Decls.va_operand_xmm -> a3: Vale.X64.Decls.va_operand_xmm -> b: Vale.X64.Decls.va_operand_xmm -> c: Vale.X64.Decls.va_operand_xmm -> hkeys_b: Vale.X64.Memory.buffer128 -> scratch_b: Vale.X64.Memory.buffer128 -> h: Vale.Math.Poly2_s.poly -> prev: Vale.Math.Poly2_s.poly -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 34, "end_line": 181, "start_col": 2, "start_line": 135 }
Prims.Tot
val va_quick_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_register ()))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_register ())) = (va_QProc (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev))
val va_quick_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_register ())) let va_quick_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_register ())) =
false
null
false
(va_QProc (va_code_Ghash_register ()) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags ]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_Ghash_register", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.QuickCode.va_Mod_flags", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_Ghash_register", "Vale.AES.X64.AESopt2.va_wpProof_Ghash_register", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_Ghash_register : hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_register hkeys_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_Ghash_register (hkeys_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_register ()))
[]
Vale.AES.X64.AESopt2.va_quick_Ghash_register
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_Ghash_register ())
{ "end_col": 17, "end_line": 454, "start_col": 2, "start_line": 451 }
Prims.Tot
val va_quick_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data))
val va_quick_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) let va_quick_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) =
false
null
false
(va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags ]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.X64.Memory.nat64", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_GhashUnroll_n", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rR10", "Vale.X64.QuickCode.va_Mod_flags", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_GhashUnroll_n", "Vale.AES.X64.AESopt2.va_wpProof_GhashUnroll_n", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) :
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_GhashUnroll_n (rev_bytes rev_blocks exactly6: bool) (scratch_len: nat64) (hkeys_b scratch_in_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6))
[]
Vale.AES.X64.AESopt2.va_quick_GhashUnroll_n
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
rev_bytes: Prims.bool -> rev_blocks: Prims.bool -> exactly6: Prims.bool -> scratch_len: Vale.X64.Memory.nat64 -> hkeys_b: Vale.X64.Memory.buffer128 -> scratch_in_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)
{ "end_col": 17, "end_line": 378, "start_col": 2, "start_line": 373 }
Prims.Tot
val va_quick_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_buffer ()))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_buffer ())) = (va_QProc (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev) (va_wpProof_Ghash_buffer hkeys_b in_b h_LE y_prev))
val va_quick_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_buffer ())) let va_quick_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_buffer ())) =
false
null
false
(va_QProc (va_code_Ghash_buffer ()) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx ]) (va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev) (va_wpProof_Ghash_buffer hkeys_b in_b h_LE y_prev))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_Ghash_buffer", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_Ghash_buffer", "Vale.AES.X64.AESopt2.va_wpProof_Ghash_buffer", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_Ghash_register : hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_register hkeys_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_register ())) = (va_QProc (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev)) //-- //-- Ghash_buffer val va_code_Ghash_buffer : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_buffer : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_buffer : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_buffer ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0)))))))))))))))) [@ va_qattr] let va_wp_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0)))))))))))) in va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) ==> va_k va_sM (()))) val va_wpProof_Ghash_buffer : hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) :
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_Ghash_buffer (hkeys_b in_b: buffer128) (h_LE y_prev: quad32) : (va_quickCode unit (va_code_Ghash_buffer ()))
[]
Vale.AES.X64.AESopt2.va_quick_Ghash_buffer
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> in_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_Ghash_buffer ())
{ "end_col": 63, "end_line": 523, "start_col": 2, "start_line": 520 }
Prims.Tot
val va_wp_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_GhashUnroll6x (hkeys_b:buffer128) (scratch_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ FStar.Seq.Base.length #quad32 data == 6 /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data true true scratch_b 8 5 (va_get_mem_heaplet 3 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRbp va_s0) data /\ va_get_xmm 7 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data 5) /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0))) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_rax:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rRax va_x_rax (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (())))
val va_wp_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ FStar.Seq.Base.length #quad32 data == 6 /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data true true scratch_b 8 5 (va_get_mem_heaplet 3 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRbp va_s0) data /\ va_get_xmm 7 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data 5) /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0))) == prev) /\ (forall (va_x_efl: Vale.X64.Flags.t) (va_x_rax: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32). let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rRax va_x_rax (va_upd_flags va_x_efl va_s0)) )))))))) in va_get_ok va_sM /\ (let h:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let prev:Vale.Math.Poly2_s.poly = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let pdata:(Prims.int -> Vale.AES.GHash.poly128) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.AES.X64.AESopt2.hkeys_b_powers", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Vale.AES.X64.AESopt2.scratch_b_data", "Vale.X64.Machine_s.rRbp", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.X64.AESopt2.va_subscript_FStar__Seq__Base__seq", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2_s.add", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.X64.Decls.buffer128_read", "Vale.AES.GHash.poly128", "Vale.AES.GHash.fun_seq_quad32_LE_poly128", "Prims.l_Forall", "Vale.X64.Flags.t", "Vale.X64.Memory.nat64", "Prims.l_imp", "Vale.AES.GHash.ghash_incremental", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_upd_flags" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_Ghash_register : hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_register hkeys_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_register ())) = (va_QProc (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev)) //-- //-- Ghash_buffer val va_code_Ghash_buffer : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_buffer : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_buffer : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_buffer ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0)))))))))))))))) [@ va_qattr] let va_wp_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0)))))))))))) in va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) ==> va_k va_sM (()))) val va_wpProof_Ghash_buffer : hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_buffer ())) = (va_QProc (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev) (va_wpProof_Ghash_buffer hkeys_b in_b h_LE y_prev)) //-- //-- GhashUnroll6x val va_code_GhashUnroll6x : va_dummy:unit -> Tot va_code val va_codegen_success_GhashUnroll6x : va_dummy:unit -> Tot va_pbool val va_lemma_GhashUnroll6x : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll6x ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ FStar.Seq.Base.length #quad32 data == 6 /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data true true scratch_b 8 5 (va_get_mem_heaplet 3 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRbp va_s0) data /\ va_get_xmm 7 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data 5) /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0))) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_GhashUnroll6x (hkeys_b:buffer128) (scratch_b:buffer128) (h_LE:quad32) (y_prev:quad32)
false
true
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.AESopt2.va_wp_GhashUnroll6x
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> scratch_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 25, "end_line": 583, "start_col": 2, "start_line": 560 }
Prims.Tot
val va_quick_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll6x ()))
[ { "abbrev": false, "full_module": "Vale.Poly1305.Math // For lemma_poly_bits64()", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_GhashUnroll6x (hkeys_b:buffer128) (scratch_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll6x ())) = (va_QProc (va_code_GhashUnroll6x ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rRax; va_Mod_flags]) (va_wp_GhashUnroll6x hkeys_b scratch_b h_LE y_prev data) (va_wpProof_GhashUnroll6x hkeys_b scratch_b h_LE y_prev data))
val va_quick_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll6x ())) let va_quick_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll6x ())) =
false
null
false
(va_QProc (va_code_GhashUnroll6x ()) ([ va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rRax; va_Mod_flags ]) (va_wp_GhashUnroll6x hkeys_b scratch_b h_LE y_prev data) (va_wpProof_GhashUnroll6x hkeys_b scratch_b h_LE y_prev data))
{ "checked_file": "Vale.AES.X64.AESopt2.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.AESopt2.fsti" }
[ "total" ]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AESopt2.va_code_GhashUnroll6x", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.QuickCode.va_Mod_flags", "Prims.Nil", "Vale.AES.X64.AESopt2.va_wp_GhashUnroll6x", "Vale.AES.X64.AESopt2.va_wpProof_GhashUnroll6x", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.AESopt2 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.AES_helpers open Vale.Poly1305.Math // For lemma_poly_bits64() open Vale.AES.GCM_helpers open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.Arch.TypesNative open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash #reset-options "--z3rlimit 50" unfold let va_subscript_FStar__Seq__Base__seq = Seq.index let hkeys_b_powers (hkeys_b:buffer128) (heap0:vale_heap) (layout:vale_heap_layout) (ptr:int) (h:poly) = validSrcAddrs128 heap0 ptr hkeys_b 8 layout Secret /\ of_quad32 (buffer128_read hkeys_b 0 heap0) == gf128_power h 1 /\ of_quad32 (buffer128_read hkeys_b 1 heap0) == gf128_power h 2 /\ of_quad32 (buffer128_read hkeys_b 3 heap0) == gf128_power h 3 /\ of_quad32 (buffer128_read hkeys_b 4 heap0) == gf128_power h 4 /\ of_quad32 (buffer128_read hkeys_b 6 heap0) == gf128_power h 5 /\ of_quad32 (buffer128_read hkeys_b 7 heap0) == gf128_power h 6 let quad32_opt_rev (b:bool) (q:quad32) : quad32 = if b then reverse_bytes_quad32 q else q let index_opt_rev (b:bool) (len n i:int) : int = if b then len - 1 - i else len - n + i let scratch_b_blocks (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (data:seq quad32) = (forall (i:nat).{:pattern (index data i)} i < count /\ i < length data ==> buffer128_read scratch_in_b (index_opt_rev rev_blocks scratch_len (length data) i) heap_s == quad32_opt_rev rev_bytes (index data i)) let scratch_b_data (rev_bytes:bool) (rev_blocks:bool) (scratch_in_b:buffer128) (scratch_len count:int) (heap_s:vale_heap) (layout:vale_heap_layout) (ptr:int) (data:seq quad32) = validSrcAddrs128 heap_s ptr scratch_in_b scratch_len layout Secret /\ scratch_b_blocks rev_bytes rev_blocks scratch_in_b scratch_len count heap_s data //-- MulAdd_step val va_code_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_code val va_codegen_success_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> Tot va_pbool val va_lemma_MulAdd_step : va_b0:va_code -> va_s0:va_state -> m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) va_s0 /\ va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = (if (m = 1) then va_eval_xmm va_s0 a1 else va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = (if (m = 0) then va_eval_xmm va_sM a0 else va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 4 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_xmm c va_sM (va_update_operand_xmm b va_sM (va_update_operand_xmm a3 va_sM (va_update_operand_xmm a2 va_sM (va_update_operand_xmm a1 va_sM (va_update_operand_xmm a0 va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_is_dst_xmm a0 va_s0 /\ va_is_dst_xmm a1 va_s0 /\ va_is_dst_xmm a2 va_s0 /\ va_is_dst_xmm a3 va_s0 /\ va_is_dst_xmm b va_s0 /\ va_is_dst_xmm c va_s0 /\ va_get_ok va_s0 /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ m < 6 /\ FStar.Seq.Base.length #quad32 data >= 6 /\ (m == 0 ==> a0 == 1 /\ a1 == 5 /\ a2 == 6 /\ a3 == 7 /\ b == 7 /\ c == 3) /\ (m == 1 ==> a0 == 5 /\ a1 == 1 /\ a2 == 2 /\ a3 == 3 /\ b == 0 /\ c == 3) /\ (m == 2 ==> a0 == 1 /\ a1 == 2 /\ a2 == 3 /\ a3 == 5 /\ b == 0 /\ c == 5) /\ (m == 3 ==> a0 == 2 /\ a1 == 3 /\ a2 == 5 /\ a3 == 1 /\ b == 0 /\ c == 1) /\ (m == 4 ==> a0 == 3 /\ a1 == 5 /\ a2 == 1 /\ a3 == 2 /\ b == 0 /\ c == 2) /\ (m == 5 ==> a0 == 2 /\ a1 == 5 /\ a2 == 1 /\ a3 == 8 /\ b == 8 /\ c == 3) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 3 va_s0) (va_get_reg64 rRbp va_s0) scratch_b 8 (va_get_mem_layout va_s0) Secret /\ (0 <= power_index /\ power_index < 8) /\ (let z0 = va_if (m = 1) (fun _ -> va_eval_xmm va_s0 a1) (fun _ -> va_get_xmm 4 va_s0) in (m > 0 ==> add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 (m - 1)) /\ (m < 5 ==> va_eval_xmm va_s0 b == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))) /\ (m == 5 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 b) == add prev (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data (5 - m))))) /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_eval_xmm va_s0 c) == Vale.AES.GHash.gf128_power h (m + 1)) /\ Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read hkeys_b power_index (va_get_mem_heaplet 0 va_s0)) == Vale.AES.GHash.gf128_power h (m + 1))) /\ (forall (va_x_a0:va_value_xmm) (va_x_a1:va_value_xmm) (va_x_a2:va_value_xmm) (va_x_a3:va_value_xmm) (va_x_b:va_value_xmm) (va_x_c:va_value_xmm) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm4:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_operand_xmm c va_x_c (va_upd_operand_xmm b va_x_b (va_upd_operand_xmm a3 va_x_a3 (va_upd_operand_xmm a2 va_x_a2 (va_upd_operand_xmm a1 va_x_a1 (va_upd_operand_xmm a0 va_x_a0 va_s0))))))))))) in va_get_ok va_sM /\ (let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in (m < 4 ==> va_get_xmm 0 va_sM == Vale.X64.Decls.buffer128_read scratch_b (3 + m) (va_get_mem_heaplet 3 va_sM)) /\ (let z0 = va_if (m = 0) (fun _ -> va_eval_xmm va_sM a0) (fun _ -> va_get_xmm 4 va_sM) in add (add (Vale.Math.Poly2.Bits_s.of_quad32 z0) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_sM)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 6 m /\ (m == 0 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0)))) /\ (m == 4 ==> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) == add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 7 (va_get_mem_heaplet 3 va_s0)))) /\ (0 < m /\ m < 4 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0))) ==> va_k va_sM (()))) val va_wpProof_MulAdd_step : m:nat -> power_index:int -> a0:va_operand_xmm -> a1:va_operand_xmm -> a2:va_operand_xmm -> a3:va_operand_xmm -> b:va_operand_xmm -> c:va_operand_xmm -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h:poly -> prev:poly -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_MulAdd_step (m:nat) (power_index:int) (a0:va_operand_xmm) (a1:va_operand_xmm) (a2:va_operand_xmm) (a3:va_operand_xmm) (b:va_operand_xmm) (c:va_operand_xmm) (hkeys_b:buffer128) (scratch_b:buffer128) (h:poly) (prev:poly) (data:(seq quad32)) : (va_quickCode unit (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c)) = (va_QProc (va_code_MulAdd_step m power_index a0 a1 a2 a3 b c) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 4; va_Mod_xmm 0; va_Mod_flags; va_mod_xmm c; va_mod_xmm b; va_mod_xmm a3; va_mod_xmm a2; va_mod_xmm a1; va_mod_xmm a0]) (va_wp_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data) (va_wpProof_MulAdd_step m power_index a0 a1 a2 a3 b c hkeys_b scratch_b h prev data)) //-- //-- ReduceLast val va_code_ReduceLast : last_adds:bool -> Tot va_code val va_codegen_success_ReduceLast : last_adds:bool -> Tot va_pbool val va_lemma_ReduceLast : va_b0:va_code -> va_s0:va_state -> last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_ReduceLast last_adds) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = (if last_adds then Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM) else add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))) [@ va_qattr] let va_wp_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in pclmulqdq_enabled /\ avx_enabled /\ va_get_xmm 3 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 3254779904 /\ n > 0 /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 6 va_s0)) 64)) (Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_s0)) 128) == Vale.AES.GHash.ghash_unroll_back h prev pdata 0 n (n - 1)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl va_s0))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let xi = va_if last_adds (fun _ -> Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (fun _ -> add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_sM)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 7 va_sM))) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_sM))) in Vale.Math.Poly2.Bits_s.to_quad32 xi == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ xi == Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Math.Poly2.Bits_s.to_quad32 xi)) ==> va_k va_sM (()))) val va_wpProof_ReduceLast : last_adds:bool -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_ReduceLast last_adds h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_ReduceLast (last_adds:bool) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_ReduceLast last_adds)) = (va_QProc (va_code_ReduceLast last_adds) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 0; va_Mod_flags]) (va_wp_ReduceLast last_adds h_LE y_prev data) (va_wpProof_ReduceLast last_adds h_LE y_prev data)) //-- //-- GhashUnroll_n val va_code_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_code val va_codegen_success_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> Tot va_pbool val va_lemma_GhashUnroll_n : va_b0:va_code -> va_s0:va_state -> rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rR10 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ (exactly6 ==> n == 6) /\ (~exactly6 ==> 1 <= n /\ n < 6) /\ n <= scratch_len /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data rev_bytes rev_blocks scratch_in_b scratch_len 6 (va_get_mem_heaplet 1 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRdi va_s0) data /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_len <= pow2_64 /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev /\ (~exactly6 ==> va_get_reg64 rRdx va_s0 == n) /\ va_get_reg64 rR11 va_s0 == va_get_reg64 rRdi va_s0 + 16 `op_Multiply` scratch_index /\ (~rev_bytes ==> va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051)) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r10:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rR10 va_x_r10 (va_upd_flags va_x_efl va_s0))))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in let (n:Prims.nat) = FStar.Seq.Base.length #quad32 data in let (scratch_index:int) = index_opt_rev rev_blocks scratch_len n (n - 1) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data) /\ (l_and exactly6 (~rev_blocks) ==> va_get_reg64 rR11 va_sM == va_get_reg64 rR11 va_s0 - 80)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll_n : rev_bytes:bool -> rev_blocks:bool -> exactly6:bool -> scratch_len:nat64 -> hkeys_b:buffer128 -> scratch_in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll_n (rev_bytes:bool) (rev_blocks:bool) (exactly6:bool) (scratch_len:nat64) (hkeys_b:buffer128) (scratch_in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) : (va_quickCode unit (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6)) = (va_QProc (va_code_GhashUnroll_n rev_bytes rev_blocks exactly6) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rR10; va_Mod_flags]) (va_wp_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data) (va_wpProof_GhashUnroll_n rev_bytes rev_blocks exactly6 scratch_len hkeys_b scratch_in_b h_LE y_prev data)) //-- //-- Ghash_register val va_code_Ghash_register : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_register : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_register : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_register ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (data:(FStar.Seq.Base.seq Vale.Def.Types_s.quad32)) = FStar.Seq.Base.create #Vale.Def.Types_s.quad32 1 (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 0 va_s0)) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_Ghash_register : hkeys_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_register hkeys_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_register (hkeys_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_register ())) = (va_QProc (va_code_Ghash_register ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_flags]) (va_wp_Ghash_register hkeys_b h_LE y_prev) (va_wpProof_Ghash_register hkeys_b h_LE y_prev)) //-- //-- Ghash_buffer val va_code_Ghash_buffer : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_buffer : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_buffer : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_buffer ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0)))))))))))))))) [@ va_qattr] let va_wp_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == va_get_reg64 rRdx va_s0 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 y_prev /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0)))))))))))) in va_get_ok va_sM /\ (let (h:poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE y_prev (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) in_b)) /\ (va_get_reg64 rRdx va_s0 == 0 ==> va_get_xmm 8 va_sM == va_get_xmm 8 va_s0)) ==> va_k va_sM (()))) val va_wpProof_Ghash_buffer : hkeys_b:buffer128 -> in_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_buffer (hkeys_b:buffer128) (in_b:buffer128) (h_LE:quad32) (y_prev:quad32) : (va_quickCode unit (va_code_Ghash_buffer ())) = (va_QProc (va_code_Ghash_buffer ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Ghash_buffer hkeys_b in_b h_LE y_prev) (va_wpProof_Ghash_buffer hkeys_b in_b h_LE y_prev)) //-- //-- GhashUnroll6x val va_code_GhashUnroll6x : va_dummy:unit -> Tot va_code val va_codegen_success_GhashUnroll6x : va_dummy:unit -> Tot va_pbool val va_lemma_GhashUnroll6x : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> scratch_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_GhashUnroll6x ()) va_s0 /\ va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ FStar.Seq.Base.length #quad32 data == 6 /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data true true scratch_b 8 5 (va_get_mem_heaplet 3 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRbp va_s0) data /\ va_get_xmm 7 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data 5) /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0))) == prev))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) /\ va_state_eq va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0)))))))))))))) [@ va_qattr] let va_wp_GhashUnroll6x (hkeys_b:buffer128) (scratch_b:buffer128) (h_LE:quad32) (y_prev:quad32) (data:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ FStar.Seq.Base.length #quad32 data == 6 /\ hkeys_b_powers hkeys_b (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rR9 va_s0 - 32) h /\ scratch_b_data true true scratch_b 8 5 (va_get_mem_heaplet 3 va_s0) (va_get_mem_layout va_s0) (va_get_reg64 rRbp va_s0) data /\ va_get_xmm 7 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (va_subscript_FStar__Seq__Base__seq data 5) /\ add (add (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 8 va_s0)) (Vale.Math.Poly2.Bits_s.of_quad32 (va_get_xmm 4 va_s0))) (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.X64.Decls.buffer128_read scratch_b 1 (va_get_mem_heaplet 3 va_s0))) == prev) /\ (forall (va_x_efl:Vale.X64.Flags.t) (va_x_rax:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) . let va_sM = va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rRax va_x_rax (va_upd_flags va_x_efl va_s0)))))))))) in va_get_ok va_sM /\ (let (h:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) in let (prev:Vale.Math.Poly2_s.poly) = Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 y_prev) in let (pdata:(Prims.int -> Vale.AES.GHash.poly128)) = Vale.AES.GHash.fun_seq_quad32_LE_poly128 data in va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental h_LE y_prev data)) ==> va_k va_sM (()))) val va_wpProof_GhashUnroll6x : hkeys_b:buffer128 -> scratch_b:buffer128 -> h_LE:quad32 -> y_prev:quad32 -> data:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_GhashUnroll6x hkeys_b scratch_b h_LE y_prev data va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_GhashUnroll6x ()) ([va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rRax; va_Mod_flags]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_GhashUnroll6x (hkeys_b:buffer128) (scratch_b:buffer128) (h_LE:quad32) (y_prev:quad32)
false
false
Vale.AES.X64.AESopt2.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_GhashUnroll6x (hkeys_b scratch_b: buffer128) (h_LE y_prev: quad32) (data: (seq quad32)) : (va_quickCode unit (va_code_GhashUnroll6x ()))
[]
Vale.AES.X64.AESopt2.va_quick_GhashUnroll6x
{ "file_name": "obj/Vale.AES.X64.AESopt2.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
hkeys_b: Vale.X64.Memory.buffer128 -> scratch_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> y_prev: Vale.X64.Decls.quad32 -> data: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AESopt2.va_code_GhashUnroll6x ())
{ "end_col": 66, "end_line": 599, "start_col": 2, "start_line": 596 }
Prims.Tot
val be_to_n : b:bytes -> Tot nat
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
val be_to_n : b:bytes -> Tot nat let rec be_to_n b : Tot nat (decreases (S.length b)) =
false
null
false
if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "", "total" ]
[ "FStar.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Properties.last", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Endianness.be_to_n", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.nat" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b
false
true
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_to_n : b:bytes -> Tot nat
[ "recursion" ]
FStar.Endianness.be_to_n
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> Prims.Tot Prims.nat
{ "end_col": 74, "end_line": 39, "start_col": 4, "start_line": 38 }
Prims.Tot
val le_to_n : b:bytes -> Tot nat
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
val le_to_n : b:bytes -> Tot nat let rec le_to_n b : Tot nat (decreases (S.length b)) =
false
null
false
if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "", "total" ]
[ "FStar.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Properties.head", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Endianness.le_to_n", "FStar.Seq.Properties.tail", "Prims.nat" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b
false
true
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n : b:bytes -> Tot nat
[ "recursion" ]
FStar.Endianness.le_to_n
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> Prims.Tot Prims.nat
{ "end_col": 54, "end_line": 34, "start_col": 4, "start_line": 33 }
FStar.Pervasives.Lemma
val n_to_be_be_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( be_to_n s < pow2 (8 * len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s))
val n_to_be_be_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( be_to_n s < pow2 (8 * len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] let n_to_be_be_to_n len s =
false
null
true
lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt8.t", "FStar.Endianness.be_to_n_inj", "FStar.Endianness.n_to_be", "FStar.Endianness.be_to_n", "Prims.unit", "FStar.Endianness.lemma_be_to_n_is_bounded" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// -------------
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_be_be_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( be_to_n s < pow2 (8 * len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))]
[]
FStar.Endianness.n_to_be_be_to_n
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
len: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == len) (ensures FStar.Endianness.be_to_n s < Prims.pow2 (8 * len) /\ FStar.Endianness.n_to_be len (FStar.Endianness.be_to_n s) == s) [SMTPat (FStar.Endianness.n_to_be len (FStar.Endianness.be_to_n s))]
{ "end_col": 41, "end_line": 152, "start_col": 2, "start_line": 151 }
FStar.Pervasives.Lemma
val n_to_le_le_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( le_to_n s < pow2 (8 * len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s))
val n_to_le_le_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( le_to_n s < pow2 (8 * len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] let n_to_le_le_to_n len s =
false
null
true
lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt8.t", "FStar.Endianness.le_to_n_inj", "FStar.Endianness.n_to_le", "FStar.Endianness.le_to_n", "Prims.unit", "FStar.Endianness.lemma_le_to_n_is_bounded" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s))
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_le_le_to_n (len: nat) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == len)) (ensures ( le_to_n s < pow2 (8 * len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))]
[]
FStar.Endianness.n_to_le_le_to_n
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
len: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == len) (ensures FStar.Endianness.le_to_n s < Prims.pow2 (8 * len) /\ FStar.Endianness.n_to_le len (FStar.Endianness.le_to_n s) == s) [SMTPat (FStar.Endianness.n_to_le len (FStar.Endianness.le_to_n s))]
{ "end_col": 41, "end_line": 156, "start_col": 2, "start_line": 155 }
Prims.Tot
val be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
val be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) let rec be_of_seq_uint32 s =
false
null
false
if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
[ "recursion" ]
FStar.Endianness.be_of_seq_uint32
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 190, "start_col": 2, "start_line": 187 }
Prims.Tot
val le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
val le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) let rec le_of_seq_uint32 s =
false
null
false
if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Endianness.le_of_uint32", "FStar.Seq.Properties.head", "FStar.Endianness.le_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
[ "recursion" ]
FStar.Endianness.le_of_seq_uint32
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 177, "start_col": 2, "start_line": 174 }
Prims.Tot
val be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
val be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) let rec be_of_seq_uint64 s =
false
null
false
if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Endianness.be_of_uint64", "FStar.Seq.Properties.head", "FStar.Endianness.be_of_seq_uint64", "FStar.Seq.Properties.tail", "FStar.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
[ "recursion" ]
FStar.Endianness.be_of_seq_uint64
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq FStar.UInt64.t -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 216, "start_col": 2, "start_line": 213 }
FStar.Pervasives.Lemma
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) let rec be_to_n_inj b1 b2 =
false
null
true
if Seq.length b1 = 0 then () else (be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Properties.lemma_split", "Prims.op_Subtraction", "Prims.unit", "FStar.Endianness.be_to_n_inj", "FStar.Seq.Base.slice" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = ()
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ "recursion" ]
FStar.Endianness.be_to_n_inj
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: FStar.Seq.Base.seq FStar.UInt8.t -> b2: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b1 == FStar.Seq.Base.length b2 /\ FStar.Endianness.be_to_n b1 == FStar.Endianness.be_to_n b2) (ensures FStar.Seq.Base.equal b1 b2) (decreases FStar.Seq.Base.length b1)
{ "end_col": 5, "end_line": 136, "start_col": 2, "start_line": 130 }
Prims.Tot
val le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
val le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) let rec le_of_seq_uint64 s =
false
null
false
if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Endianness.le_of_uint64", "FStar.Seq.Properties.head", "FStar.Endianness.le_of_seq_uint64", "FStar.Seq.Properties.tail", "FStar.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
[ "recursion" ]
FStar.Endianness.le_of_seq_uint64
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq FStar.UInt64.t -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 203, "start_col": 2, "start_line": 200 }
Prims.Tot
val seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
val seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } let rec seq_uint32_of_le l b =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt32.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Endianness.uint32_of_le", "FStar.Endianness.seq_uint32_of_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers?
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
[ "recursion" ]
FStar.Endianness.seq_uint32_of_le
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.nat -> b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 4 * l} -> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 171, "start_col": 2, "start_line": 167 }
FStar.Pervasives.Lemma
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) let rec le_to_n_inj b1 b2 =
false
null
true
if Seq.length b1 = 0 then () else (le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Properties.lemma_split", "Prims.unit", "FStar.Endianness.le_to_n_inj", "FStar.Seq.Base.slice" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ "recursion" ]
FStar.Endianness.le_to_n_inj
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: FStar.Seq.Base.seq FStar.UInt8.t -> b2: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b1 == FStar.Seq.Base.length b2 /\ FStar.Endianness.le_to_n b1 == FStar.Endianness.le_to_n b2) (ensures FStar.Seq.Base.equal b1 b2) (decreases FStar.Seq.Base.length b1)
{ "end_col": 5, "end_line": 145, "start_col": 2, "start_line": 139 }
Prims.Tot
val seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
val seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } let rec seq_uint32_of_be l b =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt32.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Endianness.uint32_of_be", "FStar.Endianness.seq_uint32_of_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
[ "recursion" ]
FStar.Endianness.seq_uint32_of_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.nat -> b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 4 * l} -> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 184, "start_col": 2, "start_line": 180 }
Prims.Tot
val seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
val seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } let rec seq_uint64_of_le l b =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt64.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Endianness.uint64_of_le", "FStar.Endianness.seq_uint64_of_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
[ "recursion" ]
FStar.Endianness.seq_uint64_of_le
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.nat -> b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 8 * l} -> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 197, "start_col": 2, "start_line": 193 }
Prims.Tot
val seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
val seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } let rec seq_uint64_of_be l b =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt64.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Endianness.uint64_of_be", "FStar.Endianness.seq_uint64_of_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
[ "recursion" ]
FStar.Endianness.seq_uint64_of_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.nat -> b: FStar.Endianness.bytes{FStar.Seq.Base.length b = 8 * l} -> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 210, "start_col": 2, "start_line": 206 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures (be_of_seq_uint32 (S.slice s lo hi) `S.equal` S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let be_of_seq_uint32_slice s lo hi = slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures (be_of_seq_uint32 (S.slice s lo hi) `S.equal` S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi))) let be_of_seq_uint32_slice s lo hi =
false
null
true
slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.nat", "FStar.Endianness.slice_seq_uint32_of_be", "FStar.Seq.Base.length", "FStar.Endianness.be_of_seq_uint32", "Prims.unit" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = () let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end let rec le_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end let rec be_of_seq_uint64_append s1 s2 = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end let rec seq_uint32_of_be_be_of_seq_uint32 n s = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end let rec be_of_seq_uint32_seq_uint32_of_be n s = if n = 0 then () else begin S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4 hd end let slice_seq_uint32_of_be n s lo hi = ()
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures (be_of_seq_uint32 (S.slice s lo hi) `S.equal` S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))
[]
FStar.Endianness.be_of_seq_uint32_slice
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat -> FStar.Pervasives.Lemma (requires lo <= hi /\ hi <= FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Endianness.be_of_seq_uint32 (FStar.Seq.Base.slice s lo hi)) (FStar.Seq.Base.slice (FStar.Endianness.be_of_seq_uint32 s) (4 * lo) (4 * hi)))
{ "end_col": 64, "end_line": 352, "start_col": 2, "start_line": 352 }
Prims.Tot
val n_to_be: len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == be_to_n b}) (decreases len)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b
val n_to_be: len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == be_to_n b}) (decreases len) let rec n_to_be len n =
false
null
false
if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.slice", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Endianness.bytes", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Endianness.be_to_n", "FStar.Endianness.n_to_be", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Division", "FStar.UInt8.uint_to_t", "Prims.op_Modulus", "Prims.op_Subtraction" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_be: len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == be_to_n b}) (decreases len)
[ "recursion" ]
FStar.Endianness.n_to_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (8 * len)} -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b == len /\ n == FStar.Endianness.be_to_n b})
{ "end_col": 5, "end_line": 118, "start_col": 2, "start_line": 107 }
Prims.Tot
val n_to_le : len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == le_to_n b}) (decreases len)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b
val n_to_le : len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == le_to_n b}) (decreases len) let rec n_to_le len n =
false
null
false
if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert (n' < pow2 (8 * len)); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "total", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Properties.tail", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Endianness.bytes", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Endianness.le_to_n", "FStar.Endianness.n_to_le", "Prims._assert", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Division", "FStar.UInt8.uint_to_t", "Prims.op_Modulus", "Prims.op_Subtraction" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_le : len:nat -> n:nat{n < pow2 (8 * len)} -> Tot (b:bytes{S.length b == len /\ n == le_to_n b}) (decreases len)
[ "recursion" ]
FStar.Endianness.n_to_le
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (8 * len)} -> Prims.Tot (b: FStar.Endianness.bytes{FStar.Seq.Base.length b == len /\ n == FStar.Endianness.le_to_n b})
{ "end_col": 5, "end_line": 104, "start_col": 2, "start_line": 93 }
FStar.Pervasives.Lemma
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b =
false
null
true
if Seq.length b = 0 then () else let s = Seq.slice b 0 (Seq.length b - 1) in assert (Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert (UInt8.v (Seq.last b) < pow2 8); assert (be_to_n s < pow2 (8 * Seq.length s)); assert (be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert (be_to_n b <= pow2 8 * (be_to_n s + 1)); assert (be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "FStar.Endianness.lemma_factorise", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Endianness.be_to_n", "Prims.pow2", "Prims.op_Addition", "FStar.Endianness.lemma_euclidean_division", "FStar.UInt8.v", "FStar.Seq.Properties.last", "Prims.op_LessThan", "FStar.Endianness.lemma_be_to_n_is_bounded", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ "recursion" ]
FStar.Endianness.lemma_be_to_n_is_bounded
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> FStar.Pervasives.Lemma (ensures FStar.Endianness.be_to_n b < Prims.pow2 (8 * FStar.Seq.Base.length b)) (decreases FStar.Seq.Base.length b)
{ "end_col": 7, "end_line": 90, "start_col": 2, "start_line": 76 }
FStar.Pervasives.Lemma
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b =
false
null
true
if Seq.length b = 0 then () else let s = Seq.slice b 1 (Seq.length b) in assert (Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert (UInt8.v (Seq.index b 0) < pow2 8); assert (le_to_n s < pow2 (8 * Seq.length s)); assert (le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert (le_to_n b <= pow2 8 * (le_to_n s + 1)); assert (le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "FStar.Endianness.lemma_factorise", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Endianness.le_to_n", "Prims.pow2", "Prims.op_Addition", "FStar.Endianness.lemma_euclidean_division", "FStar.UInt8.v", "FStar.Seq.Base.index", "Prims.op_LessThan", "FStar.Endianness.lemma_le_to_n_is_bounded", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = ()
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ "recursion" ]
FStar.Endianness.lemma_le_to_n_is_bounded
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> FStar.Pervasives.Lemma (ensures FStar.Endianness.le_to_n b < Prims.pow2 (8 * FStar.Seq.Base.length b)) (decreases FStar.Seq.Base.length b)
{ "end_col": 7, "end_line": 73, "start_col": 2, "start_line": 59 }
FStar.Pervasives.Lemma
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_be_be_of_seq_uint32 n s = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] let rec seq_uint32_of_be_be_of_seq_uint32 n s =
false
null
true
if n = 0 then () else (assert (s `S.equal` (S.cons (S.head s) (S.tail s))); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)))
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Properties.lemma_append_inj", "FStar.UInt8.t", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "FStar.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "Prims.unit", "FStar.Seq.Properties.lemma_split", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Multiply", "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32", "Prims.op_Subtraction", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.cons" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = () let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end let rec le_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end let rec be_of_seq_uint64_append s1 s2 = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
[ "recursion" ]
FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (requires n == FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Endianness.seq_uint32_of_be n (FStar.Endianness.be_of_seq_uint32 s)) s) (decreases n) [SMTPat (FStar.Endianness.seq_uint32_of_be n (FStar.Endianness.be_of_seq_uint32 s))]
{ "end_col": 5, "end_line": 330, "start_col": 2, "start_line": 322 }
FStar.Pervasives.Lemma
val offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1)
val offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] let rec offset_uint32_be (b: bytes) (n i: nat) =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Endianness.offset_uint32_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ]
[ "recursion" ]
FStar.Endianness.offset_uint32_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Endianness.seq_uint32_of_be n b) i == FStar.Endianness.uint32_of_be (FStar.Seq.Base.slice b (4 * i) (4 * i + 4))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Endianness.seq_uint32_of_be n b) i)]
{ "end_col": 41, "end_line": 231, "start_col": 2, "start_line": 224 }
FStar.Pervasives.Lemma
val offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1)
val offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] let rec offset_uint32_le (b: bytes) (n i: nat) =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Endianness.offset_uint32_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ]
[ "recursion" ]
FStar.Endianness.offset_uint32_le
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Endianness.seq_uint32_of_le n b) i == FStar.Endianness.uint32_of_le (FStar.Seq.Base.slice b (4 * i) (4 * i + 4))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Endianness.seq_uint32_of_le n b) i)]
{ "end_col": 41, "end_line": 241, "start_col": 2, "start_line": 234 }
FStar.Pervasives.Lemma
val offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1)
val offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] let rec offset_uint64_be (b: bytes) (n i: nat) =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Endianness.offset_uint64_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ]
[ "recursion" ]
FStar.Endianness.offset_uint64_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Endianness.seq_uint64_of_be n b) i == FStar.Endianness.uint64_of_be (FStar.Seq.Base.slice b (8 * i) (8 * i + 8))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Endianness.seq_uint64_of_be n b) i)]
{ "end_col": 41, "end_line": 251, "start_col": 2, "start_line": 244 }
FStar.Pervasives.Lemma
val offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1)
val offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] let rec offset_uint64_le (b: bytes) (n i: nat) =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Endianness.offset_uint64_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1)
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ]
[ "recursion" ]
FStar.Endianness.offset_uint64_le
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Endianness.seq_uint64_of_le n b) i == FStar.Endianness.uint64_of_le (FStar.Seq.Base.slice b (8 * i) (8 * i + 8))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Endianness.seq_uint64_of_le n b) i)]
{ "end_col": 41, "end_line": 261, "start_col": 2, "start_line": 254 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32_seq_uint32_of_be n s = if n = 0 then () else begin S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4 hd end
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] let rec be_of_seq_uint32_seq_uint32_of_be n s =
false
null
true
if n = 0 then () else (S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4 hd)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Endianness.n_to_be_be_to_n", "Prims.unit", "FStar.Seq.Properties.lemma_append_inj", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "FStar.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.UInt32.t", "FStar.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Seq.Properties.lemma_split", "FStar.Endianness.bytes", "Prims.b2t", "Prims.op_Multiply", "Prims._assert", "Prims.eq2", "FStar.Endianness.seq_uint32_of_be", "Prims.op_Subtraction", "FStar.Endianness.tail_cons", "FStar.Endianness.uint32_of_be", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "FStar.Endianness.be_of_seq_uint32_seq_uint32_of_be" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = () let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end let rec le_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end let rec be_of_seq_uint64_append s1 s2 = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end let rec seq_uint32_of_be_be_of_seq_uint32 n s = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
[ "recursion" ]
FStar.Endianness.be_of_seq_uint32_seq_uint32_of_be
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires 4 * n == FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Endianness.be_of_seq_uint32 (FStar.Endianness.seq_uint32_of_be n s)) s) (decreases n) [SMTPat (FStar.Endianness.be_of_seq_uint32 (FStar.Endianness.seq_uint32_of_be n s))]
{ "end_col": 5, "end_line": 347, "start_col": 2, "start_line": 333 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end
val be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] let rec be_of_seq_uint32_append s1 s2 =
false
null
true
Classical.forall_intro_2 (tail_cons #U32.t); if S.length s1 = 0 then (assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Endianness.be_of_seq_uint32", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Endianness.be_of_seq_uint32_append", "FStar.Seq.Properties.tail", "FStar.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Endianness.tail_cons" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = ()
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
[ "recursion" ]
FStar.Endianness.be_of_seq_uint32_append
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Endianness.be_of_seq_uint32 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Endianness.be_of_seq_uint32 s1) (FStar.Endianness.be_of_seq_uint32 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Endianness.be_of_seq_uint32 s1) (FStar.Endianness.be_of_seq_uint32 s2)) ]
{ "end_col": 5, "end_line": 293, "start_col": 2, "start_line": 283 }
FStar.Pervasives.Lemma
val le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end
val le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] let rec le_of_seq_uint32_append s1 s2 =
false
null
true
Classical.forall_intro_2 (tail_cons #U32.t); if S.length s1 = 0 then (assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Endianness.le_of_seq_uint32", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Endianness.le_of_seq_uint32_append", "FStar.Seq.Properties.tail", "FStar.Endianness.le_of_uint32", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Endianness.tail_cons" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = () let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
[ "recursion" ]
FStar.Endianness.le_of_seq_uint32_append
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Endianness.le_of_seq_uint32 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Endianness.le_of_seq_uint32 s1) (FStar.Endianness.le_of_seq_uint32 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Endianness.le_of_seq_uint32 s1) (FStar.Endianness.le_of_seq_uint32 s2)) ]
{ "end_col": 5, "end_line": 306, "start_col": 2, "start_line": 296 }
FStar.Pervasives.Lemma
val be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint64_append s1 s2 = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end
val be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ] let rec be_of_seq_uint64_append s1 s2 =
false
null
true
Classical.forall_intro_2 (tail_cons #U64.t); if S.length s1 = 0 then (assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2)
{ "checked_file": "FStar.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Endianness.be_of_seq_uint64", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Endianness.be_of_seq_uint64_append", "FStar.Seq.Properties.tail", "FStar.Endianness.be_of_uint64", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Endianness.tail_cons" ]
[]
module FStar.Endianness /// A library of lemmas for reasoning about sequences of machine integers and /// their (little|big)-endian representation as a sequence of bytes. /// /// The functions in this module aim to be as generic as possible, in order to /// facilitate compatibility with: /// - Vale's model of machine integers (nat64 et al.), which does not rely on /// FStar's machine integers /// - HACL*'s Lib.IntTypes module, which exposes a universal indexed integer /// type but uses F* machine integers under the hood. /// /// To achieve maximum compatibility, we try to state most lemmas using nat /// rather than UIntX. /// /// .. note:: /// /// This module supersedes the poorly-named ``FStar.Krml.Endianness``. module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq open FStar.Mul /// Definition of little and big-endianness /// --------------------------------------- let rec le_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) let rec be_to_n b : Tot nat (decreases (S.length b)) = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) let reveal_le_to_n _ = () let reveal_be_to_n _ = () /// Inverse operations /// ------------------ /// TODO: move to FStar.Math.Lemmas? private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () /// TODO: move to FStar.Math.Lemmas? US spelling? private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end let rec n_to_le len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); assert(n' < pow2 (8 * len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b let rec n_to_be len n = if len = 0 then S.empty else let len = len - 1 in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * len); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 len); b /// Injectivity /// ----------- // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le let n_to_le_inj len n1 n2 = () let n_to_be_inj len n1 n2 = () let rec be_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end let rec le_to_n_inj b1 b2 = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end /// Roundtripping /// ------------- let n_to_be_be_to_n len s = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) let n_to_le_le_to_n len s = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) /// Reasoning over sequences of integers /// ------------------------------------ /// /// TODO: should these be sequences of nats instead? then re-use these lemmas to /// export a variant (which we need for, say, hashes) specialized to F* machine /// integers? let rec seq_uint32_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) let rec le_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) let rec seq_uint32_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) let rec be_of_seq_uint32 s = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) let rec seq_uint64_of_le l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) let rec le_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) let rec seq_uint64_of_be l b = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) let rec be_of_seq_uint64 s = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) /// Pure indexing & update over sequences /// ------------------------------------- #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" let rec offset_uint32_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) let rec offset_uint32_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) let rec offset_uint64_be (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) let rec offset_uint64_le (b: bytes) (n: nat) (i: nat) = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) /// Appending and slicing sequences of integers /// ------------------------------------------- #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () let be_of_seq_uint32_base s1 s2 = () let le_of_seq_uint32_base s1 s2 = () let be_of_seq_uint64_base s1 s2 = () let rec be_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end let rec le_of_seq_uint32_append s1 s2 = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end
false
false
FStar.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
[ "recursion" ]
FStar.Endianness.be_of_seq_uint64_append
{ "file_name": "ulib/FStar.Endianness.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: FStar.Seq.Base.seq FStar.UInt64.t -> s2: FStar.Seq.Base.seq FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Endianness.be_of_seq_uint64 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Endianness.be_of_seq_uint64 s1) (FStar.Endianness.be_of_seq_uint64 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Endianness.be_of_seq_uint64 s1) (FStar.Endianness.be_of_seq_uint64 s2)) ]
{ "end_col": 5, "end_line": 319, "start_col": 2, "start_line": 309 }
Prims.Tot
val seq_equiv (#c:_) (eq:CE.equiv c) : (CE.equiv (seq c))
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_equiv #c (eq: CE.equiv c) = CE.EQ (eq_of_seq eq) (eq_of_seq_reflexivity eq) (eq_of_seq_symmetry eq) (eq_of_seq_transitivity eq)
val seq_equiv (#c:_) (eq:CE.equiv c) : (CE.equiv (seq c)) let seq_equiv #c (eq: CE.equiv c) =
false
null
false
CE.EQ (eq_of_seq eq) (eq_of_seq_reflexivity eq) (eq_of_seq_symmetry eq) (eq_of_seq_transitivity eq)
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.EQ", "FStar.Seq.Base.seq", "FStar.Seq.Equiv.eq_of_seq", "FStar.Seq.Equiv.eq_of_seq_reflexivity", "FStar.Seq.Equiv.eq_of_seq_symmetry", "FStar.Seq.Equiv.eq_of_seq_transitivity" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2 let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) = if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in eq_of_seq_symmetry #c eq lia1 lia2; eq.symmetry las1 las2 let rec eq_of_seq_transitivity #c (eq: CE.equiv c) s1 s2 s3 : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in let lia3, las3 = un_snoc s3 in eq_of_seq_transitivity #c eq lia1 lia2 lia3; eq.transitivity las1 las2 las3
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_equiv (#c:_) (eq:CE.equiv c) : (CE.equiv (seq c))
[]
FStar.Seq.Equiv.seq_equiv
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> FStar.Algebra.CommMonoid.Equiv.equiv (FStar.Seq.Base.seq c)
{ "end_col": 50, "end_line": 93, "start_col": 2, "start_line": 91 }
Prims.Tot
val eq_of_seq (#c:_) (eq:CE.equiv c) (s1 s2: seq c) : prop
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s)))
val eq_of_seq (#c:_) (eq:CE.equiv c) (s1 s2: seq c) : prop let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) =
false
null
false
(length s1 = length s2 /\ (length s1 = 0 \/ (let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s)))
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "total" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_or", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Equiv.eq_of_seq", "Prims.logical", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.prop" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq (#c:_) (eq:CE.equiv c) (s1 s2: seq c) : prop
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> Prims.Tot Prims.prop
{ "end_col": 46, "end_line": 32, "start_col": 2, "start_line": 28 }
FStar.Pervasives.Lemma
val eq_of_seq_reflexivity (#c:_) (eq: CE.equiv c) (s: seq c) : Lemma (ensures eq_of_seq eq s s)
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) = if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last
val eq_of_seq_reflexivity (#c:_) (eq: CE.equiv c) (s: seq c) : Lemma (ensures eq_of_seq eq s s) let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) =
false
null
true
if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_reflexivity", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.bool", "Prims.l_True", "Prims.squash", "FStar.Seq.Equiv.eq_of_seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2 let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s)
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_reflexivity (#c:_) (eq: CE.equiv c) (s: seq c) : Lemma (ensures eq_of_seq eq s s)
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq_reflexivity
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (ensures FStar.Seq.Equiv.eq_of_seq eq s s) (decreases FStar.Seq.Base.length s)
{ "end_col": 21, "end_line": 67, "start_col": 2, "start_line": 64 }
FStar.Pervasives.Lemma
val eq_of_seq_symmetry (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1)
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in eq_of_seq_symmetry #c eq lia1 lia2; eq.symmetry las1 las2
val eq_of_seq_symmetry (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) (decreases length s1) =
false
null
true
if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in eq_of_seq_symmetry #c eq lia1 lia2; eq.symmetry las1 las2
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_symmetry", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.bool", "FStar.Seq.Equiv.eq_of_seq", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2 let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) = if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1)
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_symmetry (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1)
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq_symmetry
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Seq.Equiv.eq_of_seq eq s1 s2) (ensures FStar.Seq.Equiv.eq_of_seq eq s2 s1) (decreases FStar.Seq.Base.length s1)
{ "end_col": 23, "end_line": 77, "start_col": 2, "start_line": 73 }
FStar.Pervasives.Lemma
val eq_of_seq_transitivity (#c:_) (eq: CE.equiv c) (s1 s2 s3: seq c) : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3)
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq_transitivity #c (eq: CE.equiv c) s1 s2 s3 : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in let lia3, las3 = un_snoc s3 in eq_of_seq_transitivity #c eq lia1 lia2 lia3; eq.transitivity las1 las2 las3
val eq_of_seq_transitivity (#c:_) (eq: CE.equiv c) (s1 s2 s3: seq c) : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3) let rec eq_of_seq_transitivity #c (eq: CE.equiv c) s1 s2 s3 : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3) (decreases length s1) =
false
null
true
if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in let lia3, las3 = un_snoc s3 in eq_of_seq_transitivity #c eq lia1 lia2 lia3; eq.transitivity las1 las2 las3
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_transitivity", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.bool", "Prims.l_and", "FStar.Seq.Equiv.eq_of_seq", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2 let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) = if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in eq_of_seq_symmetry #c eq lia1 lia2; eq.symmetry las1 las2 let rec eq_of_seq_transitivity #c (eq: CE.equiv c) s1 s2 s3 : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3)
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_transitivity (#c:_) (eq: CE.equiv c) (s1 s2 s3: seq c) : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3)
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq_transitivity
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> s3: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Seq.Equiv.eq_of_seq eq s1 s2 /\ FStar.Seq.Equiv.eq_of_seq eq s2 s3) (ensures FStar.Seq.Equiv.eq_of_seq eq s1 s3) (decreases FStar.Seq.Base.length s1)
{ "end_col": 32, "end_line": 88, "start_col": 2, "start_line": 83 }
FStar.Pervasives.Lemma
val eq_of_seq_condition (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2)
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2
val eq_of_seq_condition (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). ((index s1 i) `eq.eq` (index s2 i))) <==> eq_of_seq eq s1 s2) =
false
null
true
Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "FStar.Classical.move_requires_2", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "FStar.Seq.Equiv.eq_of_seq", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_element_equality", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==>
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_condition (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2)
[]
FStar.Seq.Equiv.eq_of_seq_condition
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2 /\ (forall (i: FStar.IntegerIntervals.under (FStar.Seq.Base.length s1)). EQ?.eq eq (FStar.Seq.Base.index s1 i) (FStar.Seq.Base.index s2 i)) <==> FStar.Seq.Equiv.eq_of_seq eq s1 s2)
{ "end_col": 70, "end_line": 59, "start_col": 2, "start_line": 58 }
FStar.Pervasives.Lemma
val eq_of_seq_unsnoc (#c:_) (eq:CE.equiv c) (m:pos) (s1 s2: (z:seq c{length z==m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\ eq_of_seq eq (fst (un_snoc s1)) (fst (un_snoc s2)))
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_of_seq_unsnoc #c eq m (s1 s2: (z:seq c{length z==m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\ eq_of_seq eq (fst (un_snoc s1)) (fst (un_snoc s2))) = eq_of_seq_element_equality eq s1 s2; eq_of_seq_from_element_equality eq (fst (un_snoc s1)) (fst (un_snoc s2))
val eq_of_seq_unsnoc (#c:_) (eq:CE.equiv c) (m:pos) (s1 s2: (z:seq c{length z==m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\ eq_of_seq eq (fst (un_snoc s1)) (fst (un_snoc s2))) let eq_of_seq_unsnoc #c eq m (s1: (z: seq c {length z == m})) (s2: (z: seq c {length z == m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\ eq_of_seq eq (fst (un_snoc s1)) (fst (un_snoc s2))) =
false
null
true
eq_of_seq_element_equality eq s1 s2; eq_of_seq_from_element_equality eq (fst (un_snoc s1)) (fst (un_snoc s2))
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "FStar.Pervasives.Native.fst", "FStar.Seq.Properties.un_snoc", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_element_equality", "FStar.Seq.Equiv.eq_of_seq", "Prims.squash", "Prims.l_and", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Pervasives.Native.snd", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat let eq_of_seq_condition #c eq s1 s2 : Lemma ((length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)) <==> eq_of_seq eq s1 s2) = Classical.move_requires_2 (eq_of_seq_element_equality eq) s1 s2; Classical.move_requires_2 (eq_of_seq_from_element_equality eq) s1 s2 let rec eq_of_seq_reflexivity #c (eq: CE.equiv c) s : Lemma (ensures eq_of_seq eq s s) (decreases length s) = if length s > 0 then let liat, last = un_snoc s in eq_of_seq_reflexivity #c eq liat; eq.reflexivity last let rec eq_of_seq_symmetry #c (eq: CE.equiv c) s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures eq_of_seq eq s2 s1) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in eq_of_seq_symmetry #c eq lia1 lia2; eq.symmetry las1 las2 let rec eq_of_seq_transitivity #c (eq: CE.equiv c) s1 s2 s3 : Lemma (requires eq_of_seq eq s1 s2 /\ eq_of_seq eq s2 s3) (ensures eq_of_seq eq s1 s3) (decreases length s1) = if length s1 > 0 then let lia1, las1 = un_snoc s1 in let lia2, las2 = un_snoc s2 in let lia3, las3 = un_snoc s3 in eq_of_seq_transitivity #c eq lia1 lia2 lia3; eq.transitivity las1 las2 las3 let seq_equiv #c (eq: CE.equiv c) = CE.EQ (eq_of_seq eq) (eq_of_seq_reflexivity eq) (eq_of_seq_symmetry eq) (eq_of_seq_transitivity eq) let eq_of_seq_unsnoc #c eq m (s1 s2: (z:seq c{length z==m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_unsnoc (#c:_) (eq:CE.equiv c) (m:pos) (s1 s2: (z:seq c{length z==m})) : Lemma (requires eq_of_seq eq s1 s2) (ensures eq.eq (snd (un_snoc s1)) (snd (un_snoc s2)) /\ eq_of_seq eq (fst (un_snoc s1)) (fst (un_snoc s2)))
[]
FStar.Seq.Equiv.eq_of_seq_unsnoc
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> m: Prims.pos -> s1: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> s2: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> FStar.Pervasives.Lemma (requires FStar.Seq.Equiv.eq_of_seq eq s1 s2) (ensures EQ?.eq eq (FStar.Pervasives.Native.snd (FStar.Seq.Properties.un_snoc s1)) (FStar.Pervasives.Native.snd (FStar.Seq.Properties.un_snoc s2)) /\ FStar.Seq.Equiv.eq_of_seq eq (FStar.Pervasives.Native.fst (FStar.Seq.Properties.un_snoc s1)) (FStar.Pervasives.Native.fst (FStar.Seq.Properties.un_snoc s2)))
{ "end_col": 74, "end_line": 100, "start_col": 2, "start_line": 99 }
FStar.Pervasives.Lemma
val eq_of_seq_from_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2)
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) (decreases length s1) = if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat
val eq_of_seq_from_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2) let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). ((index s1 i) `eq.eq` (index s2 i)))) (ensures eq_of_seq eq s1 s2) (decreases length s1) =
false
null
true
if length s1 = 0 then () else let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_from_element_equality eq s1liat s2liat
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.l_and", "Prims.b2t", "Prims.nat", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "Prims.squash", "FStar.Seq.Equiv.eq_of_seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat let rec eq_of_seq_from_element_equality #c eq s1 s2 : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2)
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_from_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (ensures eq_of_seq eq s1 s2)
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq_from_element_equality
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2 /\ (forall (i: FStar.IntegerIntervals.under (FStar.Seq.Base.length s1)). EQ?.eq eq (FStar.Seq.Base.index s1 i) (FStar.Seq.Base.index s2 i))) (ensures FStar.Seq.Equiv.eq_of_seq eq s1 s2) (decreases FStar.Seq.Base.length s1)
{ "end_col": 50, "end_line": 52, "start_col": 2, "start_line": 49 }
FStar.Pervasives.Lemma
val eq_of_seq_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures length s1 = length s2 /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)))
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) (decreases length s1) = if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat
val eq_of_seq_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures length s1 = length s2 /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). ((index s1 i) `eq.eq` (index s2 i)))) (decreases length s1) =
false
null
true
if (length s1 > 0) then let s1liat, s1last = un_snoc s1 in let s2liat, s2last = un_snoc s2 in eq_of_seq_element_equality eq s1liat s2liat
{ "checked_file": "FStar.Seq.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Equiv.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Equiv.eq_of_seq_element_equality", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.bool", "FStar.Seq.Equiv.eq_of_seq", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) module FStar.Seq.Equiv module CE = FStar.Algebra.CommMonoid.Equiv open FStar.Seq.Base open FStar.Seq.Properties open FStar.IntegerIntervals let rec eq_of_seq #c eq s1 s2 : Tot prop (decreases length s1) = (length s1 = length s2 /\ (length s1 = 0 \/ ( let s1s, s1l = un_snoc s1 in let s2s, s2l = un_snoc s2 in eq.eq s1l s2l /\ eq_of_seq eq s1s s2s))) let rec eq_of_seq_element_equality #c eq s1 s2 : Lemma (requires eq_of_seq eq s1 s2) (ensures (length s1 = length s2) /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)))
false
false
FStar.Seq.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_of_seq_element_equality (#c:_) (eq: CE.equiv c) (s1 s2: seq c) : Lemma (requires eq_of_seq eq s1 s2) (ensures length s1 = length s2 /\ (forall (i: under (length s1)). (index s1 i `eq.eq` index s2 i)))
[ "recursion" ]
FStar.Seq.Equiv.eq_of_seq_element_equality
{ "file_name": "ulib/FStar.Seq.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> s1: FStar.Seq.Base.seq c -> s2: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Seq.Equiv.eq_of_seq eq s1 s2) (ensures FStar.Seq.Base.length s1 = FStar.Seq.Base.length s2 /\ (forall (i: FStar.IntegerIntervals.under (FStar.Seq.Base.length s1)). EQ?.eq eq (FStar.Seq.Base.index s1 i) (FStar.Seq.Base.index s2 i))) (decreases FStar.Seq.Base.length s1)
{ "end_col": 45, "end_line": 42, "start_col": 2, "start_line": 39 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_p = B.buffer uint_64
let uint64_p =
false
null
false
B.buffer uint_64
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "LowStar.Buffer.buffer", "FStar.Integers.uint_64" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B"
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_p : Type0
[]
EverCrypt.Hash.uint64_p
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 31, "end_line": 43, "start_col": 15, "start_line": 43 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false
let is_valid_impl (i: impl) =
false
null
false
let open Hacl.Impl.Blake2.Core in match i with | (| MD5 , () |) | (| SHA1 , () |) | (| SHA2_224 , () |) | (| SHA2_256 , () |) | (| SHA2_384 , () |) | (| SHA2_512 , () |) | (| SHA3_224 , () |) | (| SHA3_256 , () |) | (| SHA3_384 , () |) | (| SHA3_512 , () |) | (| Blake2S , M32 |) | (| Blake2S , M128 |) | (| Blake2B , M32 |) | (| Blake2B , M256 |) -> true | _ -> false
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Hacl.Hash.Definitions.impl", "Prims.dtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Prims.bool" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_valid_impl : i: Hacl.Hash.Definitions.impl -> Prims.bool
[]
EverCrypt.Hash.is_valid_impl
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Hacl.Hash.Definitions.impl -> Prims.bool
{ "end_col": 14, "end_line": 62, "start_col": 2, "start_line": 46 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let impl = i:impl { is_valid_impl i }
let impl =
false
null
false
i: impl{is_valid_impl i}
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Hacl.Hash.Definitions.impl", "Prims.b2t", "EverCrypt.Hash.is_valid_impl" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val impl : Type0
[]
EverCrypt.Hash.impl
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 37, "end_line": 64, "start_col": 11, "start_line": 64 }
Prims.Tot
val freeable_s: #(a: alg) -> state_s a -> Type0
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freeable_s #a s = B.freeable (p #a s)
val freeable_s: #(a: alg) -> state_s a -> Type0 let freeable_s #a s =
false
null
false
B.freeable (p #a s)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "EverCrypt.Hash.alg", "EverCrypt.Hash.state_s", "LowStar.Monotonic.Buffer.freeable", "Hacl.Hash.Definitions.impl_word", "EverCrypt.Hash.impl_of_state", "LowStar.Buffer.trivial_preorder", "EverCrypt.Hash.p" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freeable_s: #(a: alg) -> state_s a -> Type0
[]
EverCrypt.Hash.freeable_s
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: EverCrypt.Hash.state_s a -> Type0
{ "end_col": 41, "end_line": 178, "start_col": 22, "start_line": 178 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint32_p = B.buffer uint_32
let uint32_p =
false
null
false
B.buffer uint_32
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "LowStar.Buffer.buffer", "FStar.Integers.uint_32" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B"
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint32_p : Type0
[]
EverCrypt.Hash.uint32_p
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 31, "end_line": 42, "start_col": 15, "start_line": 42 }
FStar.Pervasives.Lemma
val invert_state_s (a: alg) : Lemma (requires True) (ensures (inversion (state_s a))) [SMTPat (state_s a)]
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a)
val invert_state_s (a: alg) : Lemma (requires True) (ensures (inversion (state_s a))) [SMTPat (state_s a)] let invert_state_s (a: alg) : Lemma (requires True) (ensures (inversion (state_s a))) [SMTPat (state_s a)] =
false
null
true
allow_inversion (state_s a)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "lemma" ]
[ "EverCrypt.Hash.alg", "FStar.Pervasives.allow_inversion", "EverCrypt.Hash.state_s", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Pervasives.inversion", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ]
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val invert_state_s (a: alg) : Lemma (requires True) (ensures (inversion (state_s a))) [SMTPat (state_s a)]
[]
EverCrypt.Hash.invert_state_s
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: EverCrypt.Hash.alg -> FStar.Pervasives.Lemma (ensures FStar.Pervasives.inversion (EverCrypt.Hash.state_s a)) [SMTPat (EverCrypt.Hash.state_s a)]
{ "end_col": 29, "end_line": 132, "start_col": 2, "start_line": 132 }
Prims.Tot
val invariant_s: (#a:alg) -> state_s a -> HS.mem -> Type0
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let invariant_s #a (s: state_s a) h = B.live h (p s)
val invariant_s: (#a:alg) -> state_s a -> HS.mem -> Type0 let invariant_s #a (s: state_s a) h =
false
null
false
B.live h (p s)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "EverCrypt.Hash.alg", "EverCrypt.Hash.state_s", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.live", "Hacl.Hash.Definitions.impl_word", "EverCrypt.Hash.impl_of_state", "LowStar.Buffer.trivial_preorder", "EverCrypt.Hash.p" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p let freeable_s #a s = B.freeable (p #a s) let footprint_s #a (s: state_s a) = B.loc_addr_of_buffer (p s)
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val invariant_s: (#a:alg) -> state_s a -> HS.mem -> Type0
[]
EverCrypt.Hash.invariant_s
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: EverCrypt.Hash.state_s a -> h: FStar.Monotonic.HyperStack.mem -> Type0
{ "end_col": 16, "end_line": 184, "start_col": 2, "start_line": 184 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repr_eq (#a:alg) (r1 r2: Spec.Hash.Definitions.words_state a) = Seq.equal r1 r2
let repr_eq (#a: alg) (r1 r2: Spec.Hash.Definitions.words_state a) =
false
null
false
Seq.equal r1 r2
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "EverCrypt.Hash.alg", "Spec.Hash.Definitions.words_state", "FStar.Seq.Base.equal", "Spec.Hash.Definitions.word", "Prims.prop" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p let freeable_s #a s = B.freeable (p #a s) let footprint_s #a (s: state_s a) = B.loc_addr_of_buffer (p s) let invariant_s #a (s: state_s a) h = B.live h (p s) let repr #a s h: GTot _ = let s = B.get h s 0 in as_seq h (p s) let alg_of_state a s = let open LowStar.BufferOps in match !*s with | MD5_s _ -> MD5 | SHA1_s _ -> SHA1 | SHA2_224_s _ -> SHA2_224 | SHA2_256_s _ -> SHA2_256 | SHA2_384_s _ -> SHA2_384 | SHA2_512_s _ -> SHA2_512 | SHA3_224_s _ -> SHA3_224 | SHA3_256_s _ -> SHA3_256 | SHA3_384_s _ -> SHA3_384 | SHA3_512_s _ -> SHA3_512 | Blake2S_s _ -> Blake2S | Blake2S_128_s _ _ -> Blake2S | Blake2B_s _ -> Blake2B | Blake2B_256_s _ _ -> Blake2B
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repr_eq : r1: Spec.Hash.Definitions.words_state a -> r2: Spec.Hash.Definitions.words_state a -> Prims.prop
[]
EverCrypt.Hash.repr_eq
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r1: Spec.Hash.Definitions.words_state a -> r2: Spec.Hash.Definitions.words_state a -> Prims.prop
{ "end_col": 17, "end_line": 209, "start_col": 2, "start_line": 209 }
Prims.GTot
val footprint_s: #a:alg -> state_s a -> GTot M.loc
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let footprint_s #a (s: state_s a) = B.loc_addr_of_buffer (p s)
val footprint_s: #a:alg -> state_s a -> GTot M.loc let footprint_s #a (s: state_s a) =
false
null
false
B.loc_addr_of_buffer (p s)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "sometrivial" ]
[ "EverCrypt.Hash.alg", "EverCrypt.Hash.state_s", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "Hacl.Hash.Definitions.impl_word", "EverCrypt.Hash.impl_of_state", "LowStar.Buffer.trivial_preorder", "EverCrypt.Hash.p", "LowStar.Monotonic.Buffer.loc" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p let freeable_s #a s = B.freeable (p #a s)
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val footprint_s: #a:alg -> state_s a -> GTot M.loc
[]
EverCrypt.Hash.footprint_s
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: EverCrypt.Hash.state_s a -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 28, "end_line": 181, "start_col": 2, "start_line": 181 }
Prims.Tot
val sha1:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha1: impl = (| SHA1, () |)
val sha1:impl let sha1:impl =
false
null
false
(| SHA1, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA1" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha1:impl
[]
EverCrypt.Hash.sha1
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 31, "end_line": 69, "start_col": 17, "start_line": 69 }
Prims.Tot
val string_of_alg: alg -> C.String.t
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B"
val string_of_alg: alg -> C.String.t let string_of_alg =
false
null
false
let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B"
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "EverCrypt.Hash.alg", "C.String.op_Bang_Dollar", "C.String.t" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val string_of_alg: alg -> C.String.t
[]
EverCrypt.Hash.string_of_alg
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: EverCrypt.Hash.alg -> C.String.t
{ "end_col": 26, "end_line": 40, "start_col": 23, "start_line": 26 }
Prims.Tot
val md5:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let md5: impl = (| MD5, () |)
val md5:impl let md5:impl =
false
null
false
(| MD5, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.MD5" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i }
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val md5:impl
[]
EverCrypt.Hash.md5
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 29, "end_line": 67, "start_col": 16, "start_line": 67 }
Prims.Tot
val sha2_224:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha2_224: impl = (| SHA2_224, () |)
val sha2_224:impl let sha2_224:impl =
false
null
false
(| SHA2_224, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA2_224" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha2_224:impl
[]
EverCrypt.Hash.sha2_224
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 71, "start_col": 21, "start_line": 71 }
Prims.Tot
val sha2_384:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha2_384: impl = (| SHA2_384, () |)
val sha2_384:impl let sha2_384:impl =
false
null
false
(| SHA2_384, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA2_384" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha2_384:impl
[]
EverCrypt.Hash.sha2_384
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 75, "start_col": 21, "start_line": 75 }
Prims.GTot
val repr: #a:alg -> s:state a -> h:HS.mem -> GTot (words_state a)
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repr #a s h: GTot _ = let s = B.get h s 0 in as_seq h (p s)
val repr: #a:alg -> s:state a -> h:HS.mem -> GTot (words_state a) let repr #a s h : GTot _ =
false
null
false
let s = B.get h s 0 in as_seq h (p s)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "sometrivial" ]
[ "EverCrypt.Hash.alg", "EverCrypt.Hash.state", "FStar.Monotonic.HyperStack.mem", "Hacl.Hash.Definitions.as_seq", "EverCrypt.Hash.impl_of_state", "EverCrypt.Hash.p", "EverCrypt.Hash.state_s", "LowStar.Monotonic.Buffer.get", "LowStar.Buffer.trivial_preorder", "Spec.Hash.Definitions.words_state" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p let freeable_s #a s = B.freeable (p #a s) let footprint_s #a (s: state_s a) = B.loc_addr_of_buffer (p s) let invariant_s #a (s: state_s a) h = B.live h (p s)
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repr: #a:alg -> s:state a -> h:HS.mem -> GTot (words_state a)
[]
EverCrypt.Hash.repr
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: EverCrypt.Hash.state a -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot (Spec.Hash.Definitions.words_state a)
{ "end_col": 16, "end_line": 188, "start_col": 25, "start_line": 186 }
Prims.Tot
val sha3_256:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha3_256: impl = (| SHA3_256, () |)
val sha3_256:impl let sha3_256:impl =
false
null
false
(| SHA3_256, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA3_256" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha3_256:impl
[]
EverCrypt.Hash.sha3_256
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 81, "start_col": 21, "start_line": 81 }
Prims.Tot
val sha2_512:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha2_512: impl = (| SHA2_512, () |)
val sha2_512:impl let sha2_512:impl =
false
null
false
(| SHA2_512, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA2_512" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha2_512:impl
[]
EverCrypt.Hash.sha2_512
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 77, "start_col": 21, "start_line": 77 }
Prims.Tot
val sha2_256:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha2_256: impl = (| SHA2_256, () |)
val sha2_256:impl let sha2_256:impl =
false
null
false
(| SHA2_256, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA2_256" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha2_256:impl
[]
EverCrypt.Hash.sha2_256
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 73, "start_col": 21, "start_line": 73 }
Prims.Tot
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let k224_256 = LowStar.ImmutableBuffer.igcmalloc_of_list HS.root Spec.SHA2.Constants.k224_256_l
let k224_256 =
false
null
false
LowStar.ImmutableBuffer.igcmalloc_of_list HS.root Spec.SHA2.Constants.k224_256_l
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "LowStar.ImmutableBuffer.igcmalloc_of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "FStar.Monotonic.HyperHeap.root", "Spec.SHA2.Constants.k224_256_l", "LowStar.ImmutableBuffer.libuffer", "FStar.Pervasives.normalize_term", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Seq.Properties.seq_of_list", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.recallable" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |) inline_for_extraction noextract let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2b_256: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M256 |) inline_for_extraction noextract let alg_of_impl (i: impl { is_valid_impl i }): alg = dfst i // JP: This is a slightly more complicated case than for AEAD... for AEAD, // `state_s a = i & kv a & buffer uint8` // because no matter the /implementation/, the resulting C type for the key is // always a pointer to bytes. Here, that's no longer true because of Blake2, so // we need to be a little more verbose. noeq type state_s: alg -> Type0 = | MD5_s: p:Hacl.Hash.Definitions.state (|MD5, ()|) -> state_s MD5 | SHA1_s: p:Hacl.Hash.Definitions.state (|SHA1, ()|) -> state_s SHA1 | SHA2_224_s: p:Hacl.Hash.Definitions.state (|SHA2_224, ()|) -> state_s SHA2_224 | SHA2_256_s: p:Hacl.Hash.Definitions.state (|SHA2_256, ()|) -> state_s SHA2_256 | SHA2_384_s: p:Hacl.Hash.Definitions.state (|SHA2_384, ()|) -> state_s SHA2_384 | SHA2_512_s: p:Hacl.Hash.Definitions.state (|SHA2_512, ()|) -> state_s SHA2_512 | SHA3_224_s: p:Hacl.Hash.Definitions.state (|SHA3_224, ()|) -> state_s SHA3_224 | SHA3_256_s: p:Hacl.Hash.Definitions.state (|SHA3_256, ()|) -> state_s SHA3_256 | SHA3_384_s: p:Hacl.Hash.Definitions.state (|SHA3_384, ()|) -> state_s SHA3_384 | SHA3_512_s: p:Hacl.Hash.Definitions.state (|SHA3_512, ()|) -> state_s SHA3_512 | Blake2S_s: p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2S | Blake2S_128_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec128 /\ EverCrypt.AutoConfig2.vec128_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2S, Hacl.Impl.Blake2.Core.M128|) -> state_s Blake2S | Blake2B_s: p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M32|) -> state_s Blake2B | Blake2B_256_s: _:squash (EverCrypt.TargetConfig.hacl_can_compile_vec256 /\ EverCrypt.AutoConfig2.vec256_enabled) -> p:Hacl.Hash.Definitions.state (|Blake2B, Hacl.Impl.Blake2.Core.M256|) -> state_s Blake2B let invert_state_s (a: alg): Lemma (requires True) (ensures (inversion (state_s a))) [ SMTPat (state_s a) ] = allow_inversion (state_s a) [@@strict_on_arguments [1]] inline_for_extraction let impl_of_state #a (s: state_s a): i:impl { alg_of_impl i == a } = match s with | MD5_s _ -> md5 | SHA1_s _ -> sha1 | SHA2_224_s _ -> sha2_224 | SHA2_256_s _ -> sha2_256 | SHA2_384_s _ -> sha2_384 | SHA2_512_s _ -> sha2_512 | SHA3_224_s _ -> sha3_224 | SHA3_256_s _ -> sha3_256 | SHA3_384_s _ -> sha3_384 | SHA3_512_s _ -> sha3_512 | Blake2S_s _ -> blake2s_32 | Blake2S_128_s _ _ -> blake2s_128 | Blake2B_s _ -> blake2b_32 | Blake2B_256_s _ _ -> blake2b_256 // In state_s, the data type already captures what implementation we have... three // design choices here: // - turn state_s into a dependent pair of G.erased impl & (SHA2_s | SHA3_s | // ...) so as not to repeat redundant information at run-time // - hope that we can get away with returning dependent pairs only when needed. // We're going for a third one in this module, which is more lightweight. [@@strict_on_arguments [1]] inline_for_extraction let p #a (s: state_s a): Hacl.Hash.Definitions.state (impl_of_state s) = match s with | MD5_s p -> p | SHA1_s p -> p | SHA2_224_s p -> p | SHA2_256_s p -> p | SHA2_384_s p -> p | SHA2_512_s p -> p | SHA3_224_s p -> p | SHA3_256_s p -> p | SHA3_384_s p -> p | SHA3_512_s p -> p | Blake2S_s p -> p | Blake2S_128_s _ p -> p | Blake2B_s p -> p | Blake2B_256_s _ p -> p let freeable_s #a s = B.freeable (p #a s) let footprint_s #a (s: state_s a) = B.loc_addr_of_buffer (p s) let invariant_s #a (s: state_s a) h = B.live h (p s) let repr #a s h: GTot _ = let s = B.get h s 0 in as_seq h (p s) let alg_of_state a s = let open LowStar.BufferOps in match !*s with | MD5_s _ -> MD5 | SHA1_s _ -> SHA1 | SHA2_224_s _ -> SHA2_224 | SHA2_256_s _ -> SHA2_256 | SHA2_384_s _ -> SHA2_384 | SHA2_512_s _ -> SHA2_512 | SHA3_224_s _ -> SHA3_224 | SHA3_256_s _ -> SHA3_256 | SHA3_384_s _ -> SHA3_384 | SHA3_512_s _ -> SHA3_512 | Blake2S_s _ -> Blake2S | Blake2S_128_s _ _ -> Blake2S | Blake2B_s _ -> Blake2B | Blake2B_256_s _ _ -> Blake2B let repr_eq (#a:alg) (r1 r2: Spec.Hash.Definitions.words_state a) = Seq.equal r1 r2 let fresh_is_disjoint l1 l2 h0 h1 = () let invariant_loc_in_footprint #a s m = () let frame_invariant #a l s h0 h1 = let state = B.deref h0 s in assert (repr_eq (repr s h0) (repr s h1)) inline_for_extraction noextract [@@strict_on_arguments [0]] let alloca a = let s: state_s a = match a with | MD5 -> MD5_s (B.alloca 0ul 4ul) | SHA1 -> SHA1_s (B.alloca 0ul 5ul) | SHA2_224 -> SHA2_224_s (B.alloca 0ul 8ul) | SHA2_256 -> SHA2_256_s (B.alloca 0ul 8ul) | SHA2_384 -> SHA2_384_s (B.alloca 0UL 8ul) | SHA2_512 -> SHA2_512_s (B.alloca 0UL 8ul) | SHA3_224 -> SHA3_224_s (B.alloca 0UL 25ul) | SHA3_256 -> SHA3_256_s (B.alloca 0UL 25ul) | SHA3_384 -> SHA3_384_s (B.alloca 0UL 25ul) | SHA3_512 -> SHA3_512_s (B.alloca 0UL 25ul) | Blake2S -> if EverCrypt.TargetConfig.hacl_can_compile_vec128 then let vec128 = EverCrypt.AutoConfig2.has_vec128 () in if vec128 then let open Hacl.Impl.Blake2.Core in [@inline_let] let i: impl = (| Blake2S , M128 |) in Blake2S_128_s () (B.alloca (zero_element Spec.Blake2.Blake2S M128) (impl_state_len i)) else Blake2S_s (B.alloca 0ul 16ul) else Blake2S_s (B.alloca 0ul 16ul) | Blake2B -> if EverCrypt.TargetConfig.hacl_can_compile_vec256 then let vec256 = EverCrypt.AutoConfig2.has_vec256 () in if vec256 then let open Hacl.Impl.Blake2.Core in [@inline_let] let i: impl = (| Blake2B , M256 |) in Blake2B_256_s () (B.alloca (zero_element Spec.Blake2.Blake2B M256) (impl_state_len i)) else Blake2B_s (B.alloca 0uL 16ul) else Blake2B_s (B.alloca 0uL 16ul) in B.alloca s 1ul [@@strict_on_arguments [0]] let create_in a r = let h0 = ST.get () in let s: state_s a = match a with | MD5 -> MD5_s (B.malloc r 0ul 4ul) | SHA1 -> SHA1_s (B.malloc r 0ul 5ul) | SHA2_224 -> SHA2_224_s (B.malloc r 0ul 8ul) | SHA2_256 -> SHA2_256_s (B.malloc r 0ul 8ul) | SHA2_384 -> SHA2_384_s (B.malloc r 0UL 8ul) | SHA2_512 -> SHA2_512_s (B.malloc r 0UL 8ul) | SHA3_224 -> SHA3_224_s (B.malloc r 0UL 25ul) | SHA3_256 -> SHA3_256_s (B.malloc r 0UL 25ul) | SHA3_384 -> SHA3_384_s (B.malloc r 0UL 25ul) | SHA3_512 -> SHA3_512_s (B.malloc r 0UL 25ul) | Blake2S -> if EverCrypt.TargetConfig.hacl_can_compile_vec128 then let vec128 = EverCrypt.AutoConfig2.has_vec128 () in // Slightly frustrating duplication of the else-branch because we // can't compile this using the if-and return optimization of krml. if vec128 then Blake2S_128_s () (Hacl.Blake2s_128.blake2s_malloc r) else Blake2S_s (B.malloc r 0ul 16ul) else Blake2S_s (B.malloc r 0ul 16ul) | Blake2B -> if EverCrypt.TargetConfig.hacl_can_compile_vec256 then let vec256 = EverCrypt.AutoConfig2.has_vec256 () in if vec256 then Blake2B_256_s () (Hacl.Blake2b_256.blake2b_malloc r) else Blake2B_s (B.malloc r 0uL 16ul) else Blake2B_s (B.malloc r 0uL 16ul) in B.malloc r s 1ul let create a = create_in a HS.root #push-options "--ifuel 1" // NOTE: HACL* does not require suitable preconditions so the squashed proofs // that we have the right CPU flags are useless. But it's good to demonstrate // how to do it for future reference and/or future other implementations. let init #a s = match !*s with | MD5_s p -> Hacl.Hash.MD5.legacy_init p | SHA1_s p -> Hacl.Hash.SHA1.legacy_init p | SHA2_224_s p -> Hacl.Hash.SHA2.init_224 p | SHA2_256_s p -> Hacl.Hash.SHA2.init_256 p | SHA2_384_s p -> Hacl.Hash.SHA2.init_384 p | SHA2_512_s p -> Hacl.Hash.SHA2.init_512 p | SHA3_224_s p -> Hacl.Hash.SHA3.init SHA3_224 p | SHA3_256_s p -> Hacl.Hash.SHA3.init SHA3_256 p | SHA3_384_s p -> Hacl.Hash.SHA3.init SHA3_384 p | SHA3_512_s p -> Hacl.Hash.SHA3.init SHA3_512 p | Blake2S_s p -> let _ = Hacl.Hash.Blake2.init_blake2s_32 p in () | Blake2S_128_s _ p -> if EverCrypt.TargetConfig.hacl_can_compile_vec128 then let _ = Hacl.Hash.Blake2.init_blake2s_128 p in () else LowStar.Ignore.ignore p | Blake2B_s p -> let _ = Hacl.Hash.Blake2.init_blake2b_32 p in () | Blake2B_256_s _ p -> if EverCrypt.TargetConfig.hacl_can_compile_vec256 then let _ = Hacl.Hash.Blake2.init_blake2b_256 p in () else LowStar.Ignore.ignore p #pop-options friend Vale.SHA.SHA_helpers // Avoid a cross-compilation unit symbol visibility... duplicate locally.
false
false
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val k224_256 : b: LowStar.ImmutableBuffer.libuffer (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.SEC) (FStar.Pervasives.normalize_term (FStar.List.Tot.Base.length Spec.SHA2.Constants.k224_256_l)) (FStar.Seq.Properties.seq_of_list Spec.SHA2.Constants.k224_256_l) { LowStar.Monotonic.Buffer.frameOf b == FStar.Monotonic.HyperHeap.root /\ LowStar.Monotonic.Buffer.recallable b }
[]
EverCrypt.Hash.k224_256
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: LowStar.ImmutableBuffer.libuffer (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.SEC) (FStar.Pervasives.normalize_term (FStar.List.Tot.Base.length Spec.SHA2.Constants.k224_256_l)) (FStar.Seq.Properties.seq_of_list Spec.SHA2.Constants.k224_256_l) { LowStar.Monotonic.Buffer.frameOf b == FStar.Monotonic.HyperHeap.root /\ LowStar.Monotonic.Buffer.recallable b }
{ "end_col": 82, "end_line": 333, "start_col": 2, "start_line": 333 }
Prims.Tot
val sha3_384:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha3_384: impl = (| SHA3_384, () |)
val sha3_384:impl let sha3_384:impl =
false
null
false
(| SHA3_384, () |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.SHA3_384" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha3_384:impl
[]
EverCrypt.Hash.sha3_384
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 39, "end_line": 83, "start_col": 21, "start_line": 83 }
Prims.Tot
val blake2s_128:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |)
val blake2s_128:impl let blake2s_128:impl =
false
null
false
(| Blake2S, Hacl.Impl.Blake2.Core.M128 |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.Blake2S", "Hacl.Impl.Blake2.Core.M128" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blake2s_128:impl
[]
EverCrypt.Hash.blake2s_128
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 65, "end_line": 89, "start_col": 24, "start_line": 89 }
Prims.Tot
val blake2b_32:impl
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "C.Failure", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": true, "full_module": "EverCrypt.AutoConfig2", "short_module": "AC" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blake2b_32: impl = (| Blake2B, Hacl.Impl.Blake2.Core.M32 |)
val blake2b_32:impl let blake2b_32:impl =
false
null
false
(| Blake2B, Hacl.Impl.Blake2.Core.M32 |)
{ "checked_file": "EverCrypt.Hash.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Sha.fsti.checked", "Vale.SHA.SHA_helpers.fst.checked", "Spec.SHA2.Lemmas.fsti.checked", "Spec.SHA2.Constants.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Hash.SHA3.fsti.checked", "Hacl.Hash.SHA2.fsti.checked", "Hacl.Hash.SHA1.fsti.checked", "Hacl.Hash.MD5.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Blake2.fsti.checked", "Hacl.Blake2s_128.fst.checked", "Hacl.Blake2b_256.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked", "EverCrypt.AutoConfig2.fsti.checked", "C.String.fsti.checked", "C.Failure.fst.checked" ], "interface_file": true, "source_file": "EverCrypt.Hash.fst" }
[ "total" ]
[ "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Spec.Hash.Definitions.Blake2B", "Hacl.Impl.Blake2.Core.M32" ]
[]
module EverCrypt.Hash #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module AC = EverCrypt.AutoConfig2 open LowStar.BufferOps open FStar.Integers open C.Failure module U64 = FStar.UInt64 module U32 = FStar.UInt32 // Allow *just* the alg type to be inverted, so that the entire module can run // with ifuel 0 let _: squash (inversion alg) = allow_inversion alg let string_of_alg = let open C.String in function | MD5 -> !$"MD5" | SHA1 -> !$"SHA1" | SHA2_224 -> !$"SHA2_224" | SHA2_256 -> !$"SHA2_256" | SHA2_384 -> !$"SHA2_384" | SHA2_512 -> !$"SHA2_512" | SHA3_224 -> !$"SHA3_224" | SHA3_256 -> !$"SHA3_256" | SHA3_384 -> !$"SHA3_384" | SHA3_512 -> !$"SHA3_512" | Shake128 -> !$"Shake128" | Shake256 -> !$"Shake256" | Blake2S -> !$"Blake2S" | Blake2B -> !$"Blake2B" let uint32_p = B.buffer uint_32 let uint64_p = B.buffer uint_64 let is_valid_impl (i: impl) = let open Hacl.Impl.Blake2.Core in match i with | (| MD5, () |) | (| SHA1, () |) | (| SHA2_224, () |) | (| SHA2_256, () |) | (| SHA2_384, () |) | (| SHA2_512, () |) | (| SHA3_224, () |) | (| SHA3_256, () |) | (| SHA3_384, () |) | (| SHA3_512, () |) | (| Blake2S, M32 |) | (| Blake2S, M128 |) | (| Blake2B, M32 |) | (| Blake2B, M256 |) -> true | _ -> false let impl = i:impl { is_valid_impl i } inline_for_extraction noextract let md5: impl = (| MD5, () |) inline_for_extraction noextract let sha1: impl = (| SHA1, () |) inline_for_extraction noextract let sha2_224: impl = (| SHA2_224, () |) inline_for_extraction noextract let sha2_256: impl = (| SHA2_256, () |) inline_for_extraction noextract let sha2_384: impl = (| SHA2_384, () |) inline_for_extraction noextract let sha2_512: impl = (| SHA2_512, () |) inline_for_extraction noextract let sha3_224: impl = (| SHA3_224, () |) inline_for_extraction noextract let sha3_256: impl = (| SHA3_256, () |) inline_for_extraction noextract let sha3_384: impl = (| SHA3_384, () |) inline_for_extraction noextract let sha3_512: impl = (| SHA3_512, () |) inline_for_extraction noextract let blake2s_32: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M32 |) inline_for_extraction noextract let blake2s_128: impl = (| Blake2S, Hacl.Impl.Blake2.Core.M128 |)
false
true
EverCrypt.Hash.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blake2b_32:impl
[]
EverCrypt.Hash.blake2b_32
{ "file_name": "providers/evercrypt/fst/EverCrypt.Hash.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
EverCrypt.Hash.impl
{ "end_col": 63, "end_line": 91, "start_col": 23, "start_line": 91 }