effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec uses_rax (#n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) = match args with | [] -> false | a::q -> if of_arg i = rRax then true else uses_rax q (i+1) of_arg
let rec uses_rax (#n: nat) (args: list td) (i: nat{i + List.length args = n}) (of_arg: (reg_nat n -> reg_64)) =
false
null
false
match args with | [] -> false | a :: q -> if of_arg i = rRax then true else uses_rax q (i + 1) of_arg
{ "checked_file": "Vale.X64.Print_Inline_s.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Print_Inline_s.fst" }
[ "total" ]
[ "Prims.nat", "Prims.list", "Vale.Interop.Base.td", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.X64.reg_nat", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.rRax", "Prims.bool", "Vale.X64.Print_Inline_s.uses_rax" ]
[]
module Vale.X64.Print_Inline_s open FStar.Mul open FStar.List.Tot open Vale.X64.Machine_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.Instruction_s open FStar.IO open Vale.Interop.Base open Vale.Interop.X64 module P = Vale.X64.Print_s let print_rettype (ret_val:option string) = match ret_val with | None -> "void" | Some _ -> "uint64_t" let print_basetype (t:base_typ) = match t with | TUInt8 -> "uint8_t" | TUInt16 -> "uint16_t" | TUInt32 -> "uint32_t" | TUInt64 -> "uint64_t" | TUInt128 -> "ERROR" // Returns "uint8_t arg2" or "uint64_t* arg0" for instance let print_arg (a:td) (i:nat) (names:nat -> string) = match a with | TD_Base src -> print_basetype src ^ " " ^ names i | TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i // Prints a list of args with their types, separated by a comma let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with | [] -> "" | [a] -> print_arg a i names | a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let (_, op) = hd in let reserved : (reg_64 -> bool) = (fun r -> match op with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_outs tl reserved r let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let reserved : (reg_64 -> bool) = (fun r -> match hd with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_ins tl reserved r // Traverses code, looking for instructions implicitly using registers. // When found, mark such registers as reserved so that they are not used during implicit allocation let rec build_reserved_args (c:code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases c) = fun r -> (match c with | Ins ins -> begin match ins with | Instr i _ _ -> let reserved = build_reserved_args_outs i.outs reserved in let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in reserved r | _ -> reserved r end | Block l -> (build_reserved_args_block l reserved) r | IfElse cond ifTrue ifFalse -> let reservedT = build_reserved_args ifTrue reserved in build_reserved_args ifFalse reservedT r | While cond body -> build_reserved_args body reserved r ) and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> ( match l with | [] -> reserved r | hd::tl -> let reserved = build_reserved_args hd reserved in build_reserved_args_block tl reserved r ) // Prints `"=&r" (name)` if an output is specified let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat = match ret_val with | None -> [], reg_names, counter | Some name -> (["\"=&r\" (" ^ name ^ ")"], // If r = rax then address it as current arg number (fun r -> if r = 0 then string_of_int counter else reg_names r), counter + 1) // If the register in which a is passed is modified, we should specify `"+&r" (name)` let print_modified_input (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then (["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1 ) else ([], reg_names, counter) // Get a list of strings corresponding to modified inputs let rec get_modified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = match args with | [] -> print_output_ret ret_val reg_names counter | a::q -> let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in output @ outputs, reg_names, counter // Print the list of modified inputs, separated by commas let print_modified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in aux outputs, output_reg_names, output_nbr // If the register in which an arg is passed is not modified, we should specify it as `"r" (name)` let print_nonmodified_input (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then ([], reg_names, counter) else (["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1) // Get a list of strings corresponding to modified inputs let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = match args with | [] -> [], reg_names, counter | a::q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in input @ inputs, reg_names, counter let print_nonmodified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in aux inputs, input_reg_names, counter // Print the list of modified registers, + memory and cc let print_modified_registers (n:nat) (ret_val:option string) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_args:reg_64 -> bool) (args:list td) = // This register was already specified as output let output_register a = Some? ret_val && a = rRax in let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) = if i >= n then false else a = of_arg i // This register was already specified for the i-th argument || input_register (i+1) a in let rec aux = function | [] -> "\"memory\", \"cc\"\n" | a::q -> // This register is not modified, or was already specified as input or output: we skip it if not (regs_mod a) || input_register 0 a || output_register a then aux q // Register not modified or already specified in inputs, we add it else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] // Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n" let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = let ty = match a with | TD_Base _ -> "uint64_t " | _ -> "uint64_t *" in if reserved (of_arg i) then // If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n" else false, "" let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = match args with | [] -> false, "" | a::q -> let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in was_explicit || are_explicit, explicit_str ^ rest_str // If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n" let print_register_ret (reserved:reg_64 -> bool) = function | None -> "" | Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n" (* This is a copy from X64.Print_s, and should remain in sync. The difference is that each line should be in quotes, and end by a semicolon in inline assembly *) let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string = let print_ops (o1:operand64) (o2:operand64) : string = let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in " cmp " ^ first ^ ", " ^ second ^ "\n" in match c with | OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n" | ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n" | OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n" | OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n" | OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n" | OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" let rec print_spaces (n:nat) : string = match n with | 0 -> "" | n -> " " ^ print_spaces (n-1) (* Overriding printer for formatting instructions *) let print_ins (ins:ins) (p:P.printer) : string = match ins with | Instr _ _ (AnnotateComment s) -> " // " ^ s | Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n" | Instr _ _ (AnnotateSpace n) -> print_spaces n | _ -> " \"" ^ P.print_ins ins p ^ ";\"" let rec print_block (b:codes) (n:int) (p:P.printer) : string & int = match b with | Nil -> "", n | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail -> let head_str = " // " ^ s ^ "\n" in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail -> let head_str = print_ins i p in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateNewline _)) :: tail -> let rest, n' = print_block tail n p in "\n" ^ rest, n' | head :: tail -> let head_str, n' = print_code head n p in let rest, n'' = print_block tail n' p in head_str ^ rest, n'' and print_code (c:code) (n:int) (p:P.printer) : string & int = match c with | Ins ins -> (print_ins ins p ^ "\n", n) | Block b -> print_block b n p | IfElse cond true_code false_code -> let n1 = n in let n2 = n + 1 in let cmp = print_cmp (P.cmp_not cond) n1 p in let true_str, n' = print_code true_code (n + 2) p in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in let false_str, n' = print_code false_code n' p in let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n' | While cond body -> let n1 = n in let n2 = n + 1 in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in let body_str, n' = print_code body (n + 2) p in let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in let cmp = print_cmp cond n1 p in jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' let rec print_fn_comments = function | [] -> "" | hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl let rec remove_blank (c:code) : code = match c with | Ins _ -> c | Block b -> Block (remove_blanks b) | IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf) | While cond cb -> While cond (remove_blank cb) and remove_blanks (b:codes) : codes = match b with | [] -> [] | Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs | Block b :: cs -> ( match remove_blanks b with | [] -> remove_blanks cs | b -> Block b :: remove_blanks cs ) | c :: cs -> c :: remove_blanks cs // Check if any argument is passed in the rax register
false
false
Vale.X64.Print_Inline_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uses_rax : args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{i + FStar.List.Tot.Base.length args = n} -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> Prims.bool
[ "recursion" ]
Vale.X64.Print_Inline_s.uses_rax
{ "file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{i + FStar.List.Tot.Base.length args = n} -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> Prims.bool
{ "end_col": 69, "end_line": 326, "start_col": 2, "start_line": 324 }
Prims.Tot
val remove_blanks (b: codes) : codes
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec remove_blank (c:code) : code = match c with | Ins _ -> c | Block b -> Block (remove_blanks b) | IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf) | While cond cb -> While cond (remove_blank cb) and remove_blanks (b:codes) : codes = match b with | [] -> [] | Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs | Block b :: cs -> ( match remove_blanks b with | [] -> remove_blanks cs | b -> Block b :: remove_blanks cs ) | c :: cs -> c :: remove_blanks cs
val remove_blanks (b: codes) : codes let rec remove_blanks (b: codes) : codes =
false
null
false
match b with | [] -> [] | Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs | Block b :: cs -> (match remove_blanks b with | [] -> remove_blanks cs | b -> Block b :: remove_blanks cs) | c :: cs -> c :: remove_blanks cs
{ "checked_file": "Vale.X64.Print_Inline_s.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Print_Inline_s.fst" }
[ "total" ]
[ "Vale.X64.Machine_Semantics_s.codes", "Prims.Nil", "Vale.X64.Bytes_Code_s.code_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_Semantics_s.equals_instr", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Ghost", "Prims.list", "Vale.X64.Print_Inline_s.remove_blanks", "Vale.X64.Machine_s.precode", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Cons", "Vale.X64.Machine_s.Block" ]
[ "remove_blank", "remove_blanks" ]
module Vale.X64.Print_Inline_s open FStar.Mul open FStar.List.Tot open Vale.X64.Machine_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.Instruction_s open FStar.IO open Vale.Interop.Base open Vale.Interop.X64 module P = Vale.X64.Print_s let print_rettype (ret_val:option string) = match ret_val with | None -> "void" | Some _ -> "uint64_t" let print_basetype (t:base_typ) = match t with | TUInt8 -> "uint8_t" | TUInt16 -> "uint16_t" | TUInt32 -> "uint32_t" | TUInt64 -> "uint64_t" | TUInt128 -> "ERROR" // Returns "uint8_t arg2" or "uint64_t* arg0" for instance let print_arg (a:td) (i:nat) (names:nat -> string) = match a with | TD_Base src -> print_basetype src ^ " " ^ names i | TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i // Prints a list of args with their types, separated by a comma let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with | [] -> "" | [a] -> print_arg a i names | a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let (_, op) = hd in let reserved : (reg_64 -> bool) = (fun r -> match op with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_outs tl reserved r let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let reserved : (reg_64 -> bool) = (fun r -> match hd with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_ins tl reserved r // Traverses code, looking for instructions implicitly using registers. // When found, mark such registers as reserved so that they are not used during implicit allocation let rec build_reserved_args (c:code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases c) = fun r -> (match c with | Ins ins -> begin match ins with | Instr i _ _ -> let reserved = build_reserved_args_outs i.outs reserved in let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in reserved r | _ -> reserved r end | Block l -> (build_reserved_args_block l reserved) r | IfElse cond ifTrue ifFalse -> let reservedT = build_reserved_args ifTrue reserved in build_reserved_args ifFalse reservedT r | While cond body -> build_reserved_args body reserved r ) and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> ( match l with | [] -> reserved r | hd::tl -> let reserved = build_reserved_args hd reserved in build_reserved_args_block tl reserved r ) // Prints `"=&r" (name)` if an output is specified let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat = match ret_val with | None -> [], reg_names, counter | Some name -> (["\"=&r\" (" ^ name ^ ")"], // If r = rax then address it as current arg number (fun r -> if r = 0 then string_of_int counter else reg_names r), counter + 1) // If the register in which a is passed is modified, we should specify `"+&r" (name)` let print_modified_input (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then (["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1 ) else ([], reg_names, counter) // Get a list of strings corresponding to modified inputs let rec get_modified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = match args with | [] -> print_output_ret ret_val reg_names counter | a::q -> let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in output @ outputs, reg_names, counter // Print the list of modified inputs, separated by commas let print_modified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in aux outputs, output_reg_names, output_nbr // If the register in which an arg is passed is not modified, we should specify it as `"r" (name)` let print_nonmodified_input (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then ([], reg_names, counter) else (["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1) // Get a list of strings corresponding to modified inputs let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = match args with | [] -> [], reg_names, counter | a::q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in input @ inputs, reg_names, counter let print_nonmodified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in aux inputs, input_reg_names, counter // Print the list of modified registers, + memory and cc let print_modified_registers (n:nat) (ret_val:option string) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_args:reg_64 -> bool) (args:list td) = // This register was already specified as output let output_register a = Some? ret_val && a = rRax in let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) = if i >= n then false else a = of_arg i // This register was already specified for the i-th argument || input_register (i+1) a in let rec aux = function | [] -> "\"memory\", \"cc\"\n" | a::q -> // This register is not modified, or was already specified as input or output: we skip it if not (regs_mod a) || input_register 0 a || output_register a then aux q // Register not modified or already specified in inputs, we add it else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] // Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n" let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = let ty = match a with | TD_Base _ -> "uint64_t " | _ -> "uint64_t *" in if reserved (of_arg i) then // If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n" else false, "" let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = match args with | [] -> false, "" | a::q -> let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in was_explicit || are_explicit, explicit_str ^ rest_str // If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n" let print_register_ret (reserved:reg_64 -> bool) = function | None -> "" | Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n" (* This is a copy from X64.Print_s, and should remain in sync. The difference is that each line should be in quotes, and end by a semicolon in inline assembly *) let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string = let print_ops (o1:operand64) (o2:operand64) : string = let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in " cmp " ^ first ^ ", " ^ second ^ "\n" in match c with | OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n" | ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n" | OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n" | OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n" | OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n" | OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" let rec print_spaces (n:nat) : string = match n with | 0 -> "" | n -> " " ^ print_spaces (n-1) (* Overriding printer for formatting instructions *) let print_ins (ins:ins) (p:P.printer) : string = match ins with | Instr _ _ (AnnotateComment s) -> " // " ^ s | Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n" | Instr _ _ (AnnotateSpace n) -> print_spaces n | _ -> " \"" ^ P.print_ins ins p ^ ";\"" let rec print_block (b:codes) (n:int) (p:P.printer) : string & int = match b with | Nil -> "", n | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail -> let head_str = " // " ^ s ^ "\n" in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail -> let head_str = print_ins i p in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateNewline _)) :: tail -> let rest, n' = print_block tail n p in "\n" ^ rest, n' | head :: tail -> let head_str, n' = print_code head n p in let rest, n'' = print_block tail n' p in head_str ^ rest, n'' and print_code (c:code) (n:int) (p:P.printer) : string & int = match c with | Ins ins -> (print_ins ins p ^ "\n", n) | Block b -> print_block b n p | IfElse cond true_code false_code -> let n1 = n in let n2 = n + 1 in let cmp = print_cmp (P.cmp_not cond) n1 p in let true_str, n' = print_code true_code (n + 2) p in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in let false_str, n' = print_code false_code n' p in let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n' | While cond body -> let n1 = n in let n2 = n + 1 in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in let body_str, n' = print_code body (n + 2) p in let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in let cmp = print_cmp cond n1 p in jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' let rec print_fn_comments = function | [] -> "" | hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl let rec remove_blank (c:code) : code = match c with | Ins _ -> c | Block b -> Block (remove_blanks b) | IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf) | While cond cb -> While cond (remove_blank cb)
false
true
Vale.X64.Print_Inline_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val remove_blanks (b: codes) : codes
[ "mutual recursion" ]
Vale.X64.Print_Inline_s.remove_blanks
{ "file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Machine_Semantics_s.codes -> Vale.X64.Machine_Semantics_s.codes
{ "end_col": 36, "end_line": 320, "start_col": 2, "start_line": 311 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = match args with | [] -> [], reg_names, counter | a::q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in input @ inputs, reg_names, counter
let rec get_nonmodified_input_strings (n: nat) (of_arg: (reg_nat n -> reg_64)) (regs_mod reserved_regs: (reg_64 -> bool)) (args: list td) (i: nat{List.Tot.length args + i <= n}) (reg_names: (reg_64 -> string)) (counter: nat) (arg_names: (nat -> string)) =
false
null
false
match args with | [] -> [], reg_names, counter | a :: q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i + 1) reg_names counter arg_names in input @ inputs, reg_names, counter
{ "checked_file": "Vale.X64.Print_Inline_s.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Print_Inline_s.fst" }
[ "total" ]
[ "Prims.nat", "Vale.Interop.X64.reg_nat", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Prims.list", "Vale.Interop.Base.td", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Prims.string", "FStar.Pervasives.Native.Mktuple3", "Prims.Nil", "FStar.List.Tot.Base.op_At", "FStar.Pervasives.Native.tuple3", "Vale.X64.Print_Inline_s.get_nonmodified_input_strings", "Vale.X64.Print_Inline_s.print_nonmodified_input" ]
[]
module Vale.X64.Print_Inline_s open FStar.Mul open FStar.List.Tot open Vale.X64.Machine_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.Instruction_s open FStar.IO open Vale.Interop.Base open Vale.Interop.X64 module P = Vale.X64.Print_s let print_rettype (ret_val:option string) = match ret_val with | None -> "void" | Some _ -> "uint64_t" let print_basetype (t:base_typ) = match t with | TUInt8 -> "uint8_t" | TUInt16 -> "uint16_t" | TUInt32 -> "uint32_t" | TUInt64 -> "uint64_t" | TUInt128 -> "ERROR" // Returns "uint8_t arg2" or "uint64_t* arg0" for instance let print_arg (a:td) (i:nat) (names:nat -> string) = match a with | TD_Base src -> print_basetype src ^ " " ^ names i | TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i // Prints a list of args with their types, separated by a comma let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with | [] -> "" | [a] -> print_arg a i names | a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let (_, op) = hd in let reserved : (reg_64 -> bool) = (fun r -> match op with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_outs tl reserved r let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let reserved : (reg_64 -> bool) = (fun r -> match hd with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_ins tl reserved r // Traverses code, looking for instructions implicitly using registers. // When found, mark such registers as reserved so that they are not used during implicit allocation let rec build_reserved_args (c:code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases c) = fun r -> (match c with | Ins ins -> begin match ins with | Instr i _ _ -> let reserved = build_reserved_args_outs i.outs reserved in let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in reserved r | _ -> reserved r end | Block l -> (build_reserved_args_block l reserved) r | IfElse cond ifTrue ifFalse -> let reservedT = build_reserved_args ifTrue reserved in build_reserved_args ifFalse reservedT r | While cond body -> build_reserved_args body reserved r ) and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> ( match l with | [] -> reserved r | hd::tl -> let reserved = build_reserved_args hd reserved in build_reserved_args_block tl reserved r ) // Prints `"=&r" (name)` if an output is specified let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat = match ret_val with | None -> [], reg_names, counter | Some name -> (["\"=&r\" (" ^ name ^ ")"], // If r = rax then address it as current arg number (fun r -> if r = 0 then string_of_int counter else reg_names r), counter + 1) // If the register in which a is passed is modified, we should specify `"+&r" (name)` let print_modified_input (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then (["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1 ) else ([], reg_names, counter) // Get a list of strings corresponding to modified inputs let rec get_modified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = match args with | [] -> print_output_ret ret_val reg_names counter | a::q -> let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in output @ outputs, reg_names, counter // Print the list of modified inputs, separated by commas let print_modified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in aux outputs, output_reg_names, output_nbr // If the register in which an arg is passed is not modified, we should specify it as `"r" (name)` let print_nonmodified_input (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then ([], reg_names, counter) else (["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1) // Get a list of strings corresponding to modified inputs let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
false
false
Vale.X64.Print_Inline_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_nonmodified_input_strings : n: Prims.nat -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{FStar.List.Tot.Base.length args + i <= n} -> reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) -> counter: Prims.nat -> arg_names: (_: Prims.nat -> Prims.string) -> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat
[ "recursion" ]
Vale.X64.Print_Inline_s.get_nonmodified_input_strings
{ "file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{FStar.List.Tot.Base.length args + i <= n} -> reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) -> counter: Prims.nat -> arg_names: (_: Prims.nat -> Prims.string) -> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat
{ "end_col": 38, "end_line": 168, "start_col": 4, "start_line": 163 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = match args with | [] -> false, "" | a::q -> let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in was_explicit || are_explicit, explicit_str ^ rest_str
let rec print_explicit_register_args (n: nat) (args: list td) (i: nat{i + List.length args = n}) (of_arg: (reg_nat n -> reg_64)) (reserved: (reg_64 -> bool)) (names: (nat -> string)) =
false
null
false
match args with | [] -> false, "" | a :: q -> let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in let are_explicit, rest_str = print_explicit_register_args n q (i + 1) of_arg reserved names in was_explicit || are_explicit, explicit_str ^ rest_str
{ "checked_file": "Vale.X64.Print_Inline_s.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Print_Inline_s.fst" }
[ "total" ]
[ "Prims.nat", "Prims.list", "Vale.Interop.Base.td", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.X64.reg_nat", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Prims.string", "FStar.Pervasives.Native.Mktuple2", "Prims.op_BarBar", "Prims.op_Hat", "FStar.Pervasives.Native.tuple2", "Vale.X64.Print_Inline_s.print_explicit_register_args", "Vale.X64.Print_Inline_s.print_explicit_register_arg" ]
[]
module Vale.X64.Print_Inline_s open FStar.Mul open FStar.List.Tot open Vale.X64.Machine_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.Instruction_s open FStar.IO open Vale.Interop.Base open Vale.Interop.X64 module P = Vale.X64.Print_s let print_rettype (ret_val:option string) = match ret_val with | None -> "void" | Some _ -> "uint64_t" let print_basetype (t:base_typ) = match t with | TUInt8 -> "uint8_t" | TUInt16 -> "uint16_t" | TUInt32 -> "uint32_t" | TUInt64 -> "uint64_t" | TUInt128 -> "ERROR" // Returns "uint8_t arg2" or "uint64_t* arg0" for instance let print_arg (a:td) (i:nat) (names:nat -> string) = match a with | TD_Base src -> print_basetype src ^ " " ^ names i | TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i // Prints a list of args with their types, separated by a comma let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with | [] -> "" | [a] -> print_arg a i names | a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let (_, op) = hd in let reserved : (reg_64 -> bool) = (fun r -> match op with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_outs tl reserved r let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let reserved : (reg_64 -> bool) = (fun r -> match hd with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_ins tl reserved r // Traverses code, looking for instructions implicitly using registers. // When found, mark such registers as reserved so that they are not used during implicit allocation let rec build_reserved_args (c:code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases c) = fun r -> (match c with | Ins ins -> begin match ins with | Instr i _ _ -> let reserved = build_reserved_args_outs i.outs reserved in let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in reserved r | _ -> reserved r end | Block l -> (build_reserved_args_block l reserved) r | IfElse cond ifTrue ifFalse -> let reservedT = build_reserved_args ifTrue reserved in build_reserved_args ifFalse reservedT r | While cond body -> build_reserved_args body reserved r ) and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> ( match l with | [] -> reserved r | hd::tl -> let reserved = build_reserved_args hd reserved in build_reserved_args_block tl reserved r ) // Prints `"=&r" (name)` if an output is specified let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat = match ret_val with | None -> [], reg_names, counter | Some name -> (["\"=&r\" (" ^ name ^ ")"], // If r = rax then address it as current arg number (fun r -> if r = 0 then string_of_int counter else reg_names r), counter + 1) // If the register in which a is passed is modified, we should specify `"+&r" (name)` let print_modified_input (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then (["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1 ) else ([], reg_names, counter) // Get a list of strings corresponding to modified inputs let rec get_modified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = match args with | [] -> print_output_ret ret_val reg_names counter | a::q -> let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in output @ outputs, reg_names, counter // Print the list of modified inputs, separated by commas let print_modified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in aux outputs, output_reg_names, output_nbr // If the register in which an arg is passed is not modified, we should specify it as `"r" (name)` let print_nonmodified_input (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then ([], reg_names, counter) else (["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1) // Get a list of strings corresponding to modified inputs let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = match args with | [] -> [], reg_names, counter | a::q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in input @ inputs, reg_names, counter let print_nonmodified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in aux inputs, input_reg_names, counter // Print the list of modified registers, + memory and cc let print_modified_registers (n:nat) (ret_val:option string) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_args:reg_64 -> bool) (args:list td) = // This register was already specified as output let output_register a = Some? ret_val && a = rRax in let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) = if i >= n then false else a = of_arg i // This register was already specified for the i-th argument || input_register (i+1) a in let rec aux = function | [] -> "\"memory\", \"cc\"\n" | a::q -> // This register is not modified, or was already specified as input or output: we skip it if not (regs_mod a) || input_register 0 a || output_register a then aux q // Register not modified or already specified in inputs, we add it else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] // Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n" let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = let ty = match a with | TD_Base _ -> "uint64_t " | _ -> "uint64_t *" in if reserved (of_arg i) then // If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n" else false, ""
false
false
Vale.X64.Print_Inline_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val print_explicit_register_args : n: Prims.nat -> args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{i + FStar.List.Tot.Base.length args = n} -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> names: (_: Prims.nat -> Prims.string) -> Prims.bool * Prims.string
[ "recursion" ]
Vale.X64.Print_Inline_s.print_explicit_register_args
{ "file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> args: Prims.list Vale.Interop.Base.td -> i: Prims.nat{i + FStar.List.Tot.Base.length args = n} -> of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) -> reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> names: (_: Prims.nat -> Prims.string) -> Prims.bool * Prims.string
{ "end_col": 57, "end_line": 223, "start_col": 2, "start_line": 218 }
FStar.All.ML
val print_inline (name: string) (label: int) (ret_val: option string) (n: nat) (args: list td {List.length args = n}) (arg_names: (nat -> string)) (code: code) (of_arg: (reg_nat (List.length args) -> reg_64)) (regs_mod: (reg_64 -> bool)) (fn_comments: list string) : FStar.All.ML int
[ { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "Vale.Interop.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let print_inline (name:string) (label:int) (ret_val:option string) (n:nat) (args:list td{List.length args = n}) (arg_names:nat -> string) (code:code) (of_arg:reg_nat (List.length args) -> reg_64) (regs_mod:reg_64 -> bool) (fn_comments:list string) : FStar.All.ML int = let comments = print_fn_comments fn_comments in let reserved_regs = build_reserved_args code (fun _ -> false) in let inputs_use_rax = uses_rax args 0 of_arg in if reserved_regs rRax && Some? ret_val then FStar.All.failwith "We require the annotation register uint64_t result(rax), but it would be ignored by gcc < 9"; if inputs_use_rax && Some? ret_val then FStar.All.failwith "inputs are not allowed to be passed in rax when there is a return argument"; // Signature: static inline (void | uint64_t) [name] (arg1, arg2???) { let header = "static inline " ^ print_rettype ret_val ^ " " ^ name ^ " (" ^ print_args args 0 arg_names ^ ") \n{\n" in // If we have a return value, declare a variable for it let ret_reg = print_register_ret reserved_regs ret_val in // Explicitly allocate registers when needed let has_explicit, explicit_regs = print_explicit_register_args n args 0 of_arg reserved_regs arg_names in // Start printing the code, need the __asm__ volatile header let start_code = (if Some? ret_val || has_explicit then "\n" else "") ^ " __asm__ volatile(\n" in // Initially, the register names are the same as in assembly // This function will be modified to address arguments by their number instead of explicitly allocating them let init_reg_names r = "%" ^ P.print_reg_name r in // Each *modified* input should be specified as "+r" (name) in the output line // If we have a return value, it should be written only and specified as "=r" (name) let output_str, output_reg_names, output_nbr = print_modified_inputs n of_arg regs_mod reserved_regs args ret_val init_reg_names 0 arg_names in let output_str = " : " ^ output_str in // Each *non-modified* input should be specified as `"r" (name)` in the input line let input_str, inlined_reg_names, _ = print_nonmodified_inputs n of_arg regs_mod reserved_regs args output_reg_names output_nbr arg_names in let input_str = " : " ^ input_str in // Propagating the "numbered", implicit registers to reg32 and small_reg let inlined_reg32_names r = if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_reg32_name r // In this case, this register is replaced by a number. // We add the "k" prefix for 32-bit operands else "k" ^ inlined_reg_names r in let inlined_small_reg_names r = if r > 3 then P.print_small_reg_name r else if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_small_reg_name r // In this case, this register is replaced by a number. // We add the "b" prefix for bytes else "b" ^ inlined_reg_names r in // In inline assembly, operands are prefixed by "%%" instead of "%" in regular GCC assembly let printer = {P.gcc with P.print_reg_name = inlined_reg_names; P.print_reg32_name = inlined_reg32_names; P.print_small_reg_name = inlined_small_reg_names } in // The assembly should be compliant with gcc let (code_str, final_label) = print_code (remove_blank code) label printer in // Every modified register that wasn't used for the inputs/outputs should be specified in the modified line let modified_str = " : " ^ print_modified_registers n ret_val of_arg regs_mod reserved_regs args in let close_code = " );\n" ^ (if Some? ret_val then "\n return " ^ Some?.v ret_val ^ ";\n" else "") ^ "}\n\n" in print_string (comments ^ header ^ ret_reg ^ explicit_regs ^ start_code ^ code_str ^ output_str ^ input_str ^ modified_str ^ close_code); final_label
val print_inline (name: string) (label: int) (ret_val: option string) (n: nat) (args: list td {List.length args = n}) (arg_names: (nat -> string)) (code: code) (of_arg: (reg_nat (List.length args) -> reg_64)) (regs_mod: (reg_64 -> bool)) (fn_comments: list string) : FStar.All.ML int let print_inline (name: string) (label: int) (ret_val: option string) (n: nat) (args: list td {List.length args = n}) (arg_names: (nat -> string)) (code: code) (of_arg: (reg_nat (List.length args) -> reg_64)) (regs_mod: (reg_64 -> bool)) (fn_comments: list string) : FStar.All.ML int =
true
null
false
let comments = print_fn_comments fn_comments in let reserved_regs = build_reserved_args code (fun _ -> false) in let inputs_use_rax = uses_rax args 0 of_arg in if reserved_regs rRax && Some? ret_val then FStar.All.failwith "We require the annotation register uint64_t result(rax), but it would be ignored by gcc < 9" ; if inputs_use_rax && Some? ret_val then FStar.All.failwith "inputs are not allowed to be passed in rax when there is a return argument"; let header = "static inline " ^ print_rettype ret_val ^ " " ^ name ^ " (" ^ print_args args 0 arg_names ^ ") \n{\n" in let ret_reg = print_register_ret reserved_regs ret_val in let has_explicit, explicit_regs = print_explicit_register_args n args 0 of_arg reserved_regs arg_names in let start_code = (if Some? ret_val || has_explicit then "\n" else "") ^ " __asm__ volatile(\n" in let init_reg_names r = "%" ^ P.print_reg_name r in let output_str, output_reg_names, output_nbr = print_modified_inputs n of_arg regs_mod reserved_regs args ret_val init_reg_names 0 arg_names in let output_str = " : " ^ output_str in let input_str, inlined_reg_names, _ = print_nonmodified_inputs n of_arg regs_mod reserved_regs args output_reg_names output_nbr arg_names in let input_str = " : " ^ input_str in let inlined_reg32_names r = if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_reg32_name r else "k" ^ inlined_reg_names r in let inlined_small_reg_names r = if r > 3 then P.print_small_reg_name r else if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_small_reg_name r else "b" ^ inlined_reg_names r in let printer = { P.gcc with P.print_reg_name = inlined_reg_names; P.print_reg32_name = inlined_reg32_names; P.print_small_reg_name = inlined_small_reg_names } in let code_str, final_label = print_code (remove_blank code) label printer in let modified_str = " : " ^ print_modified_registers n ret_val of_arg regs_mod reserved_regs args in let close_code = " );\n" ^ (if Some? ret_val then "\n return " ^ Some?.v ret_val ^ ";\n" else "") ^ "}\n\n" in print_string (comments ^ header ^ ret_reg ^ explicit_regs ^ start_code ^ code_str ^ output_str ^ input_str ^ modified_str ^ close_code); final_label
{ "checked_file": "Vale.X64.Print_Inline_s.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Print_Inline_s.fst" }
[ "ml" ]
[ "Prims.string", "Prims.int", "FStar.Pervasives.Native.option", "Prims.nat", "Prims.list", "Vale.Interop.Base.td", "Prims.b2t", "Prims.op_Equality", "FStar.List.Tot.Base.length", "Vale.X64.Machine_Semantics_s.code", "Vale.Interop.X64.reg_nat", "Vale.X64.Machine_s.reg_64", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Prims.op_Hat", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.__proj__Some__item__v", "Vale.X64.Print_Inline_s.print_modified_registers", "FStar.Pervasives.Native.tuple2", "Vale.X64.Print_Inline_s.print_code", "Vale.X64.Print_Inline_s.remove_blank", "Vale.X64.Print_s.printer", "Vale.X64.Print_s.Mkprinter", "Vale.X64.Print_s.__proj__Mkprinter__item__reg_prefix", "Vale.X64.Print_s.gcc", "Vale.X64.Print_s.__proj__Mkprinter__item__mem_prefix", "Vale.X64.Print_s.__proj__Mkprinter__item__maddr", "Vale.X64.Print_s.__proj__Mkprinter__item__const", "Vale.X64.Print_s.__proj__Mkprinter__item__ins_name", "Vale.X64.Print_s.__proj__Mkprinter__item__op_order", "Vale.X64.Print_s.__proj__Mkprinter__item__align", "Vale.X64.Print_s.__proj__Mkprinter__item__header", "Vale.X64.Print_s.__proj__Mkprinter__item__footer", "Vale.X64.Print_s.__proj__Mkprinter__item__proc_name", "Vale.X64.Print_s.__proj__Mkprinter__item__ret", "Vale.X64.Print_s.__proj__Mkprinter__item__sha256rnds2_explicit_xmm0", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.op_GreaterThan", "Vale.X64.Print_s.print_small_reg_name", "Vale.X64.Print_s.print_reg_name", "Vale.X64.Print_s.print_reg32_name", "FStar.Pervasives.Native.tuple3", "Vale.X64.Print_Inline_s.print_nonmodified_inputs", "Vale.X64.Print_Inline_s.print_modified_inputs", "Prims.op_BarBar", "Vale.X64.Print_Inline_s.print_explicit_register_args", "Vale.X64.Print_Inline_s.print_register_ret", "Vale.X64.Print_Inline_s.print_rettype", "Vale.X64.Print_Inline_s.print_args", "Prims.op_AmpAmp", "FStar.All.failwith", "Vale.X64.Machine_s.rRax", "Vale.X64.Print_Inline_s.uses_rax", "Vale.X64.Print_Inline_s.build_reserved_args", "Vale.X64.Print_Inline_s.print_fn_comments" ]
[]
module Vale.X64.Print_Inline_s open FStar.Mul open FStar.List.Tot open Vale.X64.Machine_s open Vale.X64.Bytes_Code_s open Vale.X64.Machine_Semantics_s open Vale.X64.Instruction_s open FStar.IO open Vale.Interop.Base open Vale.Interop.X64 module P = Vale.X64.Print_s let print_rettype (ret_val:option string) = match ret_val with | None -> "void" | Some _ -> "uint64_t" let print_basetype (t:base_typ) = match t with | TUInt8 -> "uint8_t" | TUInt16 -> "uint16_t" | TUInt32 -> "uint32_t" | TUInt64 -> "uint64_t" | TUInt128 -> "ERROR" // Returns "uint8_t arg2" or "uint64_t* arg0" for instance let print_arg (a:td) (i:nat) (names:nat -> string) = match a with | TD_Base src -> print_basetype src ^ " " ^ names i | TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i // Prints a list of args with their types, separated by a comma let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with | [] -> "" | [a] -> print_arg a i names | a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let (_, op) = hd in let reserved : (reg_64 -> bool) = (fun r -> match op with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_outs tl reserved r let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> match l with | [] -> reserved r | hd::tl -> let reserved : (reg_64 -> bool) = (fun r -> match hd with | IOpIm (IOp64One (OReg reg)) -> // Implicit register, adding it to "reserved" registers if r = reg then true else reserved r | _ -> reserved r) in build_reserved_args_ins tl reserved r // Traverses code, looking for instructions implicitly using registers. // When found, mark such registers as reserved so that they are not used during implicit allocation let rec build_reserved_args (c:code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases c) = fun r -> (match c with | Ins ins -> begin match ins with | Instr i _ _ -> let reserved = build_reserved_args_outs i.outs reserved in let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in reserved r | _ -> reserved r end | Block l -> (build_reserved_args_block l reserved) r | IfElse cond ifTrue ifFalse -> let reservedT = build_reserved_args ifTrue reserved in build_reserved_args ifFalse reservedT r | While cond body -> build_reserved_args body reserved r ) and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool) : Tot (reg_64 -> bool) (decreases l) = fun r -> ( match l with | [] -> reserved r | hd::tl -> let reserved = build_reserved_args hd reserved in build_reserved_args_block tl reserved r ) // Prints `"=&r" (name)` if an output is specified let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat = match ret_val with | None -> [], reg_names, counter | Some name -> (["\"=&r\" (" ^ name ^ ")"], // If r = rax then address it as current arg number (fun r -> if r = 0 then string_of_int counter else reg_names r), counter + 1) // If the register in which a is passed is modified, we should specify `"+&r" (name)` let print_modified_input (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then (["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1 ) else ([], reg_names, counter) // Get a list of strings corresponding to modified inputs let rec get_modified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = match args with | [] -> print_output_ret ret_val reg_names counter | a::q -> let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in output @ outputs, reg_names, counter // Print the list of modified inputs, separated by commas let print_modified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (ret_val:option string) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in aux outputs, output_reg_names, output_nbr // If the register in which an arg is passed is not modified, we should specify it as `"r" (name)` let print_nonmodified_input (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat = if regs_mod (of_arg i) then ([], reg_names, counter) else (["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")], (fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r), counter + 1) // Get a list of strings corresponding to modified inputs let rec get_nonmodified_input_strings (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = match args with | [] -> [], reg_names, counter | a::q -> let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in input @ inputs, reg_names, counter let print_nonmodified_inputs (n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool) (args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) = let rec aux = function | [] -> "\n" | [a] -> a ^ "\n" | a :: q -> a ^ ", " ^ aux q in let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in aux inputs, input_reg_names, counter // Print the list of modified registers, + memory and cc let print_modified_registers (n:nat) (ret_val:option string) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_args:reg_64 -> bool) (args:list td) = // This register was already specified as output let output_register a = Some? ret_val && a = rRax in let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) = if i >= n then false else a = of_arg i // This register was already specified for the i-th argument || input_register (i+1) a in let rec aux = function | [] -> "\"memory\", \"cc\"\n" | a::q -> // This register is not modified, or was already specified as input or output: we skip it if not (regs_mod a) || input_register 0 a || output_register a then aux q // Register not modified or already specified in inputs, we add it else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] // Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n" let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = let ty = match a with | TD_Base _ -> "uint64_t " | _ -> "uint64_t *" in if reserved (of_arg i) then // If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n" else false, "" let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) = match args with | [] -> false, "" | a::q -> let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in was_explicit || are_explicit, explicit_str ^ rest_str // If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n" let print_register_ret (reserved:reg_64 -> bool) = function | None -> "" | Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n" (* This is a copy from X64.Print_s, and should remain in sync. The difference is that each line should be in quotes, and end by a semicolon in inline assembly *) let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string = let print_ops (o1:operand64) (o2:operand64) : string = let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in " cmp " ^ first ^ ", " ^ second ^ "\n" in match c with | OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n" | ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n" | OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n" | OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n" | OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n" | OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" let rec print_spaces (n:nat) : string = match n with | 0 -> "" | n -> " " ^ print_spaces (n-1) (* Overriding printer for formatting instructions *) let print_ins (ins:ins) (p:P.printer) : string = match ins with | Instr _ _ (AnnotateComment s) -> " // " ^ s | Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n" | Instr _ _ (AnnotateSpace n) -> print_spaces n | _ -> " \"" ^ P.print_ins ins p ^ ";\"" let rec print_block (b:codes) (n:int) (p:P.printer) : string & int = match b with | Nil -> "", n | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail -> let head_str = " // " ^ s ^ "\n" in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail -> let head_str = print_ins i p in let rest, n' = print_block tail n p in print_spaces spaces ^ head_str ^ rest, n' | Ins (Instr _ _ (AnnotateNewline _)) :: tail -> let rest, n' = print_block tail n p in "\n" ^ rest, n' | head :: tail -> let head_str, n' = print_code head n p in let rest, n'' = print_block tail n' p in head_str ^ rest, n'' and print_code (c:code) (n:int) (p:P.printer) : string & int = match c with | Ins ins -> (print_ins ins p ^ "\n", n) | Block b -> print_block b n p | IfElse cond true_code false_code -> let n1 = n in let n2 = n + 1 in let cmp = print_cmp (P.cmp_not cond) n1 p in let true_str, n' = print_code true_code (n + 2) p in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in let false_str, n' = print_code false_code n' p in let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n' | While cond body -> let n1 = n in let n2 = n + 1 in let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in let body_str, n' = print_code body (n + 2) p in let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in let cmp = print_cmp cond n1 p in jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' let rec print_fn_comments = function | [] -> "" | hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl let rec remove_blank (c:code) : code = match c with | Ins _ -> c | Block b -> Block (remove_blanks b) | IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf) | While cond cb -> While cond (remove_blank cb) and remove_blanks (b:codes) : codes = match b with | [] -> [] | Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs | Block b :: cs -> ( match remove_blanks b with | [] -> remove_blanks cs | b -> Block b :: remove_blanks cs ) | c :: cs -> c :: remove_blanks cs // Check if any argument is passed in the rax register let rec uses_rax (#n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) = match args with | [] -> false | a::q -> if of_arg i = rRax then true else uses_rax q (i+1) of_arg let print_inline (name:string) (label:int) (ret_val:option string) (n:nat) (args:list td{List.length args = n}) (arg_names:nat -> string) (code:code) (of_arg:reg_nat (List.length args) -> reg_64) (regs_mod:reg_64 -> bool)
false
false
Vale.X64.Print_Inline_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val print_inline (name: string) (label: int) (ret_val: option string) (n: nat) (args: list td {List.length args = n}) (arg_names: (nat -> string)) (code: code) (of_arg: (reg_nat (List.length args) -> reg_64)) (regs_mod: (reg_64 -> bool)) (fn_comments: list string) : FStar.All.ML int
[]
Vale.X64.Print_Inline_s.print_inline
{ "file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
name: Prims.string -> label: Prims.int -> ret_val: FStar.Pervasives.Native.option Prims.string -> n: Prims.nat -> args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args = n} -> arg_names: (_: Prims.nat -> Prims.string) -> code: Vale.X64.Machine_Semantics_s.code -> of_arg: (_: Vale.Interop.X64.reg_nat (FStar.List.Tot.Base.length args) -> Vale.X64.Machine_s.reg_64) -> regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) -> fn_comments: Prims.list Prims.string -> FStar.All.ML Prims.int
{ "end_col": 13, "end_line": 407, "start_col": 22, "start_line": 339 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.Effect.Atomic", "short_module": "AT" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let u32_between (s f:US.t) = x:US.t { US.v s <= US.v x /\ US.v x < US.v f}
let u32_between (s f: US.t) =
false
null
false
x: US.t{US.v s <= US.v x /\ US.v x < US.v f}
{ "checked_file": "Steel.Loops.fsti.checked", "dependencies": [ "Steel.Effect.Common.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Loops.fsti" }
[ "total" ]
[ "FStar.SizeT.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.SizeT.v", "Prims.op_LessThan" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Loops open Steel.Effect.Common open Steel.Effect module AT = Steel.Effect.Atomic module US = FStar.SizeT (* This module provides some common iterative looping combinators *) let nat_at_most (f:US.t) = x:nat{ x <= US.v f }
false
true
Steel.Loops.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val u32_between : s: FStar.SizeT.t -> f: FStar.SizeT.t -> Type0
[]
Steel.Loops.u32_between
{ "file_name": "lib/steel/Steel.Loops.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
s: FStar.SizeT.t -> f: FStar.SizeT.t -> Type0
{ "end_col": 49, "end_line": 28, "start_col": 4, "start_line": 28 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.Effect.Atomic", "short_module": "AT" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat_at_most (f:US.t) = x:nat{ x <= US.v f }
let nat_at_most (f: US.t) =
false
null
false
x: nat{x <= US.v f}
{ "checked_file": "Steel.Loops.fsti.checked", "dependencies": [ "Steel.Effect.Common.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Loops.fsti" }
[ "total" ]
[ "FStar.SizeT.t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.SizeT.v" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Loops open Steel.Effect.Common open Steel.Effect module AT = Steel.Effect.Atomic module US = FStar.SizeT (* This module provides some common iterative looping combinators *)
false
true
Steel.Loops.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat_at_most : f: FStar.SizeT.t -> Type0
[]
Steel.Loops.nat_at_most
{ "file_name": "lib/steel/Steel.Loops.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
f: FStar.SizeT.t -> Type0
{ "end_col": 24, "end_line": 25, "start_col": 4, "start_line": 25 }
Steel.Effect.Steel
val for_loop_full (start: US.t) (finish: US.t{US.v start <= US.v finish}) (inv: (nat_at_most finish -> vprop)) (inv_sel: (i: nat_at_most finish -> t_of (inv i) -> prop)) (body: (i: u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1)))))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish))))
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.Effect.Atomic", "short_module": "AT" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.Effect.Atomic", "short_module": "AT" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let for_loop_full (start:US.t) (finish:US.t { US.v start <= US.v finish }) (inv: nat_at_most finish -> vprop) (inv_sel: (i:nat_at_most finish) -> t_of (inv i) -> prop) (body: (i:u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1))) ))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish))) ) = AT.intro_vrefine (inv (US.v start)) (inv_sel (US.v start)); for_loop start finish (fun n -> inv n `vrefine` inv_sel n) (fun i -> AT.elim_vrefine (inv (US.v i)) (inv_sel (US.v i)); body i; AT.intro_vrefine (inv (US.v i + 1)) (inv_sel (US.v i + 1)) ); AT.elim_vrefine (inv (US.v finish)) (inv_sel (US.v finish))
val for_loop_full (start: US.t) (finish: US.t{US.v start <= US.v finish}) (inv: (nat_at_most finish -> vprop)) (inv_sel: (i: nat_at_most finish -> t_of (inv i) -> prop)) (body: (i: u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1)))))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish)))) let for_loop_full (start: US.t) (finish: US.t{US.v start <= US.v finish}) (inv: (nat_at_most finish -> vprop)) (inv_sel: (i: nat_at_most finish -> t_of (inv i) -> prop)) (body: (i: u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1)))))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish)))) =
true
null
false
AT.intro_vrefine (inv (US.v start)) (inv_sel (US.v start)); for_loop start finish (fun n -> (inv n) `vrefine` (inv_sel n)) (fun i -> AT.elim_vrefine (inv (US.v i)) (inv_sel (US.v i)); body i; AT.intro_vrefine (inv (US.v i + 1)) (inv_sel (US.v i + 1))); AT.elim_vrefine (inv (US.v finish)) (inv_sel (US.v finish))
{ "checked_file": "Steel.Loops.fsti.checked", "dependencies": [ "Steel.Effect.Common.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Loops.fsti" }
[]
[ "FStar.SizeT.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.SizeT.v", "Steel.Loops.nat_at_most", "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Loops.u32_between", "Prims.unit", "Prims.op_Addition", "Steel.Effect.Common.rmem", "Prims.l_and", "Steel.Effect.Atomic.elim_vrefine", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Loops.for_loop", "Steel.Effect.Common.vrefine", "Steel.Effect.Atomic.intro_vrefine" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Loops open Steel.Effect.Common open Steel.Effect module AT = Steel.Effect.Atomic module US = FStar.SizeT (* This module provides some common iterative looping combinators *) let nat_at_most (f:US.t) = x:nat{ x <= US.v f } let u32_between (s f:US.t) = x:US.t { US.v s <= US.v x /\ US.v x < US.v f} /// for_loop: for (i = start; i < finish; i++) inv { body i } val for_loop (start:US.t) (finish:US.t { US.v start <= US.v finish }) (inv: nat_at_most finish -> vprop) (body: (i:u32_between start finish -> SteelT unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)))) : SteelT unit (inv (US.v start)) (fun _ -> inv (US.v finish)) inline_for_extraction noextract let for_loop_full (start:US.t) (finish:US.t { US.v start <= US.v finish }) (inv: nat_at_most finish -> vprop) (inv_sel: (i:nat_at_most finish) -> t_of (inv i) -> prop) (body: (i:u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1))) ))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish)))
false
false
Steel.Loops.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val for_loop_full (start: US.t) (finish: US.t{US.v start <= US.v finish}) (inv: (nat_at_most finish -> vprop)) (inv_sel: (i: nat_at_most finish -> t_of (inv i) -> prop)) (body: (i: u32_between start finish -> Steel unit (inv (US.v i)) (fun _ -> inv (US.v i + 1)) (requires fun h -> inv_sel (US.v i) (h (inv (US.v i)))) (ensures fun h0 _ h1 -> inv_sel (US.v i) (h0 (inv (US.v i))) /\ inv_sel (US.v i + 1) (h1 (inv (US.v i + 1)))))) : Steel unit (inv (US.v start)) (fun _ -> inv (US.v finish)) (requires fun h -> inv_sel (US.v start) (h (inv (US.v start)))) (ensures fun h0 _ h1 -> inv_sel (US.v start) (h0 (inv (US.v start))) /\ inv_sel (US.v finish) (h1 (inv (US.v finish))))
[]
Steel.Loops.for_loop_full
{ "file_name": "lib/steel/Steel.Loops.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
start: FStar.SizeT.t -> finish: FStar.SizeT.t{FStar.SizeT.v start <= FStar.SizeT.v finish} -> inv: (_: Steel.Loops.nat_at_most finish -> Steel.Effect.Common.vprop) -> inv_sel: (i: Steel.Loops.nat_at_most finish -> _: Steel.Effect.Common.t_of (inv i) -> Prims.prop) -> body: (i: Steel.Loops.u32_between start finish -> Steel.Effect.Steel Prims.unit) -> Steel.Effect.Steel Prims.unit
{ "end_col": 61, "end_line": 76, "start_col": 2, "start_line": 68 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Poly1305_128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128
let poly1305_padded_128 =
false
null
false
Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128
{ "checked_file": "Hacl.Chacha20Poly1305_128.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_128.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec128.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_128.fst" }
[ "total" ]
[ "Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded", "Hacl.Impl.Poly1305.Fields.M128" ]
[]
module Hacl.Chacha20Poly1305_128 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_128 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline]
false
true
Hacl.Chacha20Poly1305_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_padded_128 : Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M128
[]
Hacl.Chacha20Poly1305_128.poly1305_padded_128
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M128
{ "end_col": 83, "end_line": 13, "start_col": 26, "start_line": 13 }
Prims.Tot
val aead_decrypt:aead_decrypt_st M128
[ { "abbrev": false, "full_module": "Hacl.Poly1305_128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_decrypt : aead_decrypt_st M128 = chacha20poly1305_aead_decrypt_higher #M128 True Hacl.Chacha20.Vec128.chacha20_encrypt_128 poly1305_do_128
val aead_decrypt:aead_decrypt_st M128 let aead_decrypt:aead_decrypt_st M128 =
false
null
false
chacha20poly1305_aead_decrypt_higher #M128 True Hacl.Chacha20.Vec128.chacha20_encrypt_128 poly1305_do_128
{ "checked_file": "Hacl.Chacha20Poly1305_128.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_128.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec128.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_128.fst" }
[ "total" ]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_decrypt_higher", "Hacl.Impl.Poly1305.Fields.M128", "Prims.l_True", "Hacl.Chacha20.Vec128.chacha20_encrypt_128", "Hacl.Chacha20Poly1305_128.poly1305_do_128" ]
[]
module Hacl.Chacha20Poly1305_128 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_128 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128 [@CInline] private let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128 [@@ Comment "Encrypt a message `m` with key `k`. The arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory. @param k Pointer to 32 bytes of memory where the AEAD key is read from. @param n Pointer to 12 bytes of memory where the AEAD nonce is read from. @param aadlen Length of the associated data. @param aad Pointer to `aadlen` bytes of memory where the associated data is read from. @param mlen Length of the message. @param m Pointer to `mlen` bytes of memory where the message is read from. @param cipher Pointer to `mlen` bytes of memory where the ciphertext is written to. @param mac Pointer to 16 bytes of memory where the mac is written to."] let aead_encrypt : aead_encrypt_st M128 = chacha20poly1305_aead_encrypt_higher #M128 True poly1305_do_128 Hacl.Chacha20.Vec128.chacha20_encrypt_128 [@@ Comment "Decrypt a ciphertext `cipher` with key `k`. The arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory. If decryption succeeds, the resulting plaintext is stored in `m` and the function returns the success code 0. If decryption fails, the array `m` remains unchanged and the function returns the error code 1. @param k Pointer to 32 bytes of memory where the AEAD key is read from. @param n Pointer to 12 bytes of memory where the AEAD nonce is read from. @param aadlen Length of the associated data. @param aad Pointer to `aadlen` bytes of memory where the associated data is read from. @param mlen Length of the ciphertext. @param m Pointer to `mlen` bytes of memory where the message is written to. @param cipher Pointer to `mlen` bytes of memory where the ciphertext is read from. @param mac Pointer to 16 bytes of memory where the mac is read from. @returns 0 on succeess; 1 on failure."]
false
false
Hacl.Chacha20Poly1305_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_decrypt:aead_decrypt_st M128
[]
Hacl.Chacha20Poly1305_128.aead_decrypt
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.aead_decrypt_st Hacl.Impl.Poly1305.Fields.M128
{ "end_col": 107, "end_line": 55, "start_col": 2, "start_line": 55 }
Prims.Tot
val aead_encrypt:aead_encrypt_st M128
[ { "abbrev": false, "full_module": "Hacl.Poly1305_128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aead_encrypt : aead_encrypt_st M128 = chacha20poly1305_aead_encrypt_higher #M128 True poly1305_do_128 Hacl.Chacha20.Vec128.chacha20_encrypt_128
val aead_encrypt:aead_encrypt_st M128 let aead_encrypt:aead_encrypt_st M128 =
false
null
false
chacha20poly1305_aead_encrypt_higher #M128 True poly1305_do_128 Hacl.Chacha20.Vec128.chacha20_encrypt_128
{ "checked_file": "Hacl.Chacha20Poly1305_128.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_128.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec128.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_128.fst" }
[ "total" ]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_encrypt_higher", "Hacl.Impl.Poly1305.Fields.M128", "Prims.l_True", "Hacl.Chacha20Poly1305_128.poly1305_do_128", "Hacl.Chacha20.Vec128.chacha20_encrypt_128" ]
[]
module Hacl.Chacha20Poly1305_128 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_128 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128 [@CInline] private let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128 [@@ Comment "Encrypt a message `m` with key `k`. The arguments `k`, `n`, `aadlen`, and `aad` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `m` and `cipher` can point to the same memory. @param k Pointer to 32 bytes of memory where the AEAD key is read from. @param n Pointer to 12 bytes of memory where the AEAD nonce is read from. @param aadlen Length of the associated data. @param aad Pointer to `aadlen` bytes of memory where the associated data is read from. @param mlen Length of the message. @param m Pointer to `mlen` bytes of memory where the message is read from. @param cipher Pointer to `mlen` bytes of memory where the ciphertext is written to. @param mac Pointer to 16 bytes of memory where the mac is written to."]
false
false
Hacl.Chacha20Poly1305_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aead_encrypt:aead_encrypt_st M128
[]
Hacl.Chacha20Poly1305_128.aead_encrypt
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st Hacl.Impl.Poly1305.Fields.M128
{ "end_col": 107, "end_line": 33, "start_col": 2, "start_line": 33 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Poly1305_128", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128
let poly1305_do_128 =
false
null
false
chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128
{ "checked_file": "Hacl.Chacha20Poly1305_128.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_128.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec128.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_128.fst" }
[ "total" ]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher", "Hacl.Impl.Poly1305.Fields.M128", "Prims.l_True", "Hacl.Poly1305_128.poly1305_finish", "Hacl.Poly1305_128.poly1305_init", "Hacl.Chacha20Poly1305_128.poly1305_padded_128" ]
[]
module Hacl.Chacha20Poly1305_128 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_128 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128 [@CInline]
false
true
Hacl.Chacha20Poly1305_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly1305_do_128 : Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True
[]
Hacl.Chacha20Poly1305_128.poly1305_do_128
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True
{ "end_col": 118, "end_line": 16, "start_col": 22, "start_line": 16 }
Prims.Tot
val le_to_n_indexed (b: FE.bytes) : nat
[ { "abbrev": true, "full_module": "Lib.RawIntTypes", "short_module": "Raw" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Poly", "short_module": "PS" }, { "abbrev": true, "full_module": "Vale.Interop.Types", "short_module": "IT" }, { "abbrev": true, "full_module": "Vale.Poly1305.Util", "short_module": "PU" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "FE" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BS" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "LI" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let le_to_n_indexed (b:FE.bytes) : nat = le_to_n_indexed_rec b (length b)
val le_to_n_indexed (b: FE.bytes) : nat let le_to_n_indexed (b: FE.bytes) : nat =
false
null
false
le_to_n_indexed_rec b (length b)
{ "checked_file": "Vale.Arch.BufferFriend.fsti.checked", "dependencies": [ "Vale.Interop.Views.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "Vale.Arch.BufferFriend.fsti" }
[ "total" ]
[ "FStar.Endianness.bytes", "Vale.Arch.BufferFriend.le_to_n_indexed_rec", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.nat" ]
[]
module Vale.Arch.BufferFriend module B = LowStar.Buffer module LI = Lib.IntTypes module BS = Lib.ByteSequence module FE = FStar.Endianness module HS = FStar.HyperStack module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Mul open FStar.Seq.Base val to_bytes (s:seq UInt8.t) : Tot (b:BS.bytes{b === s /\ length b == length s}) val of_bytes (b:BS.bytes) : Tot (s:seq UInt8.t{b === s /\ length b == length s}) val lemma_to_bytes_slice (s:seq UInt8.t) (i j:nat) : Lemma (requires i <= j /\ j <= length s) (ensures to_bytes (slice s i j) == slice (to_bytes s) i j) [SMTPat (to_bytes (slice s i j))] val lemma_of_bytes_slice (b:BS.bytes) (i j:nat) : Lemma (requires i <= j /\ j <= length b) (ensures of_bytes (slice b i j) == slice (of_bytes b) i j) [SMTPat (of_bytes (slice b i j))] val lemma_up_as_seq_index (#b:_) (h:HS.mem) (vb:UV.buffer b) (i:nat) : Lemma (requires i < length (UV.as_seq h vb) /\ UV.View?.n (UV.get_view vb) == 8) // TODO: generalize this beyond n = 8 (ensures ( let s0 = DV.as_seq h (UV.as_down_buffer vb) in let v = UV.get_view vb in let n = UV.View?.n v in let start = i * n in 0 <= start /\ start + n <= length s0 /\ index (UV.as_seq h vb) i == UV.View?.get v (slice s0 start (start + n)) )) // TODO: this was copied out of Vale.SHA.Simplify_Sha.fst, but with the liveness requirement on b removed; we could consolidate the two versions val same_seq_downview8 (b:B.buffer UInt8.t) (h:HS.mem) : Lemma (DV.as_seq h (DV.mk_buffer_view b (Vale.Interop.Views.down_view8)) == B.as_seq h b) val lemma_le_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma (ensures FE.le_to_n s == BS.nat_from_bytes_le (to_bytes s)) (decreases (length s)) val lemma_n_to_le_is_nat_to_bytes (len:nat) (n:nat) : Lemma (requires n < pow2 (8 * len)) (ensures FE.n_to_le len n == of_bytes (BS.nat_to_bytes_le len n)) (decreases len) val lemma_be_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma (ensures FE.be_to_n s == BS.nat_from_bytes_be (to_bytes s)) (decreases (length s)) val lemma_n_to_be_is_nat_to_bytes (len:nat) (n:nat) : Lemma (requires n < pow2 (8 * len)) (ensures FE.n_to_be len n == of_bytes (BS.nat_to_bytes_be len n)) (decreases len) val nat_from_bytes_le_is_four_to_nat (b:BS.bytes) : Lemma (requires length b == 4) (ensures BS.nat_from_bytes_le b == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.four_map LI.uint_v (Vale.Def.Words.Seq_s.seq_to_four_LE b)) ) val nat_from_bytes_le_is_le_bytes_to_nat32 (b:BS.bytes) : Lemma (requires length b == 4) (ensures length (of_bytes b) == 4 /\ BS.nat_from_bytes_le b == le_bytes_to_nat32 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b)) ) val nat_from_bytes_le_is_le_bytes_to_nat64 (b:BS.bytes) : Lemma (requires length b == 8) (ensures length (of_bytes b) == 8 /\ BS.nat_from_bytes_le b == le_bytes_to_nat64 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b)) ) // useful with norm_spec [iota; zeta; primops; delta_only [`%le_to_n_indexed_rec; `%pow2]] let rec le_to_n_indexed_rec (b:FE.bytes) (i:nat{i <= length b}) : nat = if i = 0 then 0 else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1)
false
true
Vale.Arch.BufferFriend.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n_indexed (b: FE.bytes) : nat
[]
Vale.Arch.BufferFriend.le_to_n_indexed
{ "file_name": "vale/code/arch/Vale.Arch.BufferFriend.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: FStar.Endianness.bytes -> Prims.nat
{ "end_col": 34, "end_line": 89, "start_col": 2, "start_line": 89 }
Prims.Tot
val le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat
[ { "abbrev": true, "full_module": "Lib.RawIntTypes", "short_module": "Raw" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Poly", "short_module": "PS" }, { "abbrev": true, "full_module": "Vale.Interop.Types", "short_module": "IT" }, { "abbrev": true, "full_module": "Vale.Poly1305.Util", "short_module": "PU" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Endianness", "short_module": "FE" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BS" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "LI" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_to_n_indexed_rec (b:FE.bytes) (i:nat{i <= length b}) : nat = if i = 0 then 0 else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1)
val le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat let rec le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat =
false
null
false
if i = 0 then 0 else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1)
{ "checked_file": "Vale.Arch.BufferFriend.fsti.checked", "dependencies": [ "Vale.Interop.Views.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Endianness.fsti.checked" ], "interface_file": false, "source_file": "Vale.Arch.BufferFriend.fsti" }
[ "total" ]
[ "FStar.Endianness.bytes", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Base.index", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.pow2", "Vale.Arch.BufferFriend.le_to_n_indexed_rec" ]
[]
module Vale.Arch.BufferFriend module B = LowStar.Buffer module LI = Lib.IntTypes module BS = Lib.ByteSequence module FE = FStar.Endianness module HS = FStar.HyperStack module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Words_s open Vale.Def.Types_s open FStar.Mul open FStar.Seq.Base val to_bytes (s:seq UInt8.t) : Tot (b:BS.bytes{b === s /\ length b == length s}) val of_bytes (b:BS.bytes) : Tot (s:seq UInt8.t{b === s /\ length b == length s}) val lemma_to_bytes_slice (s:seq UInt8.t) (i j:nat) : Lemma (requires i <= j /\ j <= length s) (ensures to_bytes (slice s i j) == slice (to_bytes s) i j) [SMTPat (to_bytes (slice s i j))] val lemma_of_bytes_slice (b:BS.bytes) (i j:nat) : Lemma (requires i <= j /\ j <= length b) (ensures of_bytes (slice b i j) == slice (of_bytes b) i j) [SMTPat (of_bytes (slice b i j))] val lemma_up_as_seq_index (#b:_) (h:HS.mem) (vb:UV.buffer b) (i:nat) : Lemma (requires i < length (UV.as_seq h vb) /\ UV.View?.n (UV.get_view vb) == 8) // TODO: generalize this beyond n = 8 (ensures ( let s0 = DV.as_seq h (UV.as_down_buffer vb) in let v = UV.get_view vb in let n = UV.View?.n v in let start = i * n in 0 <= start /\ start + n <= length s0 /\ index (UV.as_seq h vb) i == UV.View?.get v (slice s0 start (start + n)) )) // TODO: this was copied out of Vale.SHA.Simplify_Sha.fst, but with the liveness requirement on b removed; we could consolidate the two versions val same_seq_downview8 (b:B.buffer UInt8.t) (h:HS.mem) : Lemma (DV.as_seq h (DV.mk_buffer_view b (Vale.Interop.Views.down_view8)) == B.as_seq h b) val lemma_le_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma (ensures FE.le_to_n s == BS.nat_from_bytes_le (to_bytes s)) (decreases (length s)) val lemma_n_to_le_is_nat_to_bytes (len:nat) (n:nat) : Lemma (requires n < pow2 (8 * len)) (ensures FE.n_to_le len n == of_bytes (BS.nat_to_bytes_le len n)) (decreases len) val lemma_be_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma (ensures FE.be_to_n s == BS.nat_from_bytes_be (to_bytes s)) (decreases (length s)) val lemma_n_to_be_is_nat_to_bytes (len:nat) (n:nat) : Lemma (requires n < pow2 (8 * len)) (ensures FE.n_to_be len n == of_bytes (BS.nat_to_bytes_be len n)) (decreases len) val nat_from_bytes_le_is_four_to_nat (b:BS.bytes) : Lemma (requires length b == 4) (ensures BS.nat_from_bytes_le b == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.four_map LI.uint_v (Vale.Def.Words.Seq_s.seq_to_four_LE b)) ) val nat_from_bytes_le_is_le_bytes_to_nat32 (b:BS.bytes) : Lemma (requires length b == 4) (ensures length (of_bytes b) == 4 /\ BS.nat_from_bytes_le b == le_bytes_to_nat32 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b)) ) val nat_from_bytes_le_is_le_bytes_to_nat64 (b:BS.bytes) : Lemma (requires length b == 8) (ensures length (of_bytes b) == 8 /\ BS.nat_from_bytes_le b == le_bytes_to_nat64 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b)) ) // useful with norm_spec [iota; zeta; primops; delta_only [`%le_to_n_indexed_rec; `%pow2]]
false
false
Vale.Arch.BufferFriend.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat
[ "recursion" ]
Vale.Arch.BufferFriend.le_to_n_indexed_rec
{ "file_name": "vale/code/arch/Vale.Arch.BufferFriend.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: FStar.Endianness.bytes -> i: Prims.nat{i <= FStar.Seq.Base.length b} -> Prims.nat
{ "end_col": 80, "end_line": 86, "start_col": 2, "start_line": 85 }
Prims.Tot
val poly_equal (a b: poly) : prop0
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
val poly_equal (a b: poly) : prop0 let poly_equal (a b: poly) : prop0 =
false
null
false
(forall (i: nat). {:pattern a.[ i ]\/b.[ i ]} a.[ i ] == b.[ i ])
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "total" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.l_Forall", "Prims.nat", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10"
false
true
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val poly_equal (a b: poly) : prop0
[]
Vale.Math.Poly2.Defs.poly_equal
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> Vale.Def.Prop_s.prop0
{ "end_col": 59, "end_line": 11, "start_col": 2, "start_line": 11 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let max = FStar.Math.Lib.max
let max =
false
null
false
FStar.Math.Lib.max
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "total" ]
[ "FStar.Math.Lib.max" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val max : x: Prims.int -> y: Prims.int -> z: Prims.int{(x >= y ==> z = x) /\ (x < y ==> z = y)}
[]
Vale.Math.Poly2.Defs.max
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Prims.int -> y: Prims.int -> z: Prims.int{(x >= y ==> z = x) /\ (x < y ==> z = y)}
{ "end_col": 35, "end_line": 6, "start_col": 17, "start_line": 6 }
FStar.Pervasives.Lemma
val lemma_poly_equal_elim (a b: poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)]
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b)
val lemma_poly_equal_elim (a b: poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] let lemma_poly_equal_elim (a b: poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] =
false
null
true
let len = max (length a) (length b) in assert (len > 0 ==> a.[ len - 1 ] == b.[ len - 1 ]); assert (length a == length b); assert (forall (i: nat). {:pattern (index a i)\/(index b i)} a.[ i ] == b.[ i ]); assert (equal a b)
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims._assert", "FStar.Seq.Base.equal", "Prims.bool", "Prims.unit", "Prims.l_Forall", "Prims.nat", "Prims.eq2", "Vale.Math.Poly2.Defs_s.op_String_Access", "FStar.Seq.Base.index", "FStar.Seq.Base.length", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.int", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.max", "Prims.op_Addition", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Vale.Def.Prop_s.prop0", "Vale.Math.Poly2.Defs.poly_equal", "Prims.Nil" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_poly_equal_elim (a b: poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)]
[]
Vale.Math.Poly2.Defs.lemma_poly_equal_elim
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (requires a =. b) (ensures a == b) (decreases FStar.Seq.Base.length a + FStar.Seq.Base.length b) [SMTPat (Vale.Math.Poly2.Defs.poly_equal a b)]
{ "end_col": 20, "end_line": 29, "start_col": 3, "start_line": 24 }
FStar.Pervasives.Lemma
val lemma_sum_reverse (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f'
val lemma_sum_reverse (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) let lemma_sum_reverse (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) =
false
null
true
let f' (i: int) = f (- i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f'
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.bool", "Vale.Math.Poly2.Defs.lemma_sum_shift", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_sum_invert", "Prims.op_Minus", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.eq2", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_reverse (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g)
[]
Vale.Math.Poly2.Defs.lemma_sum_reverse
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (k + j - i - 1)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g)
{ "end_col": 40, "end_line": 123, "start_col": 3, "start_line": 120 }
FStar.Pervasives.Lemma
val lemma_sum_of_pairs (j k: int) (f g h: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h
val lemma_sum_of_pairs (j k: int) (f g h: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) let rec lemma_sum_of_pairs (j k: int) (f g h: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) =
false
null
true
if j < k then lemma_sum_of_pairs j (k - 1) f g h
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_of_pairs", "Prims.op_Subtraction", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.op_disEquality", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_of_pairs (j k: int) (f g h: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_of_pairs
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> h: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == (g i <> h i)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == (Vale.Math.Poly2.Defs_s.sum_of_bools j k g <> Vale.Math.Poly2.Defs_s.sum_of_bools j k h)) (decreases k - j)
{ "end_col": 50, "end_line": 91, "start_col": 2, "start_line": 91 }
FStar.Pervasives.Lemma
val lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b
val lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b) let lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b) =
false
null
true
FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.int", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.op_String_Access", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_poly_equal_elim", "FStar.Classical.forall_intro" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b)
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b)
[]
Vale.Math.Poly2.Defs.lemma_pointwise_equal
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> pf: (i: Prims.int -> FStar.Pervasives.Lemma (ensures a.[ i ] == b.[ i ])) -> FStar.Pervasives.Lemma (ensures a == b)
{ "end_col": 27, "end_line": 33, "start_col": 2, "start_line": 32 }
FStar.Pervasives.Lemma
val lemma_sum_extend (j' j k k': int) (f: (int -> bool)) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i))) (ensures sum_of_bools j' k' f == sum_of_bools j k f)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f
val lemma_sum_extend (j' j k k': int) (f: (int -> bool)) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i))) (ensures sum_of_bools j' k' f == sum_of_bools j k f) let lemma_sum_extend (j' j k k': int) (f: (int -> bool)) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i))) (ensures sum_of_bools j' k' f == sum_of_bools j k f) =
false
null
true
lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.bool", "Vale.Math.Poly2.Defs.lemma_sum_join", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_Forall", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_Negation", "Prims.squash", "Prims.eq2", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f)
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_extend (j' j k k': int) (f: (int -> bool)) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i))) (ensures sum_of_bools j' k' f == sum_of_bools j k f)
[]
Vale.Math.Poly2.Defs.lemma_sum_extend
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j': Prims.int -> j: Prims.int -> k: Prims.int -> k': Prims.int -> f: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i: Prims.int). {:pattern f i} j' <= i /\ i < j ==> Prims.op_Negation (f i)) /\ (forall (i: Prims.int). {:pattern f i} k <= i /\ i < k' ==> Prims.op_Negation (f i))) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j' k' f == Vale.Math.Poly2.Defs_s.sum_of_bools j k f)
{ "end_col": 26, "end_line": 84, "start_col": 2, "start_line": 81 }
FStar.Pervasives.Lemma
val lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf )
val lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) let rec lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) =
false
null
true
if j < k then (pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf)
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal", "Prims.op_Subtraction", "Vale.Math.Poly2.Defs_s.sum_of_bools" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> pf: (i: Prims.int -> FStar.Pervasives.Lemma (ensures f i == g i)) -> FStar.Pervasives.Lemma (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g) (decreases k - j)
{ "end_col": 3, "end_line": 218, "start_col": 2, "start_line": 214 }
FStar.Pervasives.Lemma
val lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f
val lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a)) let lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a)) =
false
null
true
let f (k: nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.mul_element", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_reverse", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a))
[]
Vale.Math.Poly2.Defs.lemma_mul_commute
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a *. b =. b *. a)
{ "end_col": 32, "end_line": 246, "start_col": 65, "start_line": 242 }
FStar.Pervasives.Lemma
val lemma_sum_of_zero (j k: int) (f: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f
val lemma_sum_of_zero (j k: int) (f: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) let rec lemma_sum_of_zero (j k: int) (f: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) =
false
null
true
if j < k then lemma_sum_of_zero j (k - 1) f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Prims.op_Subtraction", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Negation", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_of_zero (j k: int) (f: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_of_zero
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> Prims.op_Negation (f i)) (ensures Prims.op_Negation (Vale.Math.Poly2.Defs_s.sum_of_bools j k f)) (decreases k - j)
{ "end_col": 45, "end_line": 64, "start_col": 2, "start_line": 64 }
FStar.Pervasives.Lemma
val lemma_sum_join (i j k: int) (f: (int -> bool)) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f
val lemma_sum_join (i j k: int) (f: (int -> bool)) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) let rec lemma_sum_join (i j k: int) (f: (int -> bool)) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) =
false
null
true
if j < k then lemma_sum_join i j (k - 1) f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_join", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.squash", "Prims.eq2", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.op_disEquality", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_join (i j k: int) (f: (int -> bool)) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_join
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Prims.int -> j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires i <= j /\ j <= k) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools i k f == (Vale.Math.Poly2.Defs_s.sum_of_bools i j f <> Vale.Math.Poly2.Defs_s.sum_of_bools j k f)) (decreases k - j)
{ "end_col": 44, "end_line": 71, "start_col": 2, "start_line": 71 }
FStar.Pervasives.Lemma
val lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b
val lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) let lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
false
null
true
lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Vale.Math.Poly2.Defs.lemma_mul_distribute", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_mul_commute", "Vale.Math.Poly2.Defs.op_Plus_Dot", "Prims.l_True", "Prims.squash", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c))
[]
Vale.Math.Poly2.Defs.lemma_mul_distribute_left
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures (a +. b) *. c =. a *. c +. b *. c)
{ "end_col": 28, "end_line": 297, "start_col": 2, "start_line": 294 }
FStar.Pervasives.Lemma
val lemma_sum_invert (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g
val lemma_sum_invert (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) let lemma_sum_invert (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) =
false
null
true
if j < k then lemma_sum_invert_rec j k k f g
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_invert_rec", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.op_Minus", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.op_Subtraction", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_invert (j k: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
[]
Vale.Math.Poly2.Defs.lemma_sum_invert
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (- i)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - j) g)
{ "end_col": 46, "end_line": 115, "start_col": 2, "start_line": 115 }
FStar.Pervasives.Lemma
val lemma_sum_shift (j k shift: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g
val lemma_sum_shift (j k shift: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) let rec lemma_sum_shift (j k shift: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) =
false
null
true
if j < k then lemma_sum_shift j (k - 1) shift f g
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_shift", "Prims.op_Subtraction", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.op_Addition", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_shift (j k shift: int) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_shift
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> shift: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (i + shift)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools (j + shift) (k + shift) g) (decreases k - j)
{ "end_col": 51, "end_line": 98, "start_col": 2, "start_line": 98 }
FStar.Pervasives.Lemma
val lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g
val lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) let rec lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) =
false
null
true
if j < k then lemma_sum_mul j (k - 1) b f g
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_mul", "Prims.op_Subtraction", "Prims.unit", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.op_AmpAmp", "Prims.squash", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool)) : Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_mul
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> b: Prims.bool -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == (b && g i)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == (b && Vale.Math.Poly2.Defs_s.sum_of_bools j k g)) (decreases k - j)
{ "end_col": 45, "end_line": 130, "start_col": 2, "start_line": 130 }
FStar.Pervasives.Lemma
val lemma_sum_invert_rec (j m k: int) (f g: (int -> bool)) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g
val lemma_sum_invert_rec (j m k: int) (f g: (int -> bool)) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) let rec lemma_sum_invert_rec (j m k: int) (f g: (int -> bool)) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) =
false
null
true
if j < m then lemma_sum_invert_rec j (m - 1) k f g
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_invert_rec", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.op_disEquality", "Prims.l_Forall", "Prims.l_imp", "Prims.op_Minus", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_invert_rec (j m k: int) (f g: (int -> bool)) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_invert_rec
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> m: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires j <= m /\ m <= k /\ Vale.Math.Poly2.Defs_s.sum_of_bools j k f == (Vale.Math.Poly2.Defs_s.sum_of_bools j m f <> Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - m) g) /\ (forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (- i))) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - j) g) (decreases m - j)
{ "end_col": 52, "end_line": 109, "start_col": 2, "start_line": 109 }
FStar.Pervasives.Lemma
val lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem
val lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n)) let lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n)) =
false
null
true
let an = shift a n in let b = monomial n in let lem (k: nat) : Lemma (an.[ k ] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.nat", "FStar.Classical.forall_intro", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs_s.mul_element", "Prims.unit", "Prims.l_True", "Prims.squash", "Vale.Math.Poly2.Defs_s.poly_index", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.lemma_sum_extend", "Prims.op_Subtraction", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.monomial", "Vale.Math.Poly2.Defs_s.shift", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n))
[]
Vale.Math.Poly2.Defs.lemma_shift_is_mul
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures Vale.Math.Poly2.Defs_s.shift a n =. a *. Vale.Math.Poly2.Defs_s.monomial n)
{ "end_col": 34, "end_line": 308, "start_col": 82, "start_line": 299 }
FStar.Pervasives.Lemma
val lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f
val lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) let lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
false
null
true
let f (k: nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.mul_element", "Vale.Math.Poly2.Defs.op_Plus_Dot", "Prims.op_disEquality", "Prims.unit", "Prims.l_True", "Prims.squash", "Vale.Math.Poly2.Defs_s.add", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_of_pairs", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c))
[]
Vale.Math.Poly2.Defs.lemma_mul_distribute
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a *. (b +. c) =. a *. b +. a *. c)
{ "end_col": 32, "end_line": 291, "start_col": 87, "start_line": 282 }
FStar.Pervasives.Lemma
val lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a
val lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b) let lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b) =
false
null
true
lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Vale.Math.Poly2.Defs.lemma_add_zero", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_add_cancel", "Vale.Math.Poly2.Defs.lemma_add_associate", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Math.Poly2.Defs.op_Plus_Dot", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b)
[]
Vale.Math.Poly2.Defs.lemma_add_move
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a == a +. b +. b)
{ "end_col": 18, "end_line": 47, "start_col": 2, "start_line": 45 }
FStar.Pervasives.Lemma
val lemma_mul_element (a b: poly) (k: int) : Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]]
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
val lemma_mul_element (a b: poly) (k: int) : Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]] let lemma_mul_element (a b: poly) (k: int) : Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]] =
false
null
true
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.int", "Prims.op_GreaterThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.length", "Prims.bool", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs.op_Star_Dot", "Vale.Math.Poly2.Defs_s.mul_element", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]]
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_element (a b: poly) (k: int) : Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]]
[]
Vale.Math.Poly2.Defs.lemma_mul_element
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> k: Prims.int -> FStar.Pervasives.Lemma (ensures (a *. b).[ k ] == Vale.Math.Poly2.Defs_s.mul_element a b k) [SMTPat (a *. b).[ k ]]
{ "end_col": 86, "end_line": 228, "start_col": 2, "start_line": 228 }
FStar.Pervasives.Lemma
val lemma_mul_one (a: poly) : Lemma ((a *. one) =. a)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f
val lemma_mul_one (a: poly) : Lemma ((a *. one) =. a) let lemma_mul_one (a: poly) : Lemma ((a *. one) =. a) =
false
null
true
let f (k: nat) : Lemma (mul_element a one k == a.[ k ]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.mul_element", "Vale.Math.Poly2.Defs_s.one", "Vale.Math.Poly2.Defs_s.op_String_Access", "Prims.unit", "Prims.l_True", "Prims.squash", "Vale.Math.Poly2.Defs_s.poly_index", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_one (a: poly) : Lemma ((a *. one) =. a)
[]
Vale.Math.Poly2.Defs.lemma_mul_one
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a *. Vale.Math.Poly2.Defs_s.one =. a)
{ "end_col": 32, "end_line": 240, "start_col": 54, "start_line": 236 }
FStar.Pervasives.Lemma
val lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f
val lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero) let lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero) =
false
null
true
let f (k: nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_Negation", "Vale.Math.Poly2.Defs_s.mul_element", "Vale.Math.Poly2.Defs_s.zero", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero)
[]
Vale.Math.Poly2.Defs.lemma_mul_zero
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a *. Vale.Math.Poly2.Defs_s.zero =. Vale.Math.Poly2.Defs_s.zero)
{ "end_col": 32, "end_line": 234, "start_col": 59, "start_line": 230 }
FStar.Pervasives.Lemma
val lemma_mul_degree (a b: poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1)) = if degree a >= 0 && degree b >= 0 then ( let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[len - 1]); assert ((a *. b).[len - 2]); () ) else if degree a < 0 then ( assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( assert (b =. zero); lemma_mul_zero a; () )
val lemma_mul_degree (a b: poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1)) let lemma_mul_degree (a b: poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1)) =
false
null
true
if degree a >= 0 && degree b >= 0 then (let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[ len - 1 ]); assert ((a *. b).[ len - 2 ]); ()) else if degree a < 0 then (assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; ()) else (assert (b =. zero); lemma_mul_zero a; ())
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.op_AmpAmp", "Prims.op_GreaterThanOrEqual", "Vale.Math.Poly2.Defs_s.degree", "Prims.unit", "Prims._assert", "Prims.b2t", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs.op_Star_Dot", "Prims.op_Subtraction", "Prims.op_Negation", "Vale.Math.Poly2.Defs.lemma_sum_extend", "FStar.Seq.Base.length", "Prims.bool", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Prims.int", "Prims.op_Addition", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_mul_commute", "Vale.Math.Poly2.Defs_s.zero", "Vale.Math.Poly2.Defs.lemma_mul_zero", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.op_Minus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_degree (a b: poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1))
[]
Vale.Math.Poly2.Defs.lemma_mul_degree
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures Vale.Math.Poly2.Defs_s.degree (a *. b) == (match Vale.Math.Poly2.Defs_s.degree a >= 0 && Vale.Math.Poly2.Defs_s.degree b >= 0 with | true -> Vale.Math.Poly2.Defs_s.degree a + Vale.Math.Poly2.Defs_s.degree b | _ -> - 1))
{ "end_col": 3, "end_line": 334, "start_col": 2, "start_line": 313 }
FStar.Pervasives.Lemma
val lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires (forall (x: int). {:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y: int). {:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x)) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g )
val lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires (forall (x: int). {:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y: int). {:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x)) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) let rec lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires (forall (x: int). {:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y: int). {:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x)) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) =
false
null
true
if (j < k) then (let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; lemma_sum_swap j k1 ff gg f1 g1; lemma_sum_of_pairs j k1 f f1 f'; lemma_sum_of_pairs j k1 g g1 g')
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Prims.int", "Prims.bool", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.lemma_sum_of_pairs", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_sum_swap", "Vale.Math.Poly2.Defs.lemma_sum_reverse", "Prims.op_Subtraction", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires (forall (x: int). {:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y: int). {:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x)) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_sum_swap
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
j: Prims.int -> k: Prims.int -> ff: (_: Prims.int -> _: Prims.int -> Prims.bool) -> gg: (_: Prims.int -> _: Prims.int -> Prims.bool) -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires (forall (x: Prims.int). {:pattern f x} j <= x /\ x < k ==> f x == Vale.Math.Poly2.Defs_s.sum_of_bools j (j + k - x) (ff x)) /\ (forall (y: Prims.int). {:pattern g y} j <= y /\ y < k ==> g y == Vale.Math.Poly2.Defs_s.sum_of_bools j (j + k - y) (gg y)) /\ (forall (x: Prims.int) (y: Prims.int). {:pattern ff x y} ff x y == gg y x)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g) (decreases k - j)
{ "end_col": 3, "end_line": 158, "start_col": 2, "start_line": 141 }
FStar.Pervasives.Lemma
val lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x)) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; ()
val lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x)) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) let lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x)) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) =
false
null
true
let k' = k + k - 1 in let lemma_f (x: nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y: nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; ()
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.bool", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_sum_extend", "Vale.Math.Poly2.Defs.lemma_sum_swap", "FStar.Classical.forall_intro", "Prims.nat", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Negation", "Prims.op_LessThan", "Prims.eq2", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.op_Subtraction", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_of_zero", "Prims.op_Addition", "Vale.Math.Poly2.Defs.lemma_sum_join", "Prims.op_GreaterThan", "Prims.l_Forall" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) )
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool)) : Lemma (requires k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x: int) (y: int). {:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x)) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
[]
Vale.Math.Poly2.Defs.lemma_sum_swap_mul_associate
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Prims.int -> ff: (_: Prims.int -> _: Prims.int -> Prims.bool) -> gg: (_: Prims.int -> _: Prims.int -> Prims.bool) -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool) -> FStar.Pervasives.Lemma (requires k > 0 /\ (forall (x: Prims.nat). {:pattern f x} f x == Vale.Math.Poly2.Defs_s.sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y: Prims.nat). {:pattern g y} g y == Vale.Math.Poly2.Defs_s.sum_of_bools y k (gg y) ) /\ (forall (x: Prims.int) (y: Prims.int). {:pattern ff x y} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x: Prims.int) (y: Prims.int). {:pattern ff x y\/gg y x} ff x y == gg y x)) (ensures Vale.Math.Poly2.Defs_s.sum_of_bools 0 k f == Vale.Math.Poly2.Defs_s.sum_of_bools 0 k g)
{ "end_col": 4, "end_line": 208, "start_col": 3, "start_line": 170 }
FStar.Pervasives.Lemma
val lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f
val lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) let lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
false
null
true
let f (k: nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i j: int) = a.[ j ] && b.[ i - j ] && c.[ k - i ] in let abc2 (j i: int) = a.[ j ] && b.[ i - j ] && c.[ k - i ] in let abc3 (j i: int) = a.[ j ] && b.[ i ] && c.[ k - j - i ] in let sum_abc1 (i: int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j: int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j: int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i: int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[ k - i ] (abc1 i) (mul_element_fun a b i) in let l2 (j: int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j: int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[ j ] (abc3 j) (mul_element_fun b c (k - j)) in lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; () in FStar.Classical.forall_intro f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "FStar.Classical.forall_intro", "Prims.nat", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.mul_element", "Vale.Math.Poly2.Defs.op_Star_Dot", "Prims.unit", "Prims.l_True", "Prims.squash", "Vale.Math.Poly2.Defs_s.mul", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal", "Prims.op_Addition", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs.lemma_sum_swap_mul_associate", "Prims.int", "Vale.Math.Poly2.Defs.lemma_sum_mul", "Prims.op_Subtraction", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs.lemma_sum_shift", "Vale.Math.Poly2.Defs_s.sum_of_bools", "Prims.op_AmpAmp", "Vale.Math.Poly2.Defs.op_Equals_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c)
[]
Vale.Math.Poly2.Defs.lemma_mul_associate
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (ensures a *. (b *. c) =. a *. b *. c)
{ "end_col": 32, "end_line": 280, "start_col": 79, "start_line": 248 }
FStar.Pervasives.Lemma
val lemma_mod_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_mod_degree (a b:poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) = if length a >= length b then ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = add a (shift b n) in lemma_mod_degree a' b )
val lemma_mod_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) let rec lemma_mod_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) =
false
null
true
if length a >= length b then (let _ = assert (a.[ length a - 1 ]) in let n = length a - length b in let a' = add a (shift b n) in lemma_mod_degree a' b)
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.bool", "Vale.Math.Poly2.Defs.lemma_mod_degree", "Vale.Math.Poly2.Defs_s.add", "Vale.Math.Poly2.Defs_s.shift", "Prims.int", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "Prims.b2t", "Vale.Math.Poly2.Defs_s.op_String_Access", "Prims.op_GreaterThan", "Prims.squash", "Prims.op_LessThan", "Vale.Math.Poly2.Defs_s.degree", "Vale.Math.Poly2.Defs.op_Percent_Dot", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1)) = if degree a >= 0 && degree b >= 0 then ( let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[len - 1]); assert ((a *. b).[len - 2]); () ) else if degree a < 0 then ( assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( assert (b =. zero); lemma_mul_zero a; () ) let lemma_mul_reverse (a b:poly) (n:nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) = let ab = a *. b in let rab = reverse ab (n + n) in let ra = reverse a n in let rb = reverse b n in lemma_mul_degree a b; lemma_mul_degree ra rb; let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) = if 0 <= k && k <= n + n then ( let f0 = mul_element_fun ra rb k in let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in let f2 = mul_element_fun a b (n + n - k) in // mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2 // mul_element ra rb k == sum_of_bools 0 (k + 1) f0 lemma_sum_invert 0 (k + 1) f0 f1; // mul_element ra rb k == sum_of_bools (-k) 1 f1 lemma_sum_shift (-k) 1 n f1 f2; // mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2 let lo = min (n - k) 0 in let hi = max (n + 1) (n + n + 1 - k) in lemma_sum_extend lo 0 (n + n + 1 - k) hi f2; lemma_sum_extend lo (n - k) (n + 1) hi f2; () ) in lemma_pointwise_equal rab (ra *. rb) f // DIVISION, MOD let rec lemma_div_mod (a b:poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) = if length a < length b then ( lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = a +. (shift b n) in let xn = monomial n in lemma_shift_is_mul b n; lemma_mul_commute b xn; // a' == a +. xn *. b // (a /. b == a' /. b +. xn); lemma_add_move (a' /. b) xn; // (a' /. b == a /. b +. xn); lemma_div_mod a' b; // a' == (a' /. b) *. b +. (a' %. b) // a +. xn * b == (a /. b + xn) *. b +. (a %. b)) lemma_mul_distribute_left (a /. b) xn b; // a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b) // a == (a /. b) *. b +. (a %. b) () ) let rec lemma_div_degree (a b:poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then -1 else degree a - degree b)) (decreases (length a)) = if length a >= length b then ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = add a (shift b n) in lemma_div_degree a' b; assert ((a /. b).[degree a - degree b]); () ) let rec lemma_mod_degree (a b:poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_mod_degree
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0) (ensures Vale.Math.Poly2.Defs_s.degree (a %. b) < Vale.Math.Poly2.Defs_s.degree b) (decreases FStar.Seq.Base.length a)
{ "end_col": 3, "end_line": 431, "start_col": 2, "start_line": 425 }
FStar.Pervasives.Lemma
val lemma_div_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b)) (decreases (length a))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_div_degree (a b:poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then -1 else degree a - degree b)) (decreases (length a)) = if length a >= length b then ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = add a (shift b n) in lemma_div_degree a' b; assert ((a /. b).[degree a - degree b]); () )
val lemma_div_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b)) (decreases (length a)) let rec lemma_div_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b)) (decreases (length a)) =
false
null
true
if length a >= length b then (let _ = assert (a.[ length a - 1 ]) in let n = length a - length b in let a' = add a (shift b n) in lemma_div_degree a' b; assert ((a /. b).[ degree a - degree b ]); ())
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.bool", "Prims.unit", "Prims._assert", "Prims.b2t", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs.op_Slash_Dot", "Prims.op_Subtraction", "Vale.Math.Poly2.Defs_s.degree", "Vale.Math.Poly2.Defs.lemma_div_degree", "Vale.Math.Poly2.Defs_s.add", "Vale.Math.Poly2.Defs_s.shift", "Prims.int", "Prims.op_GreaterThan", "Prims.squash", "Prims.eq2", "Prims.op_LessThan", "Prims.op_Minus", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1)) = if degree a >= 0 && degree b >= 0 then ( let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[len - 1]); assert ((a *. b).[len - 2]); () ) else if degree a < 0 then ( assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( assert (b =. zero); lemma_mul_zero a; () ) let lemma_mul_reverse (a b:poly) (n:nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) = let ab = a *. b in let rab = reverse ab (n + n) in let ra = reverse a n in let rb = reverse b n in lemma_mul_degree a b; lemma_mul_degree ra rb; let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) = if 0 <= k && k <= n + n then ( let f0 = mul_element_fun ra rb k in let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in let f2 = mul_element_fun a b (n + n - k) in // mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2 // mul_element ra rb k == sum_of_bools 0 (k + 1) f0 lemma_sum_invert 0 (k + 1) f0 f1; // mul_element ra rb k == sum_of_bools (-k) 1 f1 lemma_sum_shift (-k) 1 n f1 f2; // mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2 let lo = min (n - k) 0 in let hi = max (n + 1) (n + n + 1 - k) in lemma_sum_extend lo 0 (n + n + 1 - k) hi f2; lemma_sum_extend lo (n - k) (n + 1) hi f2; () ) in lemma_pointwise_equal rab (ra *. rb) f // DIVISION, MOD let rec lemma_div_mod (a b:poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) = if length a < length b then ( lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = a +. (shift b n) in let xn = monomial n in lemma_shift_is_mul b n; lemma_mul_commute b xn; // a' == a +. xn *. b // (a /. b == a' /. b +. xn); lemma_add_move (a' /. b) xn; // (a' /. b == a /. b +. xn); lemma_div_mod a' b; // a' == (a' /. b) *. b +. (a' %. b) // a +. xn * b == (a /. b + xn) *. b +. (a %. b)) lemma_mul_distribute_left (a /. b) xn b; // a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b) // a == (a /. b) *. b +. (a %. b) () ) let rec lemma_div_degree (a b:poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then -1 else degree a - degree b)) (decreases (length a))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_degree (a b: poly) : Lemma (requires length b > 0) (ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b)) (decreases (length a))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_div_degree
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0) (ensures Vale.Math.Poly2.Defs_s.degree (a /. b) == (match Vale.Math.Poly2.Defs_s.degree a < Vale.Math.Poly2.Defs_s.degree b with | true -> - 1 | _ -> Vale.Math.Poly2.Defs_s.degree a - Vale.Math.Poly2.Defs_s.degree b)) (decreases FStar.Seq.Base.length a)
{ "end_col": 3, "end_line": 418, "start_col": 2, "start_line": 410 }
FStar.Pervasives.Lemma
val lemma_div_mod (a b: poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_div_mod (a b:poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) = if length a < length b then ( lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( let _ = assert (a.[length a - 1]) in let n = length a - length b in let a' = a +. (shift b n) in let xn = monomial n in lemma_shift_is_mul b n; lemma_mul_commute b xn; // a' == a +. xn *. b // (a /. b == a' /. b +. xn); lemma_add_move (a' /. b) xn; // (a' /. b == a /. b +. xn); lemma_div_mod a' b; // a' == (a' /. b) *. b +. (a' %. b) // a +. xn * b == (a /. b + xn) *. b +. (a %. b)) lemma_mul_distribute_left (a /. b) xn b; // a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b) // a == (a /. b) *. b +. (a %. b) () )
val lemma_div_mod (a b: poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) let rec lemma_div_mod (a b: poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) =
false
null
true
if length a < length b then (lemma_mul_zero b; lemma_mul_commute b zero; ()) else (let _ = assert (a.[ length a - 1 ]) in let n = length a - length b in let a' = a +. (shift b n) in let xn = monomial n in lemma_shift_is_mul b n; lemma_mul_commute b xn; lemma_add_move (a' /. b) xn; lemma_div_mod a' b; lemma_mul_distribute_left (a /. b) xn b; ())
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma", "" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.bool", "Prims.unit", "Vale.Math.Poly2.Defs.lemma_mul_commute", "Vale.Math.Poly2.Defs_s.zero", "Vale.Math.Poly2.Defs.lemma_mul_zero", "Vale.Math.Poly2.Defs.lemma_mul_distribute_left", "Vale.Math.Poly2.Defs.op_Slash_Dot", "Vale.Math.Poly2.Defs.lemma_div_mod", "Vale.Math.Poly2.Defs.lemma_add_move", "Vale.Math.Poly2.Defs.lemma_shift_is_mul", "Vale.Math.Poly2.Defs_s.monomial", "Vale.Math.Poly2.Defs.op_Plus_Dot", "Vale.Math.Poly2.Defs_s.shift", "Prims.int", "Prims.op_Subtraction", "Prims._assert", "Prims.b2t", "Vale.Math.Poly2.Defs_s.op_String_Access", "Prims.op_GreaterThan", "Prims.squash", "Vale.Math.Poly2.Defs.op_Equals_Dot", "Vale.Math.Poly2.Defs.op_Star_Dot", "Vale.Math.Poly2.Defs.op_Percent_Dot", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1)) = if degree a >= 0 && degree b >= 0 then ( let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[len - 1]); assert ((a *. b).[len - 2]); () ) else if degree a < 0 then ( assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( assert (b =. zero); lemma_mul_zero a; () ) let lemma_mul_reverse (a b:poly) (n:nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) = let ab = a *. b in let rab = reverse ab (n + n) in let ra = reverse a n in let rb = reverse b n in lemma_mul_degree a b; lemma_mul_degree ra rb; let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) = if 0 <= k && k <= n + n then ( let f0 = mul_element_fun ra rb k in let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in let f2 = mul_element_fun a b (n + n - k) in // mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2 // mul_element ra rb k == sum_of_bools 0 (k + 1) f0 lemma_sum_invert 0 (k + 1) f0 f1; // mul_element ra rb k == sum_of_bools (-k) 1 f1 lemma_sum_shift (-k) 1 n f1 f2; // mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2 let lo = min (n - k) 0 in let hi = max (n + 1) (n + n + 1 - k) in lemma_sum_extend lo 0 (n + n + 1 - k) hi f2; lemma_sum_extend lo (n - k) (n + 1) hi f2; () ) in lemma_pointwise_equal rab (ra *. rb) f // DIVISION, MOD let rec lemma_div_mod (a b:poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a))
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod (a b: poly) : Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a))
[ "recursion" ]
Vale.Math.Poly2.Defs.lemma_div_mod
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0) (ensures a =. a /. b *. b +. a %. b) (decreases FStar.Seq.Base.length a)
{ "end_col": 3, "end_line": 403, "start_col": 2, "start_line": 378 }
FStar.Pervasives.Lemma
val lemma_mul_reverse (a b: poly) (n: nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Defs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_reverse (a b:poly) (n:nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) = let ab = a *. b in let rab = reverse ab (n + n) in let ra = reverse a n in let rb = reverse b n in lemma_mul_degree a b; lemma_mul_degree ra rb; let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) = if 0 <= k && k <= n + n then ( let f0 = mul_element_fun ra rb k in let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in let f2 = mul_element_fun a b (n + n - k) in // mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2 // mul_element ra rb k == sum_of_bools 0 (k + 1) f0 lemma_sum_invert 0 (k + 1) f0 f1; // mul_element ra rb k == sum_of_bools (-k) 1 f1 lemma_sum_shift (-k) 1 n f1 f2; // mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2 let lo = min (n - k) 0 in let hi = max (n + 1) (n + n + 1 - k) in lemma_sum_extend lo 0 (n + n + 1 - k) hi f2; lemma_sum_extend lo (n - k) (n + 1) hi f2; () ) in lemma_pointwise_equal rab (ra *. rb) f
val lemma_mul_reverse (a b: poly) (n: nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) let lemma_mul_reverse (a b: poly) (n: nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) =
false
null
true
let ab = a *. b in let rab = reverse ab (n + n) in let ra = reverse a n in let rb = reverse b n in lemma_mul_degree a b; lemma_mul_degree ra rb; let f (k: int) : Lemma (rab.[ k ] == (ra *. rb).[ k ]) = if 0 <= k && k <= n + n then (let f0 = mul_element_fun ra rb k in let f1 (i: int) : bool = a.[ n + i ] && b.[ n - k - i ] in let f2 = mul_element_fun a b (n + n - k) in lemma_sum_invert 0 (k + 1) f0 f1; lemma_sum_shift (- k) 1 n f1 f2; let lo = min (n - k) 0 in let hi = max (n + 1) (n + n + 1 - k) in lemma_sum_extend lo 0 (n + n + 1 - k) hi f2; lemma_sum_extend lo (n - k) (n + 1) hi f2; ()) in lemma_pointwise_equal rab (ra *. rb) f
{ "checked_file": "Vale.Math.Poly2.Defs.fst.checked", "dependencies": [ "Vale.Math.Poly2.Defs_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Defs.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2.Defs_s.poly", "Prims.nat", "Vale.Math.Poly2.Defs.lemma_pointwise_equal", "Vale.Math.Poly2.Defs.op_Star_Dot", "Prims.int", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.bool", "Vale.Math.Poly2.Defs_s.poly_index", "Vale.Math.Poly2.Defs_s.mul", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Vale.Math.Poly2.Defs.lemma_sum_extend", "Prims.op_Subtraction", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.op_LessThan", "Vale.Math.Poly2.Defs.max", "Prims.min", "Vale.Math.Poly2.Defs.lemma_sum_shift", "Prims.op_Minus", "Vale.Math.Poly2.Defs.lemma_sum_invert", "Vale.Math.Poly2.Defs_s.mul_element_fun", "Vale.Math.Poly2.Defs_s.op_String_Access", "Vale.Math.Poly2.Defs.lemma_mul_degree", "Vale.Math.Poly2.Defs_s.reverse", "Vale.Math.Poly2.Defs_s.degree", "Vale.Math.Poly2.Defs.op_Equals_Dot" ]
[]
module Vale.Math.Poly2.Defs open FStar.Mul open Vale.Def.Prop_s open FStar.Seq open Vale.Math.Poly2.Defs_s unfold let max = FStar.Math.Lib.max #reset-options "--z3rlimit 10" let poly_equal (a b:poly) : prop0 = (forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) unfold let ( =. ) = poly_equal unfold let ( +. ) = add unfold let ( *. ) = mul unfold let ( /. ) = div unfold let ( %. ) = mod let lemma_poly_equal_elim (a b:poly) : Lemma (requires a =. b) (ensures a == b) (decreases (length a + length b)) [SMTPat (poly_equal a b)] = let len = max (length a) (length b) in assert (len > 0 ==> a.[len - 1] == b.[len - 1]); assert (length a == length b); assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]); assert (equal a b) let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) = FStar.Classical.forall_intro pf; lemma_poly_equal_elim a b // ADDITION let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = () let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = () let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = () let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = () let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) = lemma_add_associate a b b; lemma_add_cancel b; lemma_add_zero a // SUMMATION let lemma_sum_empty (j:int) (f:int -> bool) : Lemma (requires True) (ensures not (sum_of_bools j j f)) [SMTPat (sum_of_bools j j f)] = () let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i))) (ensures not (sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_of_zero j (k - 1) f let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma (requires i <= j /\ j <= k) (ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f)) (decreases (k - j)) = if j < k then lemma_sum_join i j (k - 1) f let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma (requires j' <= j /\ j <= k /\ k <= k' /\ (forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\ (forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i)) ) (ensures sum_of_bools j' k' f == sum_of_bools j k f) = lemma_sum_of_zero j' j f; lemma_sum_of_zero k k' f; lemma_sum_join j' j k f; lemma_sum_join j' k k' f let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i))) (ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h)) (decreases (k - j)) = if j < k then lemma_sum_of_pairs j (k - 1) f g h let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift))) (ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g) (decreases (k - j)) = if j < k then lemma_sum_shift j (k - 1) shift f g let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma (requires j <= m /\ m <= k /\ sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\ (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)) ) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) (decreases (m - j)) = if j < m then lemma_sum_invert_rec j (m - 1) k f g let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))) (ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) = if j < k then lemma_sum_invert_rec j k k f g let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1))) (ensures sum_of_bools j k f == sum_of_bools j k g) = let f' (i:int) = f (-i) in lemma_sum_invert j k f f'; lemma_sum_shift j k (1 - (k + j)) g f' let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma (requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i))) (ensures sum_of_bools j k f == (b && sum_of_bools j k g)) (decreases (k - j)) = if j < k then lemma_sum_mul j (k - 1) b f g let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires (forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\ (forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y == gg y x) ) (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if (j < k) then ( let k1 = k - 1 in let f1 x = sum_of_bools j (j + k1 - x) (ff x) in let g1 y = sum_of_bools j (j + k1 - y) (gg y) in let f' x = ff x (j + k1 - x) in let g' y = gg y (j + k1 - y) in lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order // sum_of_bools j k f' == sum_of_bools j k g' // sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1 // sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j) // (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g // sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j // sum_of_bools j k f == sum_of_bools j k g ) // Corollary for lemma_mul_associate let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma (requires k > 0 /\ (forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\ (forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\ (forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\ (forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x) ) (ensures sum_of_bools 0 k f == sum_of_bools 0 k g) = // Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap: // 0 // 00 // /|\ 00# // | 0##0 // y ###00 // // x --> let k' = k + k - 1 in let lemma_f (x:nat) : Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x)) ) = (if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x)); lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x); (if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x)); () in let lemma_g (y:nat) : Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y)) ) = (if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y)); (if y < k then lemma_sum_of_zero 0 y (gg y)); lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y); (if y < k then lemma_sum_extend 0 y k (k' - y) (gg y)); () in FStar.Classical.forall_intro lemma_f; FStar.Classical.forall_intro lemma_g; lemma_sum_swap 0 k' ff gg f g; lemma_sum_extend 0 0 k k' f; lemma_sum_extend 0 0 k k' g; () let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) = if j < k then ( pf (k - 1); lemma_sum_pointwise_equal j (k - 1) f g pf ) // MULTIPLICATION let lemma_mul_element (a b:poly) (k:int) : Lemma (requires True) (ensures (a *. b).[k] == mul_element a b k) [SMTPat (a *. b).[k]] = if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) = let f (k:nat) : Lemma (not (mul_element a zero k)) = lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k) in FStar.Classical.forall_intro f let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) = let f (k:nat) : Lemma (mul_element a one k == a.[k]) = lemma_sum_of_zero 0 k (mul_element_fun a one k) in FStar.Classical.forall_intro f let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) = let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) = lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k) in FStar.Classical.forall_intro f let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) = let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) = let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) = lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i) in let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) = lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j) in let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) = lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j)) in // mul_element (a *. b) c k // sum[0 <= i <= k] (a *. b)[i] * c[k - i] // sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i]) lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1; // sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i] lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2; // sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i] lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2; // sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i] lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3; // sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i]) // sum[0 <= j <= k] (a[j] * (b *. c)[k - j]) // mul_element a (b *. c) k () in FStar.Classical.forall_intro f let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) = let f (k:nat) : Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) = lemma_sum_of_pairs 0 (k + 1) (mul_element_fun a (b +. c) k) (mul_element_fun a b k) (mul_element_fun a c k) in FStar.Classical.forall_intro f let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) = lemma_mul_commute (a +. b) c; lemma_mul_commute a c; lemma_mul_commute b c; lemma_mul_distribute c a b let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) = let an = shift a n in let b = monomial n in let lem (k:nat) : Lemma (an.[k] == mul_element a b k) = if k < n then lemma_sum_of_zero 0 k (mul_element_fun a b k) else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k) in FStar.Classical.forall_intro lem let lemma_mul_degree (a b:poly) : Lemma (degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1)) = if degree a >= 0 && degree b >= 0 then ( let len = length a + length b in lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1)); lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2)); assert (not (a *. b).[len - 1]); assert ((a *. b).[len - 2]); () ) else if degree a < 0 then ( assert (a =. zero); lemma_mul_zero b; lemma_mul_commute b zero; () ) else ( assert (b =. zero); lemma_mul_zero a; () ) let lemma_mul_reverse (a b:poly) (n:nat) : Lemma (requires degree a <= n /\ degree b <= n)
false
false
Vale.Math.Poly2.Defs.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_reverse (a b: poly) (n: nat) : Lemma (requires degree a <= n /\ degree b <= n) (ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
[]
Vale.Math.Poly2.Defs.lemma_mul_reverse
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> n: Prims.nat -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2.Defs_s.degree a <= n /\ Vale.Math.Poly2.Defs_s.degree b <= n) (ensures Vale.Math.Poly2.Defs_s.reverse (a *. b) (n + n) =. Vale.Math.Poly2.Defs_s.reverse a n *. Vale.Math.Poly2.Defs_s.reverse b n)
{ "end_col": 40, "end_line": 367, "start_col": 3, "start_line": 339 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let movbe_elim_ph = { ph = (function | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let (dst, (src, ())) = oprs in if OReg? dst then ( let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in Some [mov; bswap] ) else None | _ -> None); input_hint = 1; }
let movbe_elim_ph =
false
null
false
{ ph = (function | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let dst, (src, ()) = oprs in if OReg? dst then (let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in Some [mov; bswap]) else None | _ -> None); input_hint = 1 }
{ "checked_file": "Vale.Transformers.MovbeElim.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovbeElim.fst" }
[ "total" ]
[ "Vale.Transformers.PeepHole.Mkpre_peephole", "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_Semantics_s.equals_instr", "Vale.X64.Instruction_s.InstrTypeRecord", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_MovBe64", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "FStar.Pervasives.Native.Some", "Vale.X64.InsLemmas.make_instr_t", "Vale.X64.InsLemmas.make_instr", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instructions_s.ins_Bswap64", "Vale.X64.InsLemmas.make_instr_t_args", "Vale.X64.Instructions_s.ins_Mov64", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Pervasives.norm", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_attr", "Prims.string", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.Out", "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOp64", "Vale.Transformers.PeepHole.coerce_to_normal" ]
[]
module Vale.Transformers.MovbeElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole
false
true
Vale.Transformers.MovbeElim.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val movbe_elim_ph : Vale.Transformers.PeepHole.pre_peephole
[]
Vale.Transformers.MovbeElim.movbe_elim_ph
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Transformers.PeepHole.pre_peephole
{ "end_col": 17, "end_line": 26, "start_col": 2, "start_line": 15 }
FStar.Pervasives.Lemma
val movbe_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)]
[ { "abbrev": true, "full_module": "Vale.Arch.Heap", "short_module": "H" }, { "abbrev": true, "full_module": "Vale.Def.Types_s", "short_module": "T" }, { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let movbe_elim_correct (is:list ins) (s:machine_state) : Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] = match is with | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let (dst, (src, ())) = oprs in if OReg? dst then ( let Some is' = movbe_elim_ph.ph is in lemma_movbe_is_mov_bswap dst src s ) else () | _ -> ()
val movbe_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] let movbe_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] =
false
null
true
match is with | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let dst, (src, ()) = oprs in if OReg? dst then (let Some is' = movbe_elim_ph.ph is in lemma_movbe_is_mov_bswap dst src s) | _ -> ()
{ "checked_file": "Vale.Transformers.MovbeElim.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovbeElim.fst" }
[ "lemma" ]
[ "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_Semantics_s.equals_instr", "Vale.X64.Instruction_s.InstrTypeRecord", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_MovBe64", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.Transformers.MovbeElim.lemma_movbe_is_mov_bswap", "Prims.unit", "FStar.Pervasives.Native.option", "Vale.Transformers.PeepHole.__proj__Mkpre_peephole__item__ph", "Vale.Transformers.MovbeElim.movbe_elim_ph", "Prims.bool", "FStar.Pervasives.norm", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_attr", "Prims.string", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.Out", "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOp64", "Vale.Transformers.PeepHole.coerce_to_normal", "Prims.l_True", "Prims.squash", "Vale.Transformers.PeepHole.peephole_correct", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat" ]
[]
module Vale.Transformers.MovbeElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole let movbe_elim_ph = { ph = (function | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let (dst, (src, ())) = oprs in if OReg? dst then ( let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in Some [mov; bswap] ) else None | _ -> None); input_hint = 1; } module T = Vale.Def.Types_s module H = Vale.Arch.Heap #push-options "--initial_fuel 2 --max_fuel 2 --initial_ifuel 0 --max_ifuel 0" let lemma_movbe_is_mov_bswap (dst src:operand64) (s:machine_state) : Lemma (requires (OReg? dst)) (ensures ( let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2)) = let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s_movbe = machine_eval_ins movbe s in let s_mov = machine_eval_ins mov s in let s_bswap = machine_eval_ins bswap s_mov in if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s then ( let src_v = eval_operand src s in let dst_movbe_v = T.reverse_bytes_nat64 src_v in let dst_mov_v = eval_operand dst s_mov in let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in if s_movbe.ms_ok then ( assert (Vale.X64.CPU_Features_s.movbe_enabled); assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s); assert (s_mov == update_operand64_preserve_flags'' dst src_v s s); lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v; assert (eval_operand dst s_mov == src_v); assert (valid_src_operand64_and_taint dst s_mov); assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov); assert (src_v == dst_mov_v); assert (dst_movbe_v == dst_bswap_v); lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v ) else () ) else ( assert (s_movbe == {s with ms_ok = false}); assert (s_mov == {s with ms_ok = false}); assert (s_bswap.ms_ok == false) ) #pop-options #push-options "--initial_fuel 3 --max_fuel 3 --initial_ifuel 0 --max_ifuel 0" let movbe_elim_correct (is:list ins) (s:machine_state) : Lemma (peephole_correct movbe_elim_ph is s)
false
false
Vale.Transformers.MovbeElim.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 0, "max_fuel": 3, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val movbe_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)]
[]
Vale.Transformers.MovbeElim.movbe_elim_correct
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> FStar.Pervasives.Lemma (ensures Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovbeElim.movbe_elim_ph is s) [ SMTPat (Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovbeElim.movbe_elim_ph is s) ]
{ "end_col": 11, "end_line": 86, "start_col": 2, "start_line": 77 }
FStar.Pervasives.Lemma
val lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state) : Lemma (requires (OReg? dst)) (ensures (let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2))
[ { "abbrev": true, "full_module": "Vale.Arch.Heap", "short_module": "H" }, { "abbrev": true, "full_module": "Vale.Def.Types_s", "short_module": "T" }, { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_movbe_is_mov_bswap (dst src:operand64) (s:machine_state) : Lemma (requires (OReg? dst)) (ensures ( let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2)) = let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s_movbe = machine_eval_ins movbe s in let s_mov = machine_eval_ins mov s in let s_bswap = machine_eval_ins bswap s_mov in if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s then ( let src_v = eval_operand src s in let dst_movbe_v = T.reverse_bytes_nat64 src_v in let dst_mov_v = eval_operand dst s_mov in let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in if s_movbe.ms_ok then ( assert (Vale.X64.CPU_Features_s.movbe_enabled); assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s); assert (s_mov == update_operand64_preserve_flags'' dst src_v s s); lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v; assert (eval_operand dst s_mov == src_v); assert (valid_src_operand64_and_taint dst s_mov); assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov); assert (src_v == dst_mov_v); assert (dst_movbe_v == dst_bswap_v); lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v ) else () ) else ( assert (s_movbe == {s with ms_ok = false}); assert (s_mov == {s with ms_ok = false}); assert (s_bswap.ms_ok == false) )
val lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state) : Lemma (requires (OReg? dst)) (ensures (let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2)) let lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state) : Lemma (requires (OReg? dst)) (ensures (let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2)) =
false
null
true
let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s_movbe = machine_eval_ins movbe s in let s_mov = machine_eval_ins mov s in let s_bswap = machine_eval_ins bswap s_mov in if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s then (let src_v = eval_operand src s in let dst_movbe_v = T.reverse_bytes_nat64 src_v in let dst_mov_v = eval_operand dst s_mov in let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in if s_movbe.ms_ok then (assert (Vale.X64.CPU_Features_s.movbe_enabled); assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s); assert (s_mov == update_operand64_preserve_flags'' dst src_v s s); lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v; assert (eval_operand dst s_mov == src_v); assert (valid_src_operand64_and_taint dst s_mov); assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov); assert (src_v == dst_mov_v); assert (dst_movbe_v == dst_bswap_v); lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v)) else (assert (s_movbe == { s with ms_ok = false }); assert (s_mov == { s with ms_ok = false }); assert (s_bswap.ms_ok == false))
{ "checked_file": "Vale.Transformers.MovbeElim.fst.checked", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovbeElim.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.op_AmpAmp", "Vale.X64.Machine_Semantics_s.valid_src_operand64_and_taint", "Vale.X64.Machine_Semantics_s.valid_dst_operand64", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.Transformers.PeepHole.lemma_double_update_reg", "Prims.unit", "Prims._assert", "Prims.eq2", "Vale.Def.Types_s.nat64", "Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags''", "Prims.b2t", "Vale.X64.Machine_Semantics_s.eval_operand", "Vale.Transformers.PeepHole.lemma_update_to_valid_destination_keeps_it_as_valid_src", "Vale.X64.CPU_Features_s.movbe_enabled", "Prims.bool", "Vale.Def.Words_s.nat64", "Vale.Def.Types_s.reverse_bytes_nat64", "Vale.X64.Machine_Semantics_s.Mkmachine_state", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "Vale.X64.Machine_Semantics_s.machine_eval_ins", "Vale.X64.InsLemmas.make_instr_t", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Bswap64", "Vale.X64.InsLemmas.make_instr_t_args", "Vale.X64.Instruction_s.out", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.InsLemmas.make_instr_annotate", "Vale.X64.Instructions_s.ins_MovBe64", "Vale.X64.Machine_Semantics_s.AnnotateMovbe64", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Prims.squash", "Prims.l_imp", "Vale.Transformers.InstructionReorder.equiv_states", "FStar.Pervasives.pattern" ]
[]
module Vale.Transformers.MovbeElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole let movbe_elim_ph = { ph = (function | [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] -> let oprs:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in let (dst, (src, ())) = oprs in if OReg? dst then ( let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in Some [mov; bswap] ) else None | _ -> None); input_hint = 1; } module T = Vale.Def.Types_s module H = Vale.Arch.Heap #push-options "--initial_fuel 2 --max_fuel 2 --initial_ifuel 0 --max_ifuel 0" let lemma_movbe_is_mov_bswap (dst src:operand64) (s:machine_state) : Lemma (requires (OReg? dst)) (ensures ( let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in
false
false
Vale.Transformers.MovbeElim.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state) : Lemma (requires (OReg? dst)) (ensures (let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in let mov = make_instr ins_Mov64 dst src in let bswap = make_instr ins_Bswap64 dst in let s1 = machine_eval_ins movbe s in let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in s1.ms_ok ==> equiv_states s1 s2))
[]
Vale.Transformers.MovbeElim.lemma_movbe_is_mov_bswap
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Machine_s.operand64 -> src: Vale.X64.Machine_s.operand64 -> s: Vale.X64.Machine_Semantics_s.machine_state -> FStar.Pervasives.Lemma (requires OReg? dst) (ensures (let movbe = Vale.X64.InsLemmas.make_instr_annotate Vale.X64.Instructions_s.ins_MovBe64 (Vale.X64.Machine_Semantics_s.AnnotateMovbe64 ()) dst src in let mov = Vale.X64.InsLemmas.make_instr Vale.X64.Instructions_s.ins_Mov64 dst src in let bswap = Vale.X64.InsLemmas.make_instr Vale.X64.Instructions_s.ins_Bswap64 dst in let s1 = Vale.X64.Machine_Semantics_s.machine_eval_ins movbe s in let s2 = Vale.X64.Machine_Semantics_s.machine_eval_ins bswap (Vale.X64.Machine_Semantics_s.machine_eval_ins mov s) in Mkmachine_state?.ms_ok s1 ==> Vale.Transformers.InstructionReorder.equiv_states s1 s2))
{ "end_col": 3, "end_line": 70, "start_col": 43, "start_line": 42 }
Prims.Tot
val hash_is_supported (a: Hash.hash_alg) : Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false
val hash_is_supported (a: Hash.hash_alg) : Tot bool let hash_is_supported (a: Hash.hash_alg) : Tot bool =
false
null
false
match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.bool" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
false
true
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_is_supported (a: Hash.hash_alg) : Tot bool
[]
Spec.RSAPSS.hash_is_supported
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg -> Prims.bool
{ "end_col": 14, "end_line": 36, "start_col": 2, "start_line": 32 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
let mgf_hash_a (len: size_nat{len + 4 <= max_size_t}) (n: pos) (i: nat{i <= n}) =
false
null
false
lbytes (len + 4)
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Prims.pos", "Prims.nat", "Lib.ByteSequence.lbytes" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mgf_hash_a : len: Lib.IntTypes.size_nat{len + 4 <= Lib.IntTypes.max_size_t} -> n: Prims.pos -> i: Prims.nat{i <= n} -> Type0
[]
Spec.RSAPSS.mgf_hash_a
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_nat{len + 4 <= Lib.IntTypes.max_size_t} -> n: Prims.pos -> i: Prims.nat{i <= n} -> Type0
{ "end_col": 95, "end_line": 52, "start_col": 79, "start_line": 52 }
Prims.Tot
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blocks x m = (x - 1) / m + 1
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m =
false
null
false
(x - 1) / m + 1
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Lib.IntTypes.size_pos", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Subtraction", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions ///
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
[]
Spec.RSAPSS.blocks
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.size_pos -> m: Lib.IntTypes.size_pos -> r: Lib.IntTypes.size_pos{x <= m * r}
{ "end_col": 32, "end_line": 26, "start_col": 17, "start_line": 26 }
Prims.Tot
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 =
false
null
false
map2 (fun x y -> x ^. y) b1 b2
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Lib.IntTypes.size_pos", "Lib.ByteSequence.lbytes", "Lib.Sequence.map2", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Hat_Dot" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
[]
Spec.RSAPSS.xor_bytes
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b1: Lib.ByteSequence.lbytes len -> b2: Lib.ByteSequence.lbytes len -> Lib.ByteSequence.lbytes len
{ "end_col": 57, "end_line": 29, "start_col": 27, "start_line": 29 }
Prims.Tot
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let os2ip #len b = nat_from_bytes_be b
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b =
false
null
false
nat_from_bytes_be b
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.SEC", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
[]
Spec.RSAPSS.os2ip
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.ByteSequence.lbytes len -> res: Prims.nat{res < Prims.pow2 (8 * len)}
{ "end_col": 38, "end_line": 73, "start_col": 19, "start_line": 73 }
Prims.Tot
val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_verify a modBits pkey sLen k sgnt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false
val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
false
null
false
let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Spec.RSAPSS.rsapss_pkey", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.RSAPSS.rsapss_verify_", "Prims.bool", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "Spec.RSAPSS.blocks" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
[]
Spec.RSAPSS.rsapss_verify
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> pkey: Spec.RSAPSS.rsapss_pkey modBits -> sLen: Lib.IntTypes.size_nat -> k: Lib.IntTypes.size_nat -> sgnt: Lib.ByteSequence.lbytes k -> msgLen: Prims.nat -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> Prims.bool
{ "end_col": 9, "end_line": 359, "start_col": 57, "start_line": 349 }
Prims.Tot
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let i2osp len n = nat_to_intseq_be len n
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n =
false
null
false
nat_to_intseq_be len n
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Lib.ByteSequence.nat_to_intseq_be", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.lbytes" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
[]
Spec.RSAPSS.i2osp
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_nat -> n: Prims.nat{n < Prims.pow2 (8 * len)} -> Lib.ByteSequence.lbytes len
{ "end_col": 40, "end_line": 76, "start_col": 18, "start_line": 76 }
Prims.Tot
val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None
val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg =
false
null
false
let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then let eq_m, sgnt = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None else None
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Spec.RSAPSS.rsapss_skey", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.bool", "Spec.RSAPSS.blocks", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.RSAPSS.rsapss_sign_", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.op_Subtraction" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
[]
Spec.RSAPSS.rsapss_sign
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> skey: Spec.RSAPSS.rsapss_skey modBits -> sLen: Lib.IntTypes.size_nat -> salt: Lib.ByteSequence.lbytes sLen -> msgLen: Prims.nat -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> FStar.Pervasives.Native.option (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8))
{ "end_col": 8, "end_line": 304, "start_col": 53, "start_line": 293 }
Prims.Tot
val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_load_pkey modBits eBits nb eb = let n = os2ip #(blocks modBits 8) nb in let e = os2ip #(blocks eBits 8) eb in //`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits) then Some (Mk_rsapss_pkey n e) else None
val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits) let rsapss_load_pkey modBits eBits nb eb =
false
null
false
let n = os2ip #(blocks modBits 8) nb in let e = os2ip #(blocks eBits 8) eb in if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits) then Some (Mk_rsapss_pkey n e) else None
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.RSAPSS.modBits_t", "Lib.IntTypes.size_pos", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.RSAPSS.blocks", "Prims.op_AmpAmp", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "FStar.Pervasives.Native.Some", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.Mk_rsapss_pkey", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Prims.nat", "Prims.b2t", "Prims.op_Multiply", "Spec.RSAPSS.os2ip" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify a modBits pkey sLen k sgnt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits)
[]
Spec.RSAPSS.rsapss_load_pkey
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
modBits: Spec.RSAPSS.modBits_t -> eBits: Lib.IntTypes.size_pos -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) -> FStar.Pervasives.Native.option (Spec.RSAPSS.rsapss_pkey modBits)
{ "end_col": 8, "end_line": 378, "start_col": 42, "start_line": 369 }
Prims.Tot
val rsapss_pkey_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg = let pkey = rsapss_load_pkey modBits eBits nb eb in match pkey with | Some vpkey -> rsapss_verify a modBits vpkey sLen k sgnt msgLen msg | None -> false
val rsapss_pkey_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg =
false
null
false
let pkey = rsapss_load_pkey modBits eBits nb eb in match pkey with | Some vpkey -> rsapss_verify a modBits vpkey sLen k sgnt msgLen msg | None -> false
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Lib.IntTypes.size_pos", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.RSAPSS.blocks", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.rsapss_verify", "Prims.bool", "FStar.Pervasives.Native.option", "Spec.RSAPSS.rsapss_load_pkey" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify a modBits pkey sLen k sgnt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits) let rsapss_load_pkey modBits eBits nb eb = let n = os2ip #(blocks modBits 8) nb in let e = os2ip #(blocks eBits 8) eb in //`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits) then Some (Mk_rsapss_pkey n e) else None val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits) let rsapss_load_skey modBits eBits dBits nb eb db = let pkey = rsapss_load_pkey modBits eBits nb eb in let d = os2ip #(blocks dBits 8) db in if (Some? pkey && 0 < d && d < pow2 dBits) then Some (Mk_rsapss_skey (Some?.v pkey) d) else None val rsapss_skey_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg = let skey = rsapss_load_skey modBits eBits dBits nb eb db in match skey with | Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg | None -> None val rsapss_pkey_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_pkey_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool
[]
Spec.RSAPSS.rsapss_pkey_verify
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> eBits: Lib.IntTypes.size_pos -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) -> sLen: Lib.IntTypes.size_nat -> k: Lib.IntTypes.size_nat -> sgnt: Lib.ByteSequence.lbytes k -> msgLen: Prims.nat -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> Prims.bool
{ "end_col": 17, "end_line": 438, "start_col": 69, "start_line": 434 }
Prims.Tot
val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_load_skey modBits eBits dBits nb eb db = let pkey = rsapss_load_pkey modBits eBits nb eb in let d = os2ip #(blocks dBits 8) db in if (Some? pkey && 0 < d && d < pow2 dBits) then Some (Mk_rsapss_skey (Some?.v pkey) d) else None
val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits) let rsapss_load_skey modBits eBits dBits nb eb db =
false
null
false
let pkey = rsapss_load_pkey modBits eBits nb eb in let d = os2ip #(blocks dBits 8) db in if (Some? pkey && 0 < d && d < pow2 dBits) then Some (Mk_rsapss_skey (Some?.v pkey) d) else None
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.RSAPSS.modBits_t", "Lib.IntTypes.size_pos", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.RSAPSS.blocks", "Prims.op_AmpAmp", "FStar.Pervasives.Native.uu___is_Some", "Spec.RSAPSS.rsapss_pkey", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.Some", "Spec.RSAPSS.rsapss_skey", "Spec.RSAPSS.Mk_rsapss_skey", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Prims.nat", "Prims.b2t", "Prims.op_Multiply", "Spec.RSAPSS.os2ip", "Spec.RSAPSS.rsapss_load_pkey" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify a modBits pkey sLen k sgnt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits) let rsapss_load_pkey modBits eBits nb eb = let n = os2ip #(blocks modBits 8) nb in let e = os2ip #(blocks eBits 8) eb in //`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits) then Some (Mk_rsapss_pkey n e) else None val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits)
[]
Spec.RSAPSS.rsapss_load_skey
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
modBits: Spec.RSAPSS.modBits_t -> eBits: Lib.IntTypes.size_pos -> dBits: Lib.IntTypes.size_pos -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks dBits 8) -> FStar.Pervasives.Native.option (Spec.RSAPSS.rsapss_skey modBits)
{ "end_col": 8, "end_line": 397, "start_col": 51, "start_line": 390 }
Prims.Tot
val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block
val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter =
false
null
false
let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Lib.ByteSequence.lbytes", "FStar.Pervasives.Native.Mktuple2", "Spec.Hash.Definitions.hash_length", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Hash.Definitions.hash_length'", "Spec.Agile.Hash.hash", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "Lib.Sequence.seq", "Lib.Sequence.length", "Prims.pow2", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_to_intseq_be", "FStar.Pervasives.Native.tuple2" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a)
[]
Spec.RSAPSS.mgf_hash_f
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> len: Lib.IntTypes.size_nat { len + 4 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (len + 4) a } -> i: Lib.IntTypes.size_nat -> mgfseed_counter: Lib.ByteSequence.lbytes (len + 4) -> Lib.ByteSequence.lbytes (len + 4) * Lib.ByteSequence.lbytes (Spec.Hash.Definitions.hash_length a)
{ "end_col": 24, "end_line": 50, "start_col": 40, "start_line": 46 }
Prims.Tot
val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end
val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em =
false
null
false
let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[ 0 ] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[ emLen - 1 ] in if (emLen < sLen + Hash.hash_length a + 2) then false else if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.size_pos", "Lib.ByteSequence.lbytes", "Spec.RSAPSS.blocks", "Prims.op_LessThan", "Prims.bool", "Prims.op_Negation", "Prims.op_AmpAmp", "FStar.UInt8.op_Equals_Hat", "Lib.RawIntTypes.u8_to_UInt8", "FStar.UInt8.__uint_to_t", "Spec.RSAPSS.pss_verify_", "Lib.IntTypes.int_t", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Prims.op_Subtraction", "Lib.Sequence.op_String_Access", "Prims.op_GreaterThan", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u8", "Lib.IntTypes.size", "Lib.IntTypes.uint8", "Prims.int", "Prims.op_Modulus", "Prims.pos", "Prims.pow2", "Prims.op_Multiply" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool
[]
Spec.RSAPSS.pss_verify
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> sLen: Lib.IntTypes.size_nat { sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (sLen + Spec.Hash.Definitions.hash_length a + 8) a } -> msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> emBits: Lib.IntTypes.size_pos -> em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8) -> Prims.bool
{ "end_col": 52, "end_line": 212, "start_col": 44, "start_line": 200 }
Prims.Pure
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits =
false
null
false
let msBits = emBits % 8 in if msBits > 0 then let r = db.[ 0 ] <- db.[ 0 ] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[ 0 ] (u8 0xff >>. size (8 - msBits)) msBits; r else db
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[]
[ "Lib.IntTypes.size_pos", "Lib.ByteSequence.lbytes", "Lib.IntTypes.size_nat", "Prims.op_GreaterThan", "Prims.unit", "Lib.IntTypes.logand_mask", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.u8", "Lib.IntTypes.size", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_plus", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logand", "Lib.Sequence.index", "Lib.IntTypes.shift_right", "Lib.IntTypes.mk_int", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Amp_Dot", "Prims.bool", "Prims.int", "Prims.op_Modulus" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
[]
Spec.RSAPSS.db_zero
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
db: Lib.ByteSequence.lbytes len -> emBits: Lib.IntTypes.size_nat -> Prims.Pure (Lib.ByteSequence.lbytes len)
{ "end_col": 9, "end_line": 104, "start_col": 28, "start_line": 97 }
Prims.Tot
val rsapss_skey_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg = let skey = rsapss_load_skey modBits eBits dBits nb eb db in match skey with | Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg | None -> None
val rsapss_skey_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg =
false
null
false
let skey = rsapss_load_skey modBits eBits dBits nb eb db in match skey with | Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg | None -> None
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Lib.IntTypes.size_pos", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.RSAPSS.blocks", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.RSAPSS.rsapss_skey", "Spec.RSAPSS.rsapss_sign", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Spec.RSAPSS.rsapss_load_skey" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false val rsapss_verify: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat -> k:size_nat -> sgnt:lbytes k -> msgLen:nat -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify a modBits pkey sLen k sgnt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && k = blocks modBits 8 in if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false val rsapss_load_pkey: modBits:modBits_t -> eBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> option (rsapss_pkey modBits) let rsapss_load_pkey modBits eBits nb eb = let n = os2ip #(blocks modBits 8) nb in let e = os2ip #(blocks eBits 8) eb in //`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits) then Some (Mk_rsapss_pkey n e) else None val rsapss_load_skey: modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> option (rsapss_skey modBits) let rsapss_load_skey modBits eBits dBits nb eb db = let pkey = rsapss_load_pkey modBits eBits nb eb in let d = os2ip #(blocks dBits 8) db in if (Some? pkey && 0 < d && d < pow2 dBits) then Some (Mk_rsapss_skey (Some?.v pkey) d) else None val rsapss_skey_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_skey_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> eBits:size_pos -> dBits:size_pos -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8))
[]
Spec.RSAPSS.rsapss_skey_sign
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> eBits: Lib.IntTypes.size_pos -> dBits: Lib.IntTypes.size_pos -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks dBits 8) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.ByteSequence.lbytes sLen -> msgLen: Prims.nat -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> FStar.Pervasives.Native.option (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8))
{ "end_col": 16, "end_line": 418, "start_col": 74, "start_line": 414 }
Prims.Tot
val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8))
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s)
val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg =
false
null
false
let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s)
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Spec.RSAPSS.rsapss_skey", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Spec.RSAPSS.blocks", "Prims.op_Subtraction", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Spec.RSAPSS.i2osp", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "FStar.Mul.op_Star", "Prims.op_Equality", "Prims.l_or", "Lib.NatMod.nat_mod", "Lib.NatMod.pow_mod", "Prims.unit", "Spec.RSAPSS.os2ip_lemma", "Spec.RSAPSS.os2ip", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.RSAPSS.pss_encode", "Prims.pos", "Prims.int", "FStar.Math.Lemmas.pow2_le_compat", "Spec.RSAPSS.__proj__Mk_rsapss_skey__item__d", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.__proj__Mk_rsapss_skey__item__pkey", "FStar.Pervasives.Native.tuple2" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8))
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8))
[]
Spec.RSAPSS.rsapss_sign_
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> skey: Spec.RSAPSS.rsapss_skey modBits -> sLen: Lib.IntTypes.size_nat { sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (sLen + Spec.Hash.Definitions.hash_length a + 8) a /\ sLen + Spec.Hash.Definitions.hash_length a + 2 <= Spec.RSAPSS.blocks (modBits - 1) 8 } -> salt: Lib.ByteSequence.lbytes sLen -> msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> Prims.bool * Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8)
{ "end_col": 19, "end_line": 280, "start_col": 54, "start_line": 261 }
Prims.Tot
val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg = let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then begin let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false end else false
val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
false
null
false
let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let s = os2ip #k sgnt in if s < n then let m = pow_mod #n s e in if m < pow2 (emLen * 8) then let em = i2osp emLen m in pss_verify a sLen msgLen msg emBits em else false else false
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Spec.RSAPSS.modBits_t", "Spec.RSAPSS.rsapss_pkey", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Lib.ByteSequence.lbytes", "Spec.RSAPSS.blocks", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "Spec.RSAPSS.pss_verify", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.RSAPSS.i2osp", "Prims.bool", "Lib.NatMod.nat_mod", "Lib.NatMod.pow_mod", "Prims.op_Multiply", "Spec.RSAPSS.os2ip", "Prims.pos", "Prims.op_Subtraction", "Prims.int", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end val rsapss_sign_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> tuple2 bool (lbytes (blocks modBits 8)) let rsapss_sign_ a modBits skey sLen salt msgLen msg = let pkey = Mk_rsapss_skey?.pkey skey in let n = Mk_rsapss_pkey?.n pkey in let e = Mk_rsapss_pkey?.e pkey in let d = Mk_rsapss_skey?.d skey in let k = blocks modBits 8 in FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits; let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = pss_encode a sLen salt msgLen msg emBits in let m = os2ip #emLen em in os2ip_lemma emBits em; let s = pow_mod #n m d in let m' = pow_mod #n s e in let eq_m = m = m' in let s = if eq_m then s else 0 in (eq_m, i2osp k s) val rsapss_sign: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> skey:rsapss_skey modBits -> sLen:size_nat -> salt:lbytes sLen -> msgLen:nat -> msg:bytes{length msg == msgLen} -> option (lbytes (blocks modBits 8)) let rsapss_sign a modBits skey sLen salt msgLen msg = let b = sLen + Hash.hash_length a + 8 <= max_size_t && (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a && msgLen `Hash.less_than_max_input_length` a && sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in if b then begin let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in if eq_m then Some sgnt else None end else None val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rsapss_verify_: a:Hash.hash_alg{hash_is_supported a} -> modBits:modBits_t -> pkey:rsapss_pkey modBits -> sLen:size_nat{ sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> sgnt:lbytes (blocks modBits 8) -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> Tot bool
[]
Spec.RSAPSS.rsapss_verify_
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Spec.RSAPSS.modBits_t -> pkey: Spec.RSAPSS.rsapss_pkey modBits -> sLen: Lib.IntTypes.size_nat { sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (sLen + Spec.Hash.Definitions.hash_length a + 8) a } -> sgnt: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8) -> msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> Prims.bool
{ "end_col": 12, "end_line": 335, "start_col": 56, "start_line": 319 }
Prims.Tot
val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen
val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen =
false
null
false
let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Lib.ByteSequence.lbytes", "Lib.IntTypes.size_pos", "Prims.op_LessThan", "FStar.Mul.op_Star", "Spec.RSAPSS.blocks", "Spec.Hash.Definitions.hash_length", "Prims.pow2", "Spec.RSAPSS.mgf_hash_a", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "Lib.Sequence.sub", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Lib.Sequence.generate_blocks", "Spec.RSAPSS.mgf_hash_f", "Prims.pos", "Prims.op_Subtraction", "Prims.nat", "Prims.op_GreaterThan", "Lib.Sequence.lseq", "Prims.l_Forall", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen)
[]
Spec.RSAPSS.mgf_hash
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> len: Lib.IntTypes.size_nat { len + 4 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (len + 4) a } -> mgfseed: Lib.ByteSequence.lbytes len -> maskLen: Lib.IntTypes.size_pos { Spec.RSAPSS.blocks maskLen (Spec.Hash.Definitions.hash_length a) * Spec.Hash.Definitions.hash_length a < Prims.pow2 32 } -> Lib.ByteSequence.lbytes maskLen
{ "end_col": 38, "end_line": 68, "start_col": 36, "start_line": 61 }
FStar.Pervasives.Lemma
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let os2ip_lemma emBits em = let emLen = blocks emBits 8 in let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then begin nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]); calc (<=) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]; (==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) } pow2 (8 * (emLen - 1)) * (1 + v em.[0]); (<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); (==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); (<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits) end else begin assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen) end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits) let os2ip_lemma emBits em =
false
null
true
let emLen = blocks emBits 8 in let aux (emBits: size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) = assert ((emBits - 1) / 8 <= emBits / 8) in if emBits % 8 > 0 then (nat_from_intseq_be_slice_lemma em 1; nat_from_intseq_be_lemma0 (slice em 0 1); assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[ 0 ]); assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[ 0 ]); calc ( <= ) { pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[ 0 ]; ( == ) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[ 0 ]) } pow2 (8 * (emLen - 1)) * (1 + v em.[ 0 ]); ( <= ) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[ 0 ] + 1) (pow2 (emBits % 8)) } pow2 (8 * (emLen - 1)) * pow2 (emBits % 8); ( == ) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) } pow2 (8 * ((emBits - 1) / 8) + emBits % 8); ( <= ) { (aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8)) } pow2 emBits; }; assert (nat_from_bytes_be em < pow2 emBits)) else (assert (nat_from_bytes_be em < pow2 (emLen * 8)); assert (emBits == 8 * emLen))
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Lib.ByteSequence.lbytes", "Spec.RSAPSS.blocks", "Prims.op_GreaterThan", "Prims.op_Modulus", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.U8", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Division", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_add_right", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.pow2_le_compat", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma", "Prims.bool", "Prims.pos", "Prims.l_True", "Prims.op_Multiply", "FStar.Pervasives.pattern" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end val pss_verify: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify a sLen msgLen msg emBits em = let emLen = blocks emBits 8 in let msBits = emBits % 8 in let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in let em_last = em.[emLen - 1] in if (emLen < sLen + Hash.hash_length a + 2) then false else begin if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) && FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy)) then false else pss_verify_ a sLen msgLen msg emBits em end val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma (requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)) (ensures os2ip #(blocks emBits 8) em < pow2 emBits)
[]
Spec.RSAPSS.os2ip_lemma
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
emBits: Lib.IntTypes.size_pos -> em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8) -> FStar.Pervasives.Lemma (requires ((match emBits % 8 > 0 with | true -> Lib.IntTypes.v em.[ 0 ] < Prims.pow2 (emBits % 8) | _ -> Lib.IntTypes.v em.[ 0 ] < Prims.pow2 8) <: Type0)) (ensures Spec.RSAPSS.os2ip em < Prims.pow2 emBits)
{ "end_col": 36, "end_line": 245, "start_col": 27, "start_line": 219 }
Prims.Tot
val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pss_verify_ a sLen msgLen msg emBits em = let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[padLen - 1] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else begin let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash end
val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool let pss_verify_ a sLen msgLen msg emBits em =
false
null
false
let hLen = Hash.hash_length a in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let maskedDB = sub em 0 dbLen in let m1Hash = sub em dbLen hLen in let dbMask = mgf_hash a hLen m1Hash dbLen in let db = xor_bytes dbMask maskedDB in let db = db_zero db emBits in let padLen = emLen - sLen - hLen - 1 in let pad2 = create padLen (u8 0) in let pad2 = pad2.[ padLen - 1 ] <- u8 0x01 in let pad = sub db 0 padLen in let salt = sub db padLen sLen in if not (lbytes_eq pad pad2) then false else let mHash = Hash.hash a msg in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash0 = Hash.hash a m1 in lbytes_eq m1Hash0 m1Hash
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.size_pos", "Spec.RSAPSS.blocks", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Lib.ByteSequence.lbytes_eq", "Prims.bool", "Spec.Hash.Definitions.hash_length'", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Agile.Hash.hash", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.int", "FStar.Seq.Base.slice", "FStar.Seq.Base.upd", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_disEquality", "Lib.Sequence.op_String_Assignment", "Spec.RSAPSS.db_zero", "Spec.RSAPSS.xor_bytes", "Spec.RSAPSS.mgf_hash", "Prims.pos", "Prims.op_Multiply", "Prims.op_GreaterThan" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pss_verify_: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8} -> em:lbytes (blocks emBits 8) -> Tot bool
[]
Spec.RSAPSS.pss_verify_
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> sLen: Lib.IntTypes.size_nat { sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (sLen + Spec.Hash.Definitions.hash_length a + 8) a } -> msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> emBits: Lib.IntTypes.size_pos {sLen + Spec.Hash.Definitions.hash_length a + 2 <= Spec.RSAPSS.blocks emBits 8} -> em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8) -> Prims.bool
{ "end_col": 5, "end_line": 187, "start_col": 45, "start_line": 160 }
Prims.Pure
val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.NatMod", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pss_encode a sLen salt msgLen msg emBits = let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in //m1 = [8 * 0x00; mHash; salt] let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in //db = [0x00;..; 0x00; 0x01; salt] let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[last_before_salt] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in //em = [maskedDB; m1Hash; 0xbc] let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[0] == v maskedDB.[0]); em.[emLen - 1] <- u8 0xbc
val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) let pss_encode a sLen salt msgLen msg emBits =
false
null
false
let mHash = Hash.hash a msg in let hLen = Hash.hash_length a in let m1Len = 8 + hLen + sLen in let m1 = create m1Len (u8 0) in let m1 = update_sub m1 8 hLen mHash in let m1 = update_sub m1 (8 + hLen) sLen salt in let m1Hash = Hash.hash a m1 in let emLen = blocks emBits 8 in let dbLen = emLen - hLen - 1 in let db = create dbLen (u8 0) in let last_before_salt = dbLen - sLen - 1 in let db = db.[ last_before_salt ] <- u8 1 in let db = update_sub db (last_before_salt + 1) sLen salt in let dbMask = mgf_hash a hLen m1Hash dbLen in let maskedDB = xor_bytes db dbMask in let maskedDB = db_zero maskedDB emBits in let em = create emLen (u8 0) in let em = update_sub em 0 dbLen maskedDB in let em = update_sub em dbLen hLen m1Hash in assert (v em.[ 0 ] == v maskedDB.[ 0 ]); em.[ emLen - 1 ] <- u8 0xbc
{ "checked_file": "Spec.RSAPSS.fst.checked", "dependencies": [ "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Spec.RSAPSS.fst" }
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Spec.Hash.Definitions.less_than_max_input_length", "Lib.ByteSequence.lbytes", "Prims.nat", "Lib.ByteSequence.bytes", "Prims.eq2", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.size_pos", "Spec.RSAPSS.blocks", "Lib.Sequence.op_String_Assignment", "Prims.op_Subtraction", "Lib.IntTypes.u8", "Prims.unit", "Prims._assert", "Lib.IntTypes.range_t", "Lib.IntTypes.v", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Spec.RSAPSS.db_zero", "Spec.RSAPSS.xor_bytes", "Spec.RSAPSS.mgf_hash", "FStar.Seq.Base.upd", "Prims.pow2", "Prims.op_disEquality", "Prims.int", "Prims.pos", "Prims.op_Multiply", "Spec.Hash.Definitions.hash_length'", "Spec.Agile.Hash.hash", "Prims.op_GreaterThan" ]
[]
module Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.NatMod open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module Hash = Spec.Agile.Hash #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1 List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3 Mask generation function: https://tools.ietf.org/html/rfc8017#page-67 *) /// /// Auxillary functions /// val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) let blocks x m = (x - 1) / m + 1 val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 let hash_is_supported (a:Hash.hash_alg) : Tot bool = match a with | Hash.SHA2_256 -> true | Hash.SHA2_384 -> true | Hash.SHA2_512 -> true | _ -> false (* Mask Generation Function *) val mgf_hash_f: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> i:size_nat -> mgfseed_counter:lbytes (len + 4) -> lbytes (len + 4) & lbytes (Hash.hash_length a) let mgf_hash_f a len i mgfseed_counter = let counter = nat_to_intseq_be 4 i in let mgfseed_counter = update_sub mgfseed_counter len 4 counter in let block = Hash.hash a mgfseed_counter in mgfseed_counter, block let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) val mgf_hash: a:Hash.hash_alg{hash_is_supported a} -> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a} -> mgfseed:lbytes len -> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} -> Tot (lbytes maskLen) let mgf_hash a len mgfseed maskLen = let mgfseed_counter = create (len + 4) (u8 0) in let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in let hLen = Hash.hash_length a in let n = blocks maskLen hLen in let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in sub #uint8 #(n * hLen) acc 0 maskLen (* Bignum convert functions *) val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) let os2ip #len b = nat_from_bytes_be b val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) let i2osp len n = nat_to_intseq_be len n /// /// RSA /// type modBits_t = modBits:size_nat{1 < modBits} noeq type rsapss_pkey (modBits:modBits_t) = | Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits noeq type rsapss_skey (modBits:modBits_t) = | Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat -> Pure (lbytes len) (requires True) (ensures fun res -> (v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) let db_zero #len db emBits = let msBits = emBits % 8 in if msBits > 0 then begin let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in Math.Lemmas.pow2_plus msBits (8 - msBits); logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits; r end else db val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
false
false
Spec.RSAPSS.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pss_encode: a:Hash.hash_alg{hash_is_supported a} -> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a} -> salt:lbytes sLen -> msgLen:nat{msgLen `Hash.less_than_max_input_length` a} -> msg:bytes{length msg == msgLen} -> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} -> Pure (lbytes (blocks emBits 8)) (requires True) (ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
[]
Spec.RSAPSS.pss_encode
{ "file_name": "specs/Spec.RSAPSS.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> sLen: Lib.IntTypes.size_nat { sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\ Spec.Hash.Definitions.less_than_max_input_length (sLen + Spec.Hash.Definitions.hash_length a + 8) a } -> salt: Lib.ByteSequence.lbytes sLen -> msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} -> emBits: Lib.IntTypes.size_pos {Spec.Hash.Definitions.hash_length a + sLen + 2 <= Spec.RSAPSS.blocks emBits 8} -> Prims.Pure (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8))
{ "end_col": 27, "end_line": 147, "start_col": 46, "start_line": 119 }
FStar.Pervasives.Lemma
val lemma_prime: unit -> Lemma (pow2 255 % prime = 19)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime
val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () =
false
null
true
assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Prims.unit", "FStar.Math.Lemmas.modulo_lemma", "Spec.Curve25519.prime", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.pow2" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_prime: unit -> Lemma (pow2 255 % prime = 19)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_prime
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Prims.pow2 255 % Spec.Curve25519.prime = 19)
{ "end_col": 41, "end_line": 73, "start_col": 2, "start_line": 71 }
FStar.Pervasives.Lemma
val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n
val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n =
false
null
true
FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (- (b / n)) n
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_plus", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.op_Minus", "Prims.op_Division", "Prims.unit", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.lemma_div_mod" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mod_sub_distr
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures (a - b % n) % n = (a - b) % n)
{ "end_col": 61, "end_line": 24, "start_col": 2, "start_line": 21 }
FStar.Pervasives.Lemma
val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f'
val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' =
false
null
true
let f0, f1, f2, f3, f4 = f in let f0', f1', f2', f3', f4' = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f'
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims.op_AmpAmp", "Prims.op_BarBar", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_LessThan", "Prims.op_Equality", "Lib.IntTypes.range_t", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p5_0", "Prims.bool", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p5_1", "Prims.unit" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff)))))
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} -> f': Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let _ = f' in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0' f1' f2' f3' f4' = _ in Lib.IntTypes.v f4 <> 0x7ffffffffffff || Lib.IntTypes.v f3 <> 0x7ffffffffffff || Lib.IntTypes.v f2 <> 0x7ffffffffffff || Lib.IntTypes.v f1 <> 0x7ffffffffffff || Lib.IntTypes.v f0 < 0x7ffffffffffed /\ Lib.IntTypes.v f0' = Lib.IntTypes.v f0 && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 && Lib.IntTypes.v f2' = Lib.IntTypes.v f2 && Lib.IntTypes.v f3' = Lib.IntTypes.v f3 && Lib.IntTypes.v f4' = Lib.IntTypes.v f4 \/ Lib.IntTypes.v f4 = 0x7ffffffffffff && Lib.IntTypes.v f3 = 0x7ffffffffffff && Lib.IntTypes.v f2 = 0x7ffffffffffff && Lib.IntTypes.v f1 = 0x7ffffffffffff && Lib.IntTypes.v f0 >= 0x7ffffffffffed /\ Lib.IntTypes.v f0' = Lib.IntTypes.v f0 - 0x7ffffffffffed && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 - 0x7ffffffffffff && Lib.IntTypes.v f2' = Lib.IntTypes.v f2 - 0x7ffffffffffff && Lib.IntTypes.v f3' = Lib.IntTypes.v f3 - 0x7ffffffffffff && Lib.IntTypes.v f4' = Lib.IntTypes.v f4 - 0x7ffffffffffff) <: Type0) <: Type0)) (ensures Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f' == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f % Spec.Curve25519.prime)
{ "end_col": 31, "end_line": 746, "start_col": 27, "start_line": 740 }
FStar.Pervasives.Lemma
val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204)
val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f =
false
null
true
assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm ((pow2 51 * pow2 51) * pow2 51 = pow2 153); assert_norm (((pow2 51 * pow2 51) * pow2 51) * pow2 51 = pow2 204)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_as_nat1
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f == Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Prims.pow2 51 + Lib.IntTypes.v f2 * Prims.pow2 102 + Lib.IntTypes.v f3 * Prims.pow2 153 + Lib.IntTypes.v f4 * Prims.pow2 204) <: Type0))
{ "end_col": 64, "end_line": 813, "start_col": 2, "start_line": 810 }
FStar.Pervasives.Lemma
val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime
val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' =
false
null
true
let f0, f1, f2, f3, f4 = f in let f0', f1', f2', f3', f4' = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + (v f2' * pow51) * pow51 + ((v f3' * pow51) * pow51) * pow51 + (((v f4' * pow51) * pow51) * pow51) * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + ((v f2 - (pow2 51 - 1)) * pow2 51) * pow2 51 + (((v f3 - (pow2 51 - 1)) * pow2 51) * pow2 51) * pow2 51 + ((((v f4 - (pow2 51 - 1)) * pow2 51) * pow2 51) * pow2 51) * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + (v f2 * pow2 51) * pow2 51 + ((v f3 * pow2 51) * pow2 51) * pow2 51 + (((v f4 * pow2 51) * pow2 51) * pow2 51) * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_sub", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.pos" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff)))
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p5_1
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} -> f': Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let _ = f' in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0' f1' f2' f3' f4' = _ in Lib.IntTypes.v f4 = 0x7ffffffffffff && Lib.IntTypes.v f3 = 0x7ffffffffffff && Lib.IntTypes.v f2 = 0x7ffffffffffff && Lib.IntTypes.v f1 = 0x7ffffffffffff && Lib.IntTypes.v f0 >= 0x7ffffffffffed /\ Lib.IntTypes.v f0' = Lib.IntTypes.v f0 - 0x7ffffffffffed && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 - 0x7ffffffffffff && Lib.IntTypes.v f2' = Lib.IntTypes.v f2 - 0x7ffffffffffff && Lib.IntTypes.v f3' = Lib.IntTypes.v f3 - 0x7ffffffffffff && Lib.IntTypes.v f4' = Lib.IntTypes.v f4 - 0x7ffffffffffff) <: Type0) <: Type0)) (ensures Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f' == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f % Spec.Curve25519.prime)
{ "end_col": 53, "end_line": 725, "start_col": 30, "start_line": 710 }
FStar.Pervasives.Lemma
val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cswap2_step bit p1 p2 = let mask = u64 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 64 - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else u64 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1
val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step bit p1 p2 =
false
null
true
let mask = u64 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 64 - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else u64 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.logxor_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Hat_Dot", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Prims.op_Equality", "Prims.int", "Prims.bool", "Lib.IntTypes.u64", "Prims.l_imp", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.op_Amp_Dot", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.op_Subtraction_Dot" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204) val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem0 f = assert_norm (pow51 = pow2 51); let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64 * pow2 64 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 64 * pow2 64 * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow51 = pow2 51); let o0 = f0 |. (f1 <<. 51ul) in FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f1) 64 51; logor_disjoint f0 (f1 <<. 51ul) 51; let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in FStar.Math.Lemmas.lemma_div_lt (v f1) 51 13; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 38; FStar.Math.Lemmas.multiple_modulo_lemma (v f2 % pow2 26) (pow2 38); logor_disjoint (f1 >>. 13ul) (f2 <<. 38ul) 38; let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 51 26; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f3) 64 25; FStar.Math.Lemmas.multiple_modulo_lemma (v f3 % pow2 39) (pow2 25); logor_disjoint (f2 >>. 26ul) (f3 <<. 25ul) 25; let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in FStar.Math.Lemmas.lemma_div_lt (v f3) 51 39; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 12; FStar.Math.Lemmas.multiple_modulo_lemma (v f4 % pow2 52) (pow2 12); logor_disjoint (f3 >>. 39ul) (f4 <<. 12ul) 12; lemma_store_felem0 f val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_cswap2_step
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
bit: Lib.IntTypes.uint64{Lib.IntTypes.v bit <= 1} -> p1: Lib.IntTypes.uint64 -> p2: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (let mask = Lib.IntTypes.u64 0 -. bit in let dummy = mask &. p1 ^. p2 in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in (match Lib.IntTypes.v bit = 1 with | true -> p1' == p2 /\ p2' == p1 | _ -> p1' == p1 /\ p2' == p2) <: Type0))
{ "end_col": 20, "end_line": 906, "start_col": 33, "start_line": 894 }
FStar.Pervasives.Lemma
val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime
val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' =
false
null
true
let f0, f1, f2, f3, f4 = f in let f0', f1', f2', f3', f4' = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + (v f2 * pow51) * pow51 + ((v f3 * pow51) * pow51) * pow51 + (((v f4 * pow51) * pow51) * pow51) * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + ((pow2 51 - 1) * pow2 51) * pow2 51 + (((pow2 51 - 1) * pow2 51) * pow2 51) * pow2 51 + ((((pow2 51 - 1) * pow2 51) * pow2 51) * pow2 51) * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.modulo_lemma", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.pos" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)))
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p5_0
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} -> f': Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let _ = f' in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0' f1' f2' f3' f4' = _ in Lib.IntTypes.v f4 <> 0x7ffffffffffff || Lib.IntTypes.v f3 <> 0x7ffffffffffff || Lib.IntTypes.v f2 <> 0x7ffffffffffff || Lib.IntTypes.v f1 <> 0x7ffffffffffff || Lib.IntTypes.v f0 < 0x7ffffffffffed /\ Lib.IntTypes.v f0' = Lib.IntTypes.v f0 && Lib.IntTypes.v f1' = Lib.IntTypes.v f1 && Lib.IntTypes.v f2' = Lib.IntTypes.v f2 && Lib.IntTypes.v f3' = Lib.IntTypes.v f3 && Lib.IntTypes.v f4' = Lib.IntTypes.v f4) <: Type0) <: Type0)) (ensures Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f' == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f % Spec.Curve25519.prime)
{ "end_col": 51, "end_line": 697, "start_col": 30, "start_line": 685 }
FStar.Pervasives.Lemma
val lemma_fmul_fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let s0 = v f0 * v f0 + 38 * v f4 * v f1 + 38 * v f2 * v f3 in let s1 = 2 * v f0 * v f1 + 38 * v f4 * v f2 + 19 * v f3 * v f3 in let s2 = 2 * v f0 * v f2 + v f1 * v f1 + 38 * v f4 * v f3 in let s3 = 2 * v f0 * v f3 + 2 * v f1 * v f2 + 19 * v f4 * v f4 in let s4 = 2 * v f0 * v f4 + 2 * v f1 * v f3 + v f2 * v f2 in fmul (feval f) (feval f) == (s0 + s1 * pow51 + s2 * pow51 * pow51 + s3 * pow51 * pow51 * pow51 + s4 * pow51 * pow51 * pow51 * pow51) % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul_fsqr5 f = let (f0, f1, f2, f3, f4) = f in lemma_fmul5 f f; lemma_smul_felem5 f0 (f0, f1, f2, f3, f4); lemma_smul_felem5 f1 (f4 *! u64 19, f0, f1, f2, f3); lemma_mul_assos_3 (v f1) (v f4) 19; lemma_smul_felem5 f2 (f3 *! u64 19, f4 *! u64 19, f0, f1, f2); lemma_mul_assos_3 (v f2) (v f3) 19; lemma_mul_assos_3 (v f2) (v f4) 19; lemma_smul_felem5 f3 (f2 *! u64 19, f3 *! u64 19, f4 *! u64 19, f0, f1); lemma_mul_assos_3 (v f3) (v f2) 19; lemma_mul_assos_3 (v f3) (v f3) 19; lemma_mul_assos_3 (v f3) (v f4) 19; lemma_smul_felem5 f4 (f1 *! u64 19, f2 *! u64 19, f3 *! u64 19, f4 *! u64 19, f0); lemma_mul_assos_3 (v f4) (v f1) 19; lemma_mul_assos_3 (v f4) (v f2) 19; lemma_mul_assos_3 (v f4) (v f3) 19; lemma_mul_assos_3 (v f4) (v f4) 19; lemma_fmul_fsqr50 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr51 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr52 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr53 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr54 (v f0) (v f1) (v f2) (v f3) (v f4)
val lemma_fmul_fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let s0 = v f0 * v f0 + 38 * v f4 * v f1 + 38 * v f2 * v f3 in let s1 = 2 * v f0 * v f1 + 38 * v f4 * v f2 + 19 * v f3 * v f3 in let s2 = 2 * v f0 * v f2 + v f1 * v f1 + 38 * v f4 * v f3 in let s3 = 2 * v f0 * v f3 + 2 * v f1 * v f2 + 19 * v f4 * v f4 in let s4 = 2 * v f0 * v f4 + 2 * v f1 * v f3 + v f2 * v f2 in fmul (feval f) (feval f) == (s0 + s1 * pow51 + s2 * pow51 * pow51 + s3 * pow51 * pow51 * pow51 + s4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_fmul_fsqr5 f =
false
null
true
let f0, f1, f2, f3, f4 = f in lemma_fmul5 f f; lemma_smul_felem5 f0 (f0, f1, f2, f3, f4); lemma_smul_felem5 f1 (f4 *! u64 19, f0, f1, f2, f3); lemma_mul_assos_3 (v f1) (v f4) 19; lemma_smul_felem5 f2 (f3 *! u64 19, f4 *! u64 19, f0, f1, f2); lemma_mul_assos_3 (v f2) (v f3) 19; lemma_mul_assos_3 (v f2) (v f4) 19; lemma_smul_felem5 f3 (f2 *! u64 19, f3 *! u64 19, f4 *! u64 19, f0, f1); lemma_mul_assos_3 (v f3) (v f2) 19; lemma_mul_assos_3 (v f3) (v f3) 19; lemma_mul_assos_3 (v f3) (v f4) 19; lemma_smul_felem5 f4 (f1 *! u64 19, f2 *! u64 19, f3 *! u64 19, f4 *! u64 19, f0); lemma_mul_assos_3 (v f4) (v f1) 19; lemma_mul_assos_3 (v f4) (v f2) 19; lemma_mul_assos_3 (v f4) (v f3) 19; lemma_mul_assos_3 (v f4) (v f4) 19; lemma_fmul_fsqr50 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr51 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr52 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr53 (v f0) (v f1) (v f2) (v f3) (v f4); lemma_fmul_fsqr54 (v f0) (v f1) (v f2) (v f3) (v f4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr54", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr53", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr52", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr50", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_3", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_smul_felem5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204) val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem0 f = assert_norm (pow51 = pow2 51); let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64 * pow2 64 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 64 * pow2 64 * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow51 = pow2 51); let o0 = f0 |. (f1 <<. 51ul) in FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f1) 64 51; logor_disjoint f0 (f1 <<. 51ul) 51; let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in FStar.Math.Lemmas.lemma_div_lt (v f1) 51 13; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 38; FStar.Math.Lemmas.multiple_modulo_lemma (v f2 % pow2 26) (pow2 38); logor_disjoint (f1 >>. 13ul) (f2 <<. 38ul) 38; let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 51 26; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f3) 64 25; FStar.Math.Lemmas.multiple_modulo_lemma (v f3 % pow2 39) (pow2 25); logor_disjoint (f2 >>. 26ul) (f3 <<. 25ul) 25; let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in FStar.Math.Lemmas.lemma_div_lt (v f3) 51 39; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 12; FStar.Math.Lemmas.multiple_modulo_lemma (v f4 % pow2 52) (pow2 12); logor_disjoint (f3 >>. 39ul) (f4 <<. 12ul) 12; lemma_store_felem0 f val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step bit p1 p2 = let mask = u64 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 64 - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else u64 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 #push-options "--max_fuel 0 --max_ifuel 0" val mul64_wide_add3_lemma: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < pow2 13) (ensures v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 128 /\ (v a0 * v a1 + v b0 * v b1 + v c0 * v c1) <= (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51) let mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert (pow51 = pow2 51); lemma_mul_le (v a0) (m0 * max51) (v a1) (m1 * max51); lemma_mul_le (v b0) (m2 * max51) (v b1) (m3 * max51); lemma_mul_le (v c0) (m4 * max51) (v c1) (m5 * max51); lemma_add_le (v a0 * v a1) (m0 * max51 * m1 * max51) (v b0 * v b1) (m2 * max51 * m3 * max51); lemma_add_le (v a0 * v a1 + v b0 * v b1) (m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51) (v c0 * v c1) (m4 * max51 * m5 * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 <= m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51 + m4 * max51 * m5 * max51); assert_by_tactic (m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51 + m4 * max51 * m5 * max51 == (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51) canon; assert_norm (pow2 13 > 0); lemma_mul_le (m0 * m1 + m2 * m3 + m4 * m5) (pow2 13 - 1) (max51 * max51) (max51 * max51); assert ((m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51 < pow2 13 * max51 * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 13 * max51 * max51); assert_norm (pow2 13 * pow2 51 * pow2 51 = pow2 115); assert_norm (pow2 115 < pow2 128) #pop-options val lemma_fmul_fsqr50: f0:nat -> f1:nat -> f2:nat -> f3:nat -> f4:nat -> Lemma (f0 * f0 + f1 * f4 * 19 + f2 * f3 * 19 + f3 * f2 * 19 + f4 * f1 * 19 == f0 * f0 + 38 * f4 * f1 + 38 * f2 * f3) let lemma_fmul_fsqr50 f0 f1 f2 f3 f4 = () val lemma_fmul_fsqr51: f0:nat -> f1:nat -> f2:nat -> f3:nat -> f4:nat -> Lemma (f0 * f1 * pow51 + f1 * f0 * pow51 + f2 * f4 * 19 * pow51 + f3 * f3 * 19 * pow51 + f4 * f2 * 19 * pow51 == (2 * f0 * f1 + 38 * f4 * f2 + 19 * f3 * f3) * pow51) let lemma_fmul_fsqr51 f0 f1 f2 f3 f4 = () val lemma_fmul_fsqr52: f0:nat -> f1:nat -> f2:nat -> f3:nat -> f4:nat -> Lemma (f0 * f2 * pow51 * pow51 + f1 * f1 * pow51 * pow51 + f2 * f0 * pow51 * pow51 + f3 * f4 * 19 * pow51 * pow51 + f4 * f3 * 19 * pow51 * pow51 == (2 * f0 * f2 + f1 * f1 + 38 * f4 * f3) * pow51 * pow51) let lemma_fmul_fsqr52 f0 f1 f2 f3 f4 = () val lemma_fmul_fsqr53: f0:nat -> f1:nat -> f2:nat -> f3:nat -> f4:nat -> Lemma (f0 * f3 * pow51 * pow51 * pow51 + f1 * f2 * pow51 * pow51 * pow51 + f2 * f1 * pow51 * pow51 * pow51 + f3 * f0 * pow51 * pow51 * pow51 + f4 * f4 * 19 * pow51 * pow51 * pow51 == (2 * f0 * f3 + 2 * f1 * f2 + 19 * f4 * f4) * pow51 * pow51 * pow51) let lemma_fmul_fsqr53 f0 f1 f2 f3 f4 = () val lemma_fmul_fsqr54: f0:nat -> f1:nat -> f2:nat -> f3:nat -> f4:nat -> Lemma (f0 * f4 * pow51 * pow51 * pow51 * pow51 + f1 * f3 * pow51 * pow51 * pow51 * pow51 + f2 * f2 * pow51 * pow51 * pow51 * pow51 + f3 * f1 * pow51 * pow51 * pow51 * pow51 + f4 * f0 * pow51 * pow51 * pow51 * pow51 == (2 * f0 * f4 + 2 * f1 * f3 + f2 * f2) * pow51 * pow51 * pow51 * pow51) let lemma_fmul_fsqr54 f0 f1 f2 f3 f4 = () val lemma_fmul_fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let s0 = v f0 * v f0 + 38 * v f4 * v f1 + 38 * v f2 * v f3 in let s1 = 2 * v f0 * v f1 + 38 * v f4 * v f2 + 19 * v f3 * v f3 in let s2 = 2 * v f0 * v f2 + v f1 * v f1 + 38 * v f4 * v f3 in let s3 = 2 * v f0 * v f3 + 2 * v f1 * v f2 + 19 * v f4 * v f4 in let s4 = 2 * v f0 * v f4 + 2 * v f1 * v f3 + v f2 * v f2 in fmul (feval f) (feval f) == (s0 + s1 * pow51 + s2 * pow51 * pow51 +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul_fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let s0 = v f0 * v f0 + 38 * v f4 * v f1 + 38 * v f2 * v f3 in let s1 = 2 * v f0 * v f1 + 38 * v f4 * v f2 + 19 * v f3 * v f3 in let s2 = 2 * v f0 * v f2 + v f1 * v f1 + 38 * v f4 * v f3 in let s3 = 2 * v f0 * v f3 + 2 * v f1 * v f2 + 19 * v f4 * v f4 in let s4 = 2 * v f0 * v f4 + 2 * v f1 * v f3 + v f2 * v f2 in fmul (feval f) (feval f) == (s0 + s1 * pow51 + s2 * pow51 * pow51 + s3 * pow51 * pow51 * pow51 + s4 * pow51 * pow51 * pow51 * pow51) % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let s0 = Lib.IntTypes.v f0 * Lib.IntTypes.v f0 + (38 * Lib.IntTypes.v f4) * Lib.IntTypes.v f1 + (38 * Lib.IntTypes.v f2) * Lib.IntTypes.v f3 in let s1 = (2 * Lib.IntTypes.v f0) * Lib.IntTypes.v f1 + (38 * Lib.IntTypes.v f4) * Lib.IntTypes.v f2 + (19 * Lib.IntTypes.v f3) * Lib.IntTypes.v f3 in let s2 = (2 * Lib.IntTypes.v f0) * Lib.IntTypes.v f2 + Lib.IntTypes.v f1 * Lib.IntTypes.v f1 + (38 * Lib.IntTypes.v f4) * Lib.IntTypes.v f3 in let s3 = (2 * Lib.IntTypes.v f0) * Lib.IntTypes.v f3 + (2 * Lib.IntTypes.v f1) * Lib.IntTypes.v f2 + (19 * Lib.IntTypes.v f4) * Lib.IntTypes.v f4 in let s4 = (2 * Lib.IntTypes.v f0) * Lib.IntTypes.v f4 + (2 * Lib.IntTypes.v f1) * Lib.IntTypes.v f3 + Lib.IntTypes.v f2 * Lib.IntTypes.v f2 in Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f) (Hacl.Spec.Curve25519.Field51.Definition.feval f) == (s0 + s1 * Hacl.Spec.Curve25519.Field51.Definition.pow51 + (s2 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + ((s3 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + (((s4 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) % Spec.Curve25519.prime) <: Type0))
{ "end_col": 54, "end_line": 1014, "start_col": 24, "start_line": 991 }
FStar.Pervasives.Lemma
val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime
val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r =
false
null
true
let r0, r1, r2, r3, r4 = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert (((pow51 * pow51) * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert (((pow51 * pow51) * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.u64", "Spec.Curve25519.prime", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_3" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime ==
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ r3 r4 = _ in Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r3 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51) <: Type0)) (ensures (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in (Hacl.Spec.Curve25519.Field51.Definition.pow51 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) % Spec.Curve25519.prime) <: Type0))
{ "end_col": 104, "end_line": 161, "start_col": 31, "start_line": 150 }
FStar.Pervasives.Lemma
val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime
val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r =
false
null
true
let r0, r1, r2, r3, r4 = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = (pow51 * pow51) * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((((pow51 * pow51) * pow51) * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((((pow51 * pow51) * pow51) * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.u64", "Spec.Curve25519.prime", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_4" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime ==
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ r2 r3 r4 = _ in Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r3 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r2 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51) <: Type0)) (ensures (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in ((Hacl.Spec.Curve25519.Field51.Definition.pow51 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1) % Spec.Curve25519.prime) <: Type0))
{ "end_col": 114, "end_line": 182, "start_col": 37, "start_line": 171 }
FStar.Pervasives.Lemma
val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime
val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r =
false
null
true
let r0, r1, r2, r3, r4 = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = ((pow51 * pow51) * pow51) * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert (((((pow51 * pow51) * pow51) * pow51) * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert (((((pow51 * pow51) * pow51) * pow51) * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.u64", "Spec.Curve25519.prime", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_5" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime ==
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51_pow51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ r1 r2 r3 r4 = _ in Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r3 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r2 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\ Lib.IntTypes.v r1 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51) <: Type0)) (ensures (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in (((Hacl.Spec.Curve25519.Field51.Definition.pow51 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r1 *! Lib.IntTypes.u64 19, r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0) % Spec.Curve25519.prime) <: Type0))
{ "end_col": 124, "end_line": 203, "start_col": 43, "start_line": 192 }
FStar.Pervasives.Lemma
val mul64_wide_add3_lemma: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < pow2 13) (ensures v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 128 /\ (v a0 * v a1 + v b0 * v b1 + v c0 * v c1) <= (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert (pow51 = pow2 51); lemma_mul_le (v a0) (m0 * max51) (v a1) (m1 * max51); lemma_mul_le (v b0) (m2 * max51) (v b1) (m3 * max51); lemma_mul_le (v c0) (m4 * max51) (v c1) (m5 * max51); lemma_add_le (v a0 * v a1) (m0 * max51 * m1 * max51) (v b0 * v b1) (m2 * max51 * m3 * max51); lemma_add_le (v a0 * v a1 + v b0 * v b1) (m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51) (v c0 * v c1) (m4 * max51 * m5 * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 <= m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51 + m4 * max51 * m5 * max51); assert_by_tactic (m0 * max51 * m1 * max51 + m2 * max51 * m3 * max51 + m4 * max51 * m5 * max51 == (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51) canon; assert_norm (pow2 13 > 0); lemma_mul_le (m0 * m1 + m2 * m3 + m4 * m5) (pow2 13 - 1) (max51 * max51) (max51 * max51); assert ((m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51 < pow2 13 * max51 * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 13 * max51 * max51); assert_norm (pow2 13 * pow2 51 * pow2 51 = pow2 115); assert_norm (pow2 115 < pow2 128)
val mul64_wide_add3_lemma: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < pow2 13) (ensures v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 128 /\ (v a0 * v a1 + v b0 * v b1 + v c0 * v c1) <= (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51) let mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
false
null
true
assert (pow51 = pow2 51); lemma_mul_le (v a0) (m0 * max51) (v a1) (m1 * max51); lemma_mul_le (v b0) (m2 * max51) (v b1) (m3 * max51); lemma_mul_le (v c0) (m4 * max51) (v c1) (m5 * max51); lemma_add_le (v a0 * v a1) (((m0 * max51) * m1) * max51) (v b0 * v b1) (((m2 * max51) * m3) * max51); lemma_add_le (v a0 * v a1 + v b0 * v b1) (((m0 * max51) * m1) * max51 + ((m2 * max51) * m3) * max51) (v c0 * v c1) (((m4 * max51) * m5) * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 <= ((m0 * max51) * m1) * max51 + ((m2 * max51) * m3) * max51 + ((m4 * max51) * m5) * max51); assert_by_tactic (((m0 * max51) * m1) * max51 + ((m2 * max51) * m3) * max51 + ((m4 * max51) * m5) * max51 == ((m0 * m1 + m2 * m3 + m4 * m5) * max51) * max51) canon; assert_norm (pow2 13 > 0); lemma_mul_le (m0 * m1 + m2 * m3 + m4 * m5) (pow2 13 - 1) (max51 * max51) (max51 * max51); assert (((m0 * m1 + m2 * m3 + m4 * m5) * max51) * max51 < (pow2 13 * max51) * max51); assert (v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < (pow2 13 * max51) * max51); assert_norm ((pow2 13 * pow2 51) * pow2 51 = pow2 115); assert_norm (pow2 115 < pow2 128)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Lib.IntTypes.uint64", "Prims.b2t", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits1", "FStar.Pervasives.assert_norm", "Prims.op_LessThan", "Prims.pow2", "Prims.unit", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims._assert", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.max51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_le", "Prims.op_Subtraction", "Prims.op_GreaterThan", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.Tactics.Canon.canon", "Prims.op_LessThanOrEqual", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_add_le", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204) val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem0 f = assert_norm (pow51 = pow2 51); let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64 * pow2 64 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 64 * pow2 64 * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow51 = pow2 51); let o0 = f0 |. (f1 <<. 51ul) in FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f1) 64 51; logor_disjoint f0 (f1 <<. 51ul) 51; let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in FStar.Math.Lemmas.lemma_div_lt (v f1) 51 13; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 38; FStar.Math.Lemmas.multiple_modulo_lemma (v f2 % pow2 26) (pow2 38); logor_disjoint (f1 >>. 13ul) (f2 <<. 38ul) 38; let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 51 26; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f3) 64 25; FStar.Math.Lemmas.multiple_modulo_lemma (v f3 % pow2 39) (pow2 25); logor_disjoint (f2 >>. 26ul) (f3 <<. 25ul) 25; let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in FStar.Math.Lemmas.lemma_div_lt (v f3) 51 39; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 12; FStar.Math.Lemmas.multiple_modulo_lemma (v f4 % pow2 52) (pow2 12); logor_disjoint (f3 >>. 39ul) (f4 <<. 12ul) 12; lemma_store_felem0 f val lemma_cswap2_step: bit:uint64{v bit <= 1} -> p1:uint64 -> p2:uint64 -> Lemma ( let mask = u64 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step bit p1 p2 = let mask = u64 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 64 - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else u64 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 #push-options "--max_fuel 0 --max_ifuel 0" val mul64_wide_add3_lemma: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < pow2 13) (ensures v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 128 /\ (v a0 * v a1 + v b0 * v b1 + v c0 * v c1) <= (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul64_wide_add3_lemma: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < pow2 13) (ensures v a0 * v a1 + v b0 * v b1 + v c0 * v c1 < pow2 128 /\ (v a0 * v a1 + v b0 * v b1 + v c0 * v c1) <= (m0 * m1 + m2 * m3 + m4 * m5) * max51 * max51)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.mul64_wide_add3_lemma
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 a0 m0} -> a1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 a1 m1} -> b0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 b0 m2} -> b1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 b1 m3} -> c0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 c0 m4} -> c1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 c1 m5} -> FStar.Pervasives.Lemma (requires m0 * m1 + m2 * m3 + m4 * m5 < Prims.pow2 13) (ensures Lib.IntTypes.v a0 * Lib.IntTypes.v a1 + Lib.IntTypes.v b0 * Lib.IntTypes.v b1 + Lib.IntTypes.v c0 * Lib.IntTypes.v c1 < Prims.pow2 128 /\ Lib.IntTypes.v a0 * Lib.IntTypes.v a1 + Lib.IntTypes.v b0 * Lib.IntTypes.v b1 + Lib.IntTypes.v c0 * Lib.IntTypes.v c1 <= ((m0 * m1 + m2 * m3 + m4 * m5) * Hacl.Spec.Curve25519.Field51.Definition.max51) * Hacl.Spec.Curve25519.Field51.Definition.max51)
{ "end_col": 35, "end_line": 942, "start_col": 2, "start_line": 925 }
FStar.Pervasives.Lemma
val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51
val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin =
false
null
true
let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.pow2_minus", "Prims.unit", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "FStar.UInt32.__uint_to_t", "Hacl.Spec.Curve25519.Field51.Definition.mask51", "Lib.IntTypes.mod_mask_lemma", "Lib.IntTypes.to_u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Plus_Bang" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
l: Lib.IntTypes.uint64 -> cin: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 l 2 /\ Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 cin 8190) (ensures (let l0 = l +! cin &. Hacl.Spec.Curve25519.Field51.Definition.mask51 in let l1 = l +! cin >>. 51ul in Lib.IntTypes.v l + Lib.IntTypes.v cin == Lib.IntTypes.v l1 * Prims.pow2 51 + Lib.IntTypes.v l0 /\ Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 l0 1 /\ Lib.IntTypes.v l1 < Prims.pow2 13))
{ "end_col": 36, "end_line": 465, "start_col": 25, "start_line": 457 }
FStar.Pervasives.Lemma
val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime
val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let r0, r1, r2, r3, r4 = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + (v f11 * pow51) * as_nat5 r + ((v f12 * pow51) * pow51) * as_nat5 r + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l ((v f11 * pow51) * as_nat5 r) (v f10 * as_nat5 r + ((v f12 * pow51) * pow51) * as_nat5 r + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + ((v f12 * pow51) * pow51) * as_nat5 r + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "Prims.op_Addition", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_3", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Curve25519.Field51.Definition.max51" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_1
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (requires (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ _ = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + (Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + (((Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0)) (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + ((Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + (((Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0))
{ "end_col": 61, "end_line": 248, "start_col": 24, "start_line": 225 }
FStar.Pervasives.Lemma
val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime)
val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + ((v f12 + 0x3ffffffffffff8) * pow51) * pow51 + (((v f13 + 0x3ffffffffffff8) * pow51) * pow51) * pow51 + ((((v f14 + 0x3ffffffffffff8) * pow51) * pow51) * pow51) * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 ((pow51 * pow51) * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (((pow51 * pow51) * pow51) * pow51); assert_norm (0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + (0x3ffffffffffff8 * pow51) * pow51 + ((0x3ffffffffffff8 * pow51) * pow51) * pow51 + (((0x3ffffffffffff8 * pow51) * pow51) * pow51) * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + (v f12 * pow51) * pow51 + ((v f13 * pow51) * pow51) * pow51 + (((v f14 * pow51) * pow51) * pow51) * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + (v f12 * pow51) * pow51 + ((v f13 * pow51) * pow51) * pow51 + (((v f14 * pow51) * pow51) * pow51) * pow51) % prime)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Prims.op_Modulus", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_add_zero
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} -> FStar.Pervasives.Lemma (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let o0 = f10 +! Lib.IntTypes.u64 0x3fffffffffff68 in let o1 = f11 +! Lib.IntTypes.u64 0x3ffffffffffff8 in let o2 = f12 +! Lib.IntTypes.u64 0x3ffffffffffff8 in let o3 = f13 +! Lib.IntTypes.u64 0x3ffffffffffff8 in let o4 = f14 +! Lib.IntTypes.u64 0x3ffffffffffff8 in let out = o0, o1, o2, o3, o4 in Hacl.Spec.Curve25519.Field51.Definition.feval out == Hacl.Spec.Curve25519.Field51.Definition.feval f1) <: Type0))
{ "end_col": 51, "end_line": 116, "start_col": 23, "start_line": 86 }
FStar.Pervasives.Lemma
val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime
val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let r0, r1, r2, r3, r4 = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = (pow51 * pow51) * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + (((v f13 * pow51) * pow51) * pow51) * as_nat5 r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "Prims.op_Addition", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_4" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_2
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (requires (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + ((Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + (((Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0)) (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + (((Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0))
{ "end_col": 61, "end_line": 294, "start_col": 24, "start_line": 270 }
FStar.Pervasives.Lemma
val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime
val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let r0, r1, r2, r3, r4 = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + (v f12 * pow51) * pow51 + ((v f13 * pow51) * pow51) * pow51 + (((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) ((v f12 * pow51) * pow51) (((v f13 * pow51) * pow51) * pow51) ((((v f14 * pow51) * pow51) * pow51) * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_4", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_3", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_2", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_1", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul5_distr_r", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f1) (Hacl.Spec.Curve25519.Field51.Definition.feval r) == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r0, r1, r2, r3, r4) + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1) + Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r1 *! Lib.IntTypes.u64 19, r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0)) % Spec.Curve25519.prime) <: Type0) <: Type0))
{ "end_col": 80, "end_line": 413, "start_col": 22, "start_line": 400 }
FStar.Pervasives.Lemma
val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_felem f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow51 = pow2 51); let o0 = f0 |. (f1 <<. 51ul) in FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f1) 64 51; logor_disjoint f0 (f1 <<. 51ul) 51; let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in FStar.Math.Lemmas.lemma_div_lt (v f1) 51 13; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 38; FStar.Math.Lemmas.multiple_modulo_lemma (v f2 % pow2 26) (pow2 38); logor_disjoint (f1 >>. 13ul) (f2 <<. 38ul) 38; let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 51 26; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f3) 64 25; FStar.Math.Lemmas.multiple_modulo_lemma (v f3 % pow2 39) (pow2 25); logor_disjoint (f2 >>. 26ul) (f3 <<. 25ul) 25; let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in FStar.Math.Lemmas.lemma_div_lt (v f3) 51 39; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 12; FStar.Math.Lemmas.multiple_modulo_lemma (v f4 % pow2 52) (pow2 12); logor_disjoint (f3 >>. 39ul) (f4 <<. 12ul) 12; lemma_store_felem0 f
val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem f =
false
null
true
let f0, f1, f2, f3, f4 = f in assert_norm (pow51 = pow2 51); let o0 = f0 |. (f1 <<. 51ul) in FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f1) 64 51; logor_disjoint f0 (f1 <<. 51ul) 51; let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in FStar.Math.Lemmas.lemma_div_lt (v f1) 51 13; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 38; FStar.Math.Lemmas.multiple_modulo_lemma (v f2 % pow2 26) (pow2 38); logor_disjoint (f1 >>. 13ul) (f2 <<. 38ul) 38; let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 51 26; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f3) 64 25; FStar.Math.Lemmas.multiple_modulo_lemma (v f3 % pow2 39) (pow2 25); logor_disjoint (f2 >>. 26ul) (f3 <<. 25ul) 25; let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in FStar.Math.Lemmas.lemma_div_lt (v f3) 51 39; FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 12; FStar.Math.Lemmas.multiple_modulo_lemma (v f4 % pow2 52) (pow2 12); logor_disjoint (f3 >>. 39ul) (f4 <<. 12ul) 12; lemma_store_felem0 f
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "Lib.IntTypes.uint64", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem0", "Prims.unit", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Math.Lemmas.multiple_modulo_lemma", "Prims.op_Modulus", "Lib.IntTypes.v", "Prims.pow2", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204) val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem0 f = assert_norm (pow51 = pow2 51); let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64 * pow2 64 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 64 * pow2 64 * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_felem: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in as_nat5 f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1) /\ Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f < Spec.Curve25519.prime } -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let o0 = f0 |. f1 <<. 51ul in let o1 = f1 >>. 13ul |. f2 <<. 38ul in let o2 = f2 >>. 26ul |. f3 <<. 25ul in let o3 = f3 >>. 39ul |. f4 <<. 12ul in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f == Lib.IntTypes.v o0 + Lib.IntTypes.v o1 * Prims.pow2 64 + (Lib.IntTypes.v o2 * Prims.pow2 64) * Prims.pow2 64 + ((Lib.IntTypes.v o3 * Prims.pow2 64) * Prims.pow2 64) * Prims.pow2 64) <: Type0))
{ "end_col": 22, "end_line": 882, "start_col": 25, "start_line": 858 }
FStar.Pervasives.Lemma
val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime
val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r =
false
null
true
let r0, r1, r2, r3, r4 = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + (v r2 * pow51) * pow51 + ((v r3 * pow51) * pow51) * pow51 + (((v r4 * pow51) * pow51) * pow51) * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) ((v r2 * pow51) * pow51) (((v r3 * pow51) * pow51) * pow51) ((((v r4 * pow51) * pow51) * pow51) * pow51); let p51r0123 = pow51 * v r0 + (pow51 * v r1) * pow51 + ((pow51 * v r2) * pow51) * pow51 + (((pow51 * v r3) * pow51) * pow51) * pow51 in let p51r4 = ((((pow51 * v r4) * pow51) * pow51) * pow51) * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Spec.Curve25519.prime", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.pow2", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_prime", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims._assert", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Prims.op_Addition", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul5_distr_l" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51) <: Type0)) (ensures (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.pow51 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) % Spec.Curve25519.prime) <: Type0))
{ "end_col": 69, "end_line": 141, "start_col": 25, "start_line": 124 }
FStar.Pervasives.Lemma
val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime
val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 =
false
null
true
assert_norm (pow51 = pow2 51); assert (v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + ((v c2 * pow2 51 + v t2 - v c1) * pow51) * pow51 + (((v c3 * pow2 51 + v t3 - v c2) * pow51) * pow51) * pow51 + ((((v c4 * pow2 51 + v t4 - v c3) * pow51) * pow51) * pow51) * pow51 == v t0 + v t1 * pow51 + (v t2 * pow51) * pow51 + ((v t3 * pow51) * pow51) * pow51 + (((v t4 * pow51) * pow51) * pow51) * pow51 + ((((v c4 * pow2 51) * pow51) * pow51) * pow51) * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + (v t2 * pow51) * pow51 + ((v t3 * pow51) * pow51) * pow51 + (((v t4 * pow51) * pow51) * pow51) * pow51) (((((v c4 * pow2 51) * pow51) * pow51) * pow51) * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm ((((pow2 51 * pow51) * pow51) * pow51) * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + (v t2 * pow51) * pow51 + ((v t3 * pow51) * pow51) * pow51 + (((v t4 * pow51) * pow51) * pow51) * pow51) (v c4 * 19) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Spec.Curve25519.prime", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.pow2", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_prime", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.b2t", "Prims.op_Equality", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_6", "Prims._assert", "Prims.op_Subtraction", "Prims.pos" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry5_simplify
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c0: Lib.IntTypes.uint64 -> c1: Lib.IntTypes.uint64 -> c2: Lib.IntTypes.uint64 -> c3: Lib.IntTypes.uint64 -> c4: Lib.IntTypes.uint64 -> t0: Lib.IntTypes.uint64 -> t1: Lib.IntTypes.uint64 -> t2: Lib.IntTypes.uint64 -> t3: Lib.IntTypes.uint64 -> t4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (Lib.IntTypes.v c0 * Prims.pow2 51 + Lib.IntTypes.v t0 + (Lib.IntTypes.v c1 * Prims.pow2 51 + Lib.IntTypes.v t1 - Lib.IntTypes.v c0) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + ((Lib.IntTypes.v c2 * Prims.pow2 51 + Lib.IntTypes.v t2 - Lib.IntTypes.v c1) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + (((Lib.IntTypes.v c3 * Prims.pow2 51 + Lib.IntTypes.v t3 - Lib.IntTypes.v c2) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + ((((Lib.IntTypes.v c4 * Prims.pow2 51 + Lib.IntTypes.v t4 - Lib.IntTypes.v c3) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) % Spec.Curve25519.prime == (Lib.IntTypes.v t0 + Lib.IntTypes.v c4 * 19 + Lib.IntTypes.v t1 * Hacl.Spec.Curve25519.Field51.Definition.pow51 + (Lib.IntTypes.v t2 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + ((Lib.IntTypes.v t3 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51 + (((Lib.IntTypes.v t4 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) % Spec.Curve25519.prime)
{ "end_col": 20, "end_line": 525, "start_col": 2, "start_line": 500 }
FStar.Pervasives.Lemma
val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51)
val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin =
false
null
true
let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.uint128", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.U64", "Lib.IntTypes.mod_mask", "FStar.UInt32.__uint_to_t", "Hacl.Spec.Curve25519.Field51.Definition.mask51", "Lib.IntTypes.mod_mask_lemma", "Lib.IntTypes.to_u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.to_u128" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51_wide
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
l: Lib.IntTypes.uint128{Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 l m} -> cin: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (let l' = l +! Lib.IntTypes.to_u128 cin in let l0 = Lib.IntTypes.to_u64 l' &. Hacl.Spec.Curve25519.Field51.Definition.mask51 in let l1 = Lib.IntTypes.to_u64 (l' >>. 51ul) in Lib.IntTypes.v l + Lib.IntTypes.v cin == Lib.IntTypes.v l1 * Prims.pow2 51 + Lib.IntTypes.v l0 /\ Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 l0 1 /\ Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 l1 (m + 1)))
{ "end_col": 66, "end_line": 486, "start_col": 33, "start_line": 477 }
FStar.Pervasives.Lemma
val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime
val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let r0, r1, r2, r3, r4 = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = ((pow51 * pow51) * pow51) * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + ((((v f14 * pow51) * pow51) * pow51) * pow51) * as_nat5 r) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "Prims.op_Addition", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_5" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_3
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (requires (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + (((Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0)) (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1) + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0))
{ "end_col": 61, "end_line": 340, "start_col": 24, "start_line": 316 }
FStar.Pervasives.Lemma
val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39)
val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f =
false
null
true
let f0, f1, f2, f3, f4 = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 ==
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem2
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Lib.IntTypes.v f0 + (Lib.IntTypes.v f1 % Prims.pow2 13) * Prims.pow2 51 + (Lib.IntTypes.v f1 / Prims.pow2 13) * Prims.pow2 64 + (Lib.IntTypes.v f2 % Prims.pow2 26) * Prims.pow2 102 + (Lib.IntTypes.v f2 / Prims.pow2 26) * Prims.pow2 128 + (Lib.IntTypes.v f3 % Prims.pow2 39) * Prims.pow2 153 + (Lib.IntTypes.v f3 / Prims.pow2 39) * Prims.pow2 192 + Lib.IntTypes.v f4 * Prims.pow2 204 == Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Prims.pow2 51 + Lib.IntTypes.v f2 * Prims.pow2 102 + Lib.IntTypes.v f3 * Prims.pow2 153 + Lib.IntTypes.v f4 * Prims.pow2 204) <: Type0))
{ "end_col": 66, "end_line": 765, "start_col": 26, "start_line": 756 }
FStar.Pervasives.Lemma
val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime
val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r =
false
null
true
let f10, f11, f12, f13, f14 = f1 in let r0, r1, r2, r3, r4 = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = (((pow51 * pow51) * pow51) * pow51) * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "Prims.op_Addition", "Spec.Curve25519.prime", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51_pow51", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_6" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) +
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_4
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> FStar.Pervasives.Lemma (requires (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1) + ((((Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.pow51) * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r) % Spec.Curve25519.prime) <: Type0) <: Type0)) (ensures (let _ = f1 in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r % Spec.Curve25519.prime == (Lib.IntTypes.v f10 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r + Lib.IntTypes.v f11 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r4 *! Lib.IntTypes.u64 19, r0, r1, r2, r3) + Lib.IntTypes.v f12 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1, r2) + Lib.IntTypes.v f13 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0, r1) + Lib.IntTypes.v f14 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r1 *! Lib.IntTypes.u64 19, r2 *! Lib.IntTypes.u64 19, r3 *! Lib.IntTypes.u64 19, r4 *! Lib.IntTypes.u64 19, r0)) % Spec.Curve25519.prime) <: Type0) <: Type0))
{ "end_col": 78, "end_line": 386, "start_col": 24, "start_line": 362 }
FStar.Pervasives.Lemma
val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192)
val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s =
false
null
true
let open Lib.Sequence in let f0, f1, f2, f3, f4 = f in let s0, s1, s2, s3 = (u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm ((pow2 26 * pow2 51) * pow2 51 = pow2 128); assert_norm ((pow2 51 * pow2 51) * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (((pow2 39 * pow2 51) * pow2 51) * pow2 51 = pow2 192); assert_norm (((pow2 51 * pow2 51) * pow2 51) * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm ((pow2 64 * pow2 64) * pow2 64 = pow2 192)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4", "Prims._assert", "Prims.eq2", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Prims.op_Addition", "Lib.IntTypes.v", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "FStar.Pervasives.Native.tuple4", "FStar.Pervasives.Native.Mktuple4", "Lib.Sequence.op_String_Access" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_load_felem5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> u64s: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let _ = u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ] in (let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ s0 s1 s2 s3 = _ in Lib.IntTypes.v f0 == Lib.IntTypes.v s0 % Prims.pow2 51 /\ Lib.IntTypes.v f1 == Lib.IntTypes.v s0 / Prims.pow2 51 + (Lib.IntTypes.v s1 % Prims.pow2 38) * Prims.pow2 13 /\ Lib.IntTypes.v f2 == Lib.IntTypes.v s1 / Prims.pow2 38 + (Lib.IntTypes.v s2 % Prims.pow2 25) * Prims.pow2 26 /\ Lib.IntTypes.v f3 == Lib.IntTypes.v s2 / Prims.pow2 25 + (Lib.IntTypes.v s3 % Prims.pow2 12) * Prims.pow2 39 /\ Lib.IntTypes.v f4 == Lib.IntTypes.v s3 / Prims.pow2 12) <: Type0) <: Type0)) (ensures Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f == Lib.ByteSequence.nat_from_intseq_le u64s)
{ "end_col": 54, "end_line": 559, "start_col": 2, "start_line": 542 }
FStar.Pervasives.Lemma
val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s
val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s =
false
null
true
assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let s0, s1, s2, s3 = (u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Prims.pow2", "Lib.IntTypes.int_t", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_load_felem5", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_load_felem_fits5", "FStar.Pervasives.Native.tuple5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "FStar.Math.Lemmas.modulo_lemma", "FStar.Mul.op_Star", "Prims.op_Modulus", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.u64", "Lib.IntTypes.mod_mask_lemma", "FStar.Math.Lemmas.pow2_lt_compat", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Amp_Dot", "FStar.Math.Lemmas.lemma_div_lt", "Hacl.Spec.Curve25519.Field51.Definition.mask51", "FStar.Pervasives.Native.tuple4", "FStar.Pervasives.Native.Mktuple4", "Prims.op_Subtraction" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_load_felem
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u64s: Lib.Sequence.lseq Lib.IntTypes.uint64 4 {Lib.IntTypes.v u64s.[ 3 ] < Prims.pow2 63} -> FStar.Pervasives.Lemma (ensures (let _ = u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ] in (let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ s0 s1 s2 s3 = _ in let f0 = s0 &. Hacl.Spec.Curve25519.Field51.Definition.mask51 in let f1 = s0 >>. 51ul |. (s1 &. Lib.IntTypes.u64 0x3fffffffff) <<. 13ul in let f2 = s1 >>. 38ul |. (s2 &. Lib.IntTypes.u64 0x1ffffff) <<. 26ul in let f3 = s2 >>. 25ul |. (s3 &. Lib.IntTypes.u64 0xfff) <<. 39ul in let f4 = s3 >>. 12ul in let f = f0, f1, f2, f3, f4 in Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1) /\ Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f == Lib.ByteSequence.nat_from_intseq_le u64s) <: Type0))
{ "end_col": 26, "end_line": 673, "start_col": 2, "start_line": 619 }
FStar.Pervasives.Lemma
val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f
val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f =
false
null
true
let f0, f1, f2, f3, f4 = f in assert (v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13) * pow2 64 + ((v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26) * pow2 128 + ((v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39) * pow2 192 + (v f4 * pow2 12) * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert (((v f2 % pow2 26) * pow2 38) * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert (((v f3 % pow2 39) * pow2 25) * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert ((v f4 * pow2 12) * pow2 192 == v f4 * pow2 204); assert (v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13) * pow2 64 + ((v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26) * pow2 128 + ((v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39) * pow2 192 + (v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13) * pow2 64 + (v f2 % pow2 26) * pow2 102 + (v f2 / pow2 26) * pow2 128 + (v f3 % pow2 39) * pow2 153 + (v f3 / pow2 39) * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem2", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_3" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 ==
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem1
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in Lib.IntTypes.v f0 + (Lib.IntTypes.v f1 % Prims.pow2 13) * Prims.pow2 51 + (Lib.IntTypes.v f1 / Prims.pow2 13 + (Lib.IntTypes.v f2 % Prims.pow2 26) * Prims.pow2 38) * Prims.pow2 64 + (Lib.IntTypes.v f2 / Prims.pow2 26 + (Lib.IntTypes.v f3 % Prims.pow2 39) * Prims.pow2 25) * Prims.pow2 128 + (Lib.IntTypes.v f3 / Prims.pow2 39 + Lib.IntTypes.v f4 * Prims.pow2 12) * Prims.pow2 192 == Lib.IntTypes.v f0 + Lib.IntTypes.v f1 * Prims.pow2 51 + Lib.IntTypes.v f2 * Prims.pow2 102 + Lib.IntTypes.v f3 * Prims.pow2 153 + Lib.IntTypes.v f4 * Prims.pow2 204) <: Type0))
{ "end_col": 22, "end_line": 804, "start_col": 26, "start_line": 775 }
FStar.Pervasives.Lemma
val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_felem0 f = assert_norm (pow51 = pow2 51); let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64 * pow2 64 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 64 * pow2 64 * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192); assert ( o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f
val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64) let lemma_store_felem0 f =
false
null
true
assert_norm (pow51 = pow2 51); let f0, f1, f2, f3, f4 = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in assert_norm (pow2 51 < pow2 52); FStar.Math.Lemmas.modulo_lemma (v f4) (pow2 52); assert (v f4 % pow2 52 = v f4); assert (o0 + o1 * pow2 64 + (o2 * pow2 64) * pow2 64 + ((o3 * pow2 64) * pow2 64) * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + ((v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 64) * pow2 64 + (((v f3 / pow2 39 + v f4 * pow2 12) * pow2 64) * pow2 64) * pow2 64); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm ((pow2 64 * pow2 64) * pow2 64 = pow2 192); assert (o0 + o1 * pow2 64 + (o2 * pow2 64) * pow2 64 + ((o3 * pow2 64) * pow2 64) * pow2 64 == v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192); lemma_store_felem1 f; lemma_as_nat1 f
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "Lib.IntTypes.uint64", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_as_nat1", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem1", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Prims.op_Division", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "FStar.Math.Lemmas.modulo_lemma", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51) val lemma_load_felem: u64s:LSeq.lseq uint64 4{v (u64s.[3]) < pow2 63} -> Lemma ( let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0 = s0 &. mask51 in let f1 = (s0 >>. 51ul) |. ((s1 &. u64 0x3fffffffff) <<. 13ul) in let f2 = (s1 >>. 38ul) |. ((s2 &. u64 0x1ffffff) <<. 26ul) in let f3 = (s2 >>. 25ul) |. ((s3 &. u64 0xfff) <<. 39ul) in let f4 = s3 >>. 12ul in let f = (f0, f1, f2, f3, f4) in felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem u64s = assert_norm (0x3fffffffff = pow2 38 - 1); assert_norm (0x1ffffff = pow2 25 - 1); assert_norm (0xfff = pow2 12 - 1); let open Lib.Sequence in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in let f0l = s0 &. mask51 in FStar.Math.Lemmas.pow2_lt_compat 64 51; mod_mask_lemma s0 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); let f0h = s0 >>. 51ul in FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; let f1l = (s1 &. u64 0x3fffffffff) <<. 13ul in FStar.Math.Lemmas.pow2_lt_compat 64 38; mod_mask_lemma s1 38ul; assert (v (mod_mask #U64 #SEC 38ul) == v (u64 0x3fffffffff)); assert_norm (pow2 38 * pow2 13 = pow2 51); assert_norm (pow2 51 < pow2 64); FStar.Math.Lemmas.modulo_lemma ((v s1 % pow2 38) * pow2 13) (pow2 64); let f1h = s1 >>. 38ul in FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; let f2l = (s2 &. u64 0x1ffffff) <<. 26ul in FStar.Math.Lemmas.pow2_lt_compat 64 25; mod_mask_lemma s2 25ul; assert (v (mod_mask #U64 #SEC 25ul) == v (u64 0x1ffffff)); assert_norm (pow2 25 * pow2 26 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s2 % pow2 25) * pow2 26) (pow2 64); let f2h = s2 >>. 25ul in FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; let f3l = (s3 &. u64 0xfff) <<. 39ul in FStar.Math.Lemmas.pow2_lt_compat 64 12; mod_mask_lemma s3 12ul; assert (v (mod_mask #U64 #SEC 12ul) == v (u64 0xfff)); assert_norm (pow2 12 * pow2 39 = pow2 51); FStar.Math.Lemmas.modulo_lemma ((v s3 % pow2 12) * pow2 39) (pow2 64); let f3h = s3 >>. 12ul in let f0 = f0l in let f1 = f0h |. f1l in logor_disjoint f0h f1l 13; let f2 = f1h |. f2l in logor_disjoint f1h f2l 26; let f3 = f2h |. f3l in logor_disjoint f2h f3l 39; let f4 = f3h in let f = (f0, f1, f2, f3, f4) in lemma_load_felem_fits5 f u64s; lemma_load_felem5 f u64s val lemma_subtract_p5_0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_0 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f == v f0 + v f1 * pow51 + v f2 * pow51 * pow51 + v f3 * pow51 * pow51 * pow51 + v f4 * pow51 * pow51 * pow51 * pow51); assert (as_nat5 f <= pow2 51 - 20 + (pow2 51 - 1) * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 + (pow2 51 - 1) * pow2 51 * pow2 51 * pow2 51 * pow2 51); assert (as_nat5 f < pow2 255 - 19); assert (as_nat5 f == as_nat5 f'); FStar.Math.Lemmas.modulo_lemma (as_nat5 f') prime val lemma_subtract_p5_1: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p5_1 f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in assert_norm (0x7ffffffffffff = pow2 51 - 1); assert_norm (0x7ffffffffffed = pow2 51 - 19); assert_norm (pow51 = pow2 51); assert (as_nat5 f' % prime == (v f0' + v f1' * pow51 + v f2' * pow51 * pow51 + v f3' * pow51 * pow51 * pow51 + v f4' * pow51 * pow51 * pow51 * pow51) % prime); assert (as_nat5 f' % prime == (v f0 - (pow2 51 - 19) + (v f1 - (pow2 51 - 1)) * pow2 51 + (v f2 - (pow2 51 - 1)) * pow2 51 * pow2 51 + (v f3 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 + (v f4 - (pow2 51 - 1)) * pow2 51 * pow2 51 * pow2 51 * pow2 51) % prime); assert (as_nat5 f' % prime == (v f0 + v f1 * pow2 51 + v f2 * pow2 51 * pow2 51 + v f3 * pow2 51 * pow2 51 * pow2 51 + v f4 * pow2 51 * pow2 51 * pow2 51 * pow2 51 - prime) % prime); FStar.Math.Lemmas.lemma_mod_sub (as_nat5 f) 1 prime val lemma_subtract_p: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> f':felem5 -> Lemma (requires ( let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in (((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) /\ (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) \/ ((v f4 = 0x7ffffffffffff && v f3 = 0x7ffffffffffff && v f2 = 0x7ffffffffffff && v f1 = 0x7ffffffffffff && v f0 >= 0x7ffffffffffed) /\ (v f0' = v f0 - 0x7ffffffffffed && v f1' = v f1 - 0x7ffffffffffff && v f2' = v f2 - 0x7ffffffffffff && v f3' = v f3 - 0x7ffffffffffff && v f4' = v f4 - 0x7ffffffffffff))))) (ensures as_nat5 f' == as_nat5 f % prime) let lemma_subtract_p f f' = let (f0, f1, f2, f3, f4) = f in let (f0', f1', f2', f3', f4') = f' in if ((v f4 <> 0x7ffffffffffff || v f3 <> 0x7ffffffffffff || v f2 <> 0x7ffffffffffff || v f1 <> 0x7ffffffffffff || v f0 < 0x7ffffffffffed) && (v f0' = v f0 && v f1' = v f1 && v f2' = v f2 && v f3' = v f3 && v f4' = v f4)) then lemma_subtract_p5_0 f f' else lemma_subtract_p5_1 f f' val lemma_store_felem2: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem2 f = let (f0, f1, f2, f3, f4) = f in assert_norm (pow2 64 = pow2 13 * pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v f1) (pow2 13); assert_norm (pow2 128 = pow2 26 * pow2 102); FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 26); assert_norm (pow2 192 = pow2 39 * pow2 153); FStar.Math.Lemmas.euclidean_division_definition (v f3) (pow2 39) val lemma_store_felem1: f:felem5 -> Lemma ( let (f0, f1, f2, f3, f4) = f in v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_store_felem1 f = let (f0, f1, f2, f3, f4) = f in assert ( v f0 + (v f1 % pow2 13) * pow2 51 + (v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38) * pow2 64 + (v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25) * pow2 128 + (v f3 / pow2 39 + v f4 * pow2 12) * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192); lemma_mul_assos_3 (v f2 % pow2 26) (pow2 38) (pow2 64); assert_norm (pow2 38 * pow2 64 = pow2 102); assert ((v f2 % pow2 26) * pow2 38 * pow2 64 == (v f2 % pow2 26) * pow2 102); lemma_mul_assos_3 (v f3 % pow2 39) (pow2 25) (pow2 128); assert_norm (pow2 25 * pow2 128 = pow2 153); assert ((v f3 % pow2 39) * pow2 25 * pow2 128 == (v f3 % pow2 39) * pow2 153); lemma_mul_assos_3 (v f4) (pow2 12) (pow2 192); assert_norm (pow2 12 * pow2 192 = pow2 204); assert (v f4 * pow2 12 * pow2 192 == v f4 * pow2 204); assert ( v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 38 * pow2 64 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 25 * pow2 128 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 12 * pow2 192 == v f0 + (v f1 % pow2 13) * pow2 51 + v f1 / pow2 13 * pow2 64 + (v f2 % pow2 26) * pow2 102 + v f2 / pow2 26 * pow2 128 + (v f3 % pow2 39) * pow2 153 + v f3 / pow2 39 * pow2 192 + v f4 * pow2 204); lemma_store_felem2 f val lemma_as_nat1: f:felem5 -> Lemma (let (f0, f1, f2, f3, f4) = f in as_nat5 f == v f0 + v f1 * pow2 51 + v f2 * pow2 102 + v f3 * pow2 153 + v f4 * pow2 204) let lemma_as_nat1 f = assert_norm (pow51 = pow2 51); assert_norm (pow2 51 * pow2 51 = pow2 102); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 153); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 204) val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64)
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_felem0: f:felem5{felem_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < prime} -> Lemma ( let (f0, f1, f2, f3, f4) = f in let o0 = v f0 + (v f1 % pow2 13) * pow2 51 in let o1 = v f1 / pow2 13 + (v f2 % pow2 26) * pow2 38 in let o2 = v f2 / pow2 26 + (v f3 % pow2 39) * pow2 25 in let o3 = v f3 / pow2 39 + (v f4 % pow2 52) * pow2 12 in as_nat5 f == o0 + o1 * pow2 64 + o2 * pow2 64 * pow2 64 + o3 * pow2 64 * pow2 64 * pow2 64)
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem0
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1) /\ Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f < Spec.Curve25519.prime } -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let o0 = Lib.IntTypes.v f0 + (Lib.IntTypes.v f1 % Prims.pow2 13) * Prims.pow2 51 in let o1 = Lib.IntTypes.v f1 / Prims.pow2 13 + (Lib.IntTypes.v f2 % Prims.pow2 26) * Prims.pow2 38 in let o2 = Lib.IntTypes.v f2 / Prims.pow2 26 + (Lib.IntTypes.v f3 % Prims.pow2 39) * Prims.pow2 25 in let o3 = Lib.IntTypes.v f3 / Prims.pow2 39 + (Lib.IntTypes.v f4 % Prims.pow2 52) * Prims.pow2 12 in Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f == o0 + o1 * Prims.pow2 64 + (o2 * Prims.pow2 64) * Prims.pow2 64 + ((o3 * Prims.pow2 64) * Prims.pow2 64) * Prims.pow2 64) <: Type0))
{ "end_col": 17, "end_line": 848, "start_col": 2, "start_line": 824 }
FStar.Pervasives.Lemma
val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Canon", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_load_felem_fits5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51)
val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1)) let lemma_load_felem_fits5 f u64s =
false
null
true
let open Lib.Sequence in let f0, f1, f2, f3, f4 = f in let s0, s1, s2, s3 = (u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ]) in assert_norm (pow51 = pow2 51); assert (v f0 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s3) 63 12; assert (v f4 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s0) 64 51; lemma_mul_le (v s1 % pow2 38) (pow2 38 - 1) (pow2 13) (pow2 13); assert ((v s1 % pow2 38) * pow2 13 <= (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 13 - 1 + (pow2 38 - 1) * pow2 13); assert (v f1 <= pow2 38 * pow2 13 - 1); assert_norm (pow2 38 * pow2 13 = pow2 51); assert (v f1 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s1) 64 38; lemma_mul_le (v s2 % pow2 25) (pow2 25 - 1) (pow2 26) (pow2 26); assert ((v s2 % pow2 25) * pow2 26 <= (pow2 25 - 1) * pow2 26); assert (v f2 <= (pow2 26 - 1) + (pow2 25 - 1) * pow2 26); assert (v f2 <= pow2 25 * pow2 26 - 1); assert_norm (pow2 25 * pow2 26 = pow2 51); assert (v f2 < pow2 51); FStar.Math.Lemmas.lemma_div_lt (v s2) 64 25; lemma_mul_le (v s3 % pow2 12) (pow2 12 - 1) (pow2 39) (pow2 39); assert ((v s3 % pow2 12) * pow2 39 <= (pow2 12 - 1) * pow2 39); assert (v f3 <= (pow2 39 - 1) + (pow2 12 - 1) * pow2 39); assert (v f3 <= pow2 12 * pow2 39 - 1); assert_norm (pow2 12 * pow2 39 = pow2 51); assert (v f3 < pow2 51)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Curve25519.Lemmas.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_le", "FStar.Math.Lemmas.lemma_div_lt", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "FStar.Pervasives.Native.tuple4", "FStar.Pervasives.Native.Mktuple4", "Lib.Sequence.op_String_Access" ]
[]
module Hacl.Spec.Curve25519.Field51.Lemmas open FStar.Mul open Lib.Sequence open Lib.IntTypes open FStar.Tactics open FStar.Tactics.Canon open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'" val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> Lemma ((a - b % n) % n = (a - b) % n) let lemma_mod_sub_distr a b n = FStar.Math.Lemmas.lemma_div_mod b n; FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n; // (a - b) % n == (a - (b % n) - (b / n) * n) % n FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n val lemma_mul5_distr_r: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f) let lemma_mul5_distr_r a b c d e f = () val lemma_mul5_distr_l: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f) let lemma_mul5_distr_l a b c d e f = () val lemma_mul_assos_3: a:nat -> b:nat -> c:nat -> Lemma (a * b * c == a * (b * c)) let lemma_mul_assos_3 a b c = () val lemma_mul_assos_4: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (a * b * c * d == a * (b * c * d)) let lemma_mul_assos_4 a b c d = () val lemma_mul_assos_5: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> Lemma (a * b * c * d * e == a * (b * c * d * e)) let lemma_mul_assos_5 a b c d e = () val lemma_mul_assos_6: a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat -> Lemma (a * b * c * d * e * f == a * (b * c * d * e * f)) let lemma_mul_assos_6 a b c d e f = () val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a + c <= b + d) let lemma_add_le a b c d = () val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mul_le a b c d = () val lemma_prime: unit -> Lemma (pow2 255 % prime = 19) let lemma_prime () = assert_norm (pow2 255 % prime = 19 % prime); assert_norm (19 < prime); FStar.Math.Lemmas.modulo_lemma 19 prime val lemma_add_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> Lemma ( let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in feval out == feval f1) let lemma_add_zero f1 = let (f10, f11, f12, f13, f14) = f1 in let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in let out = (o0, o1, o2, o3, o4) in assert (feval out == (v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 + (v f12 + 0x3ffffffffffff8) * pow51 * pow51 + (v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 + (v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime); FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51; FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51); FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51); assert_norm ( 0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 + 0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime); assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime); FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime; assert (feval out == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) % prime) val lemma_fmul5_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) let lemma_fmul5_pow51 r = let (r0, r1, r2, r3, r4) = r in assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 + v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51)); lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51) (v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51); let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 + pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime; assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime; lemma_prime (); assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime val lemma_fmul5_pow51_pow51:r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) let lemma_fmul5_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_3 pow51 pow51 (as_nat5 r); let p51r = pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime); lemma_fmul5_pow51 r; assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime val lemma_fmul5_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) let lemma_fmul5_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5 -> Lemma (requires (let (r0, r1, r2, r3, r4) = r in v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\ v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51)) (ensures (let (r0, r1, r2, r3, r4) = r in (pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) let lemma_fmul5_pow51_pow51_pow51_pow51 r = let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime); lemma_fmul5_pow51_pow51_pow51 r; assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1); FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime val lemma_fmul5_1: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_1 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert (v r4 * 19 <= 190 * max51); assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * pow51 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * pow51 * as_nat5 r) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; lemma_mul_assos_3 (v f11) pow51 (as_nat5 r); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (pow51 * as_nat5 r) prime; lemma_fmul5_pow51 (r0, r1, r2, r3, r4); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f11) (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) (v f10 * as_nat5 r + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_2: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * pow51 * pow51 * as_nat5 r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_2 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_4 (v f12) pow51 pow51 (as_nat5 r); let p51p51r = pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * p51p51r + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) p51p51r prime; lemma_fmul5_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f12) (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_3: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * pow51 * pow51 * pow51 * as_nat5 r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) let lemma_fmul5_3 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_5 (v f13) pow51 pow51 pow51 (as_nat5 r); let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * p51p51p51r + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f13) (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) prime val lemma_fmul5_4: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (requires (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime)) (ensures (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in (as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime)) let lemma_fmul5_4 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in lemma_mul_assos_6 (v f14) pow51 pow51 pow51 pow51 (as_nat5 r); let p51p51p51p51r = pow51 * pow51 * pow51 * pow51 * as_nat5 r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * p51p51p51p51r) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * p51p51p51p51r) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) p51p51p51p51r prime; lemma_fmul5_pow51_pow51_pow51_pow51 r; FStar.Math.Lemmas.lemma_mod_mul_distr_r (v f14) (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_l (v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) (v f10 * as_nat5 r + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime val lemma_fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in fmul (feval f1) (feval r) == (v f10 * as_nat5 (r0, r1, r2, r3, r4) + v f11 * as_nat5 (r4 *! u64 19, r0, r1, r2, r3) + v f12 * as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) + v f13 * as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) + v f14 * as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) % prime) let lemma_fmul5 f1 r = let (f10, f11, f12, f13, f14) = f1 in let (r0, r1, r2, r3, r4) = r in assert ((as_nat5 f1 * as_nat5 r) % prime == (v f10 + v f11 * pow51 + v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 + v f14 * pow51 * pow51 * pow51 * pow51) * as_nat5 r % prime); lemma_mul5_distr_r (v f10) (v f11 * pow51) (v f12 * pow51 * pow51) (v f13 * pow51 * pow51 * pow51) (v f14 * pow51 * pow51 * pow51 * pow51) (as_nat5 r); lemma_fmul5_1 f1 r; lemma_fmul5_2 f1 r; lemma_fmul5_3 f1 r; lemma_fmul5_4 f1 r; FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 f1) (as_nat5 r) prime; FStar.Math.Lemmas.lemma_mod_mul_distr_r (as_nat5 f1 % prime) (as_nat5 r) prime val lemma_smul_felem5: u1:uint64 -> f2:felem5 -> Lemma ( let (f20, f21, f22, f23, f24) = f2 in v u1 * as_nat5 f2 == v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_felem5 u1 f2 = () // let (f20, f21, f22, f23, f24) = f2 in // assert (as_nat5 f2 == v f20 + v f21 * pow51 + v f22 * pow51 * pow51 + // v f23 * pow51 * pow51 * pow51 + v f24 * pow51 * pow51 * pow51 * pow51); // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_smul_add_felem5: u1:uint64 -> f2:felem5 -> acc1:felem_wide5 -> Lemma (let (f20, f21, f22, f23, f24) = f2 in let (o0, o1, o2, o3, o4) = acc1 in wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 == v o0 + v o1 * pow51 + v o2 * pow51 * pow51 + v o3 * pow51 * pow51 * pow51 + v o4 * pow51 * pow51 * pow51 * pow51 + v u1 * v f20 + v u1 * v f21 * pow51 + v u1 * v f22 * pow51 * pow51 + v u1 * v f23 * pow51 * pow51 * pow51 + v u1 * v f24 * pow51 * pow51 * pow51 * pow51) let lemma_smul_add_felem5 u1 f2 acc1 = () // let (f20, f21, f22, f23, f24) = f2 in // let (o0, o1, o2, o3, o4) = acc1 in // lemma_mul5_distr_l (v u1) (v f20) (v f21 * pow51) (v f22 * pow51 * pow51) // (v f23 * pow51 * pow51 * pow51) (v f24 * pow51 * pow51 * pow51 * pow51) val lemma_carry51: l:uint64 -> cin:uint64 -> Lemma (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures (let l0 = (l +! cin) &. mask51 in let l1 = (l +! cin) >>. 51ul in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ v l1 < pow2 13)) let lemma_carry51 l cin = let l' = l +! cin in let l0 = l' &. mask51 in let l1 = l' >>. 51ul in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51 val lemma_carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Lemma ( let l' = l +! to_u128 cin in let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let lemma_carry51_wide #m l cin = let l' = l +! to_u128 cin in //assert_norm (8192 * pow51 * pow51 == pow2 115); //assert (v l' < pow2 115); let l0 = (to_u64 l') &. mask51 in let l1 = to_u64 (l' >>. 51ul) in mod_mask_lemma (to_u64 l') 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51) val lemma_carry5_simplify: c0:uint64 -> c1:uint64 -> c2:uint64 -> c3:uint64 -> c4:uint64 -> t0:uint64 -> t1:uint64 -> t2:uint64 -> t3:uint64 -> t4:uint64 -> Lemma ((v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51) % prime == (v t0 + v c4 * 19 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) % prime) let lemma_carry5_simplify c0 c1 c2 c3 c4 t0 t1 t2 t3 t4 = assert_norm (pow51 = pow2 51); assert ( v c0 * pow2 51 + v t0 + (v c1 * pow2 51 + v t1 - v c0) * pow51 + (v c2 * pow2 51 + v t2 - v c1) * pow51 * pow51 + (v c3 * pow2 51 + v t3 - v c2) * pow51 * pow51 * pow51 + (v c4 * pow2 51 + v t4 - v c3) * pow51 * pow51 * pow51 * pow51 == v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51 + v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * pow2 51 * pow51 * pow51 * pow51 * pow51) prime; lemma_mul_assos_6 (v c4) (pow2 51) pow51 pow51 pow51 pow51; assert_norm (pow2 51 * pow51 * pow51 * pow51 * pow51 = pow2 255); FStar.Math.Lemmas.lemma_mod_mul_distr_r (v c4) (pow2 255) prime; lemma_prime (); assert_norm ((v c4 * pow2 255) % prime == (v c4 * 19) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (v t0 + v t1 * pow51 + v t2 * pow51 * pow51 + v t3 * pow51 * pow51 * pow51 + v t4 * pow51 * pow51 * pow51 * pow51) (v c4 * 19) prime val lemma_load_felem5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures as_nat5 f == BSeq.nat_from_intseq_le u64s) let lemma_load_felem5 f u64s = let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in assert_norm (pow51 = pow2 51); FStar.Math.Lemmas.euclidean_division_definition (v s0) (pow2 51); assert_norm (pow2 13 * pow2 51 = pow2 64); assert_norm (pow2 51 * pow2 51 = pow2 38 * pow2 64); FStar.Math.Lemmas.euclidean_division_definition (v s1) (pow2 38); assert_norm (pow2 26 * pow2 51 * pow2 51 = pow2 128); assert_norm (pow2 51 * pow2 51 * pow2 51 = pow2 25 * pow2 128); FStar.Math.Lemmas.euclidean_division_definition (v s2) (pow2 25); assert_norm (pow2 39 * pow2 51 * pow2 51 * pow2 51 = pow2 192); assert_norm (pow2 51 * pow2 51 * pow2 51 * pow2 51 = pow2 12 * pow2 192); FStar.Math.Lemmas.euclidean_division_definition (v s3) (pow2 12); assert (as_nat5 f == v s0 + v s1 * pow2 64 + v s2 * pow2 128 + v s3 * pow2 192); Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 u64s; assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 64 * pow2 64 * pow2 64 = pow2 192) val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1))
false
false
Hacl.Spec.Curve25519.Field51.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_load_felem_fits5: f:felem5 -> u64s:LSeq.lseq uint64 4 -> Lemma (requires ( let open Lib.Sequence in let (f0, f1, f2, f3, f4) = f in let (s0, s1, s2, s3) = (u64s.[0], u64s.[1], u64s.[2], u64s.[3]) in v s3 < pow2 63 /\ v f0 == v s0 % pow2 51 /\ v f1 == v s0 / pow2 51 + (v s1 % pow2 38) * pow2 13 /\ v f2 == v s1 / pow2 38 + (v s2 % pow2 25) * pow2 26 /\ v f3 == v s2 / pow2 25 + (v s3 % pow2 12) * pow2 39 /\ v f4 == v s3 / pow2 12)) (ensures felem_fits5 f (1, 1, 1, 1, 1))
[]
Hacl.Spec.Curve25519.Field51.Lemmas.lemma_load_felem_fits5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> u64s: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> FStar.Pervasives.Lemma (requires (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f0 f1 f2 f3 f4 = _ in let _ = u64s.[ 0 ], u64s.[ 1 ], u64s.[ 2 ], u64s.[ 3 ] in (let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ s0 s1 s2 s3 = _ in Lib.IntTypes.v s3 < Prims.pow2 63 /\ Lib.IntTypes.v f0 == Lib.IntTypes.v s0 % Prims.pow2 51 /\ Lib.IntTypes.v f1 == Lib.IntTypes.v s0 / Prims.pow2 51 + (Lib.IntTypes.v s1 % Prims.pow2 38) * Prims.pow2 13 /\ Lib.IntTypes.v f2 == Lib.IntTypes.v s1 / Prims.pow2 38 + (Lib.IntTypes.v s2 % Prims.pow2 25) * Prims.pow2 26 /\ Lib.IntTypes.v f3 == Lib.IntTypes.v s2 / Prims.pow2 25 + (Lib.IntTypes.v s3 % Prims.pow2 12) * Prims.pow2 39 /\ Lib.IntTypes.v f4 == Lib.IntTypes.v s3 / Prims.pow2 12) <: Type0) <: Type0)) (ensures Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1))
{ "end_col": 25, "end_line": 604, "start_col": 2, "start_line": 577 }
Prims.Tot
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
val linv_ctx (a: LSeq.lseq uint64 0) : Type0 let linv_ctx (a: LSeq.lseq uint64 0) : Type0 =
false
null
false
True
{ "checked_file": "Hacl.Impl.P256.Group.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.P256.PointDouble.fsti.checked", "Hacl.Impl.P256.PointAdd.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Group.fst" }
[ "total" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.l_True" ]
[]
module Hacl.Impl.P256.Group open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BE = Hacl.Impl.Exponentiation.Definitions module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
false
Hacl.Impl.P256.Group.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
[]
Hacl.Impl.P256.Group.linv_ctx
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Group.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.Sequence.lseq Lib.IntTypes.uint64 0 -> Type0
{ "end_col": 50, "end_line": 23, "start_col": 46, "start_line": 23 }
Prims.Tot
val point_zero : BE.lone_st U64 12ul 0ul mk_to_p256_comm_monoid
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_zero ctx one = let h0 = ST.get () in SL.to_aff_point_at_infinity_lemma (); make_point_at_inf one
val point_zero : BE.lone_st U64 12ul 0ul mk_to_p256_comm_monoid let point_zero ctx one =
false
null
false
let h0 = ST.get () in SL.to_aff_point_at_infinity_lemma (); make_point_at_inf one
{ "checked_file": "Hacl.Impl.P256.Group.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.P256.PointDouble.fsti.checked", "Hacl.Impl.P256.PointAdd.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Group.fst" }
[ "total" ]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Point.make_point_at_inf", "Prims.unit", "Spec.P256.Lemmas.to_aff_point_at_infinity_lemma", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.P256.Group open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BE = Hacl.Impl.Exponentiation.Definitions module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let refl (p:LSeq.lseq uint64 12{point_inv_seq p}) : GTot S.aff_point = S.to_aff_point (from_mont_point (as_point_nat_seq p)) inline_for_extraction noextract let mk_to_p256_comm_monoid : BE.to_comm_monoid U64 12ul 0ul = { BE.a_spec = S.aff_point; BE.comm_monoid = S.mk_p256_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = point_inv_seq; BE.refl = refl; } inline_for_extraction noextract val point_add : BE.lmul_st U64 12ul 0ul mk_to_p256_comm_monoid let point_add ctx x y xy = let h0 = ST.get () in SL.to_aff_point_add_lemma (from_mont_point (as_point_nat h0 x)) (from_mont_point (as_point_nat h0 y)); Hacl.Impl.P256.PointAdd.point_add xy x y inline_for_extraction noextract val point_double : BE.lsqr_st U64 12ul 0ul mk_to_p256_comm_monoid let point_double ctx x xx = let h0 = ST.get () in SL.to_aff_point_double_lemma (from_mont_point (as_point_nat h0 x)); Hacl.Impl.P256.PointDouble.point_double xx x inline_for_extraction noextract
false
false
Hacl.Impl.P256.Group.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_zero : BE.lone_st U64 12ul 0ul mk_to_p256_comm_monoid
[]
Hacl.Impl.P256.Group.point_zero
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Group.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Exponentiation.Definitions.lone_st Lib.IntTypes.U64 12ul 0ul Hacl.Impl.P256.Group.mk_to_p256_comm_monoid
{ "end_col": 23, "end_line": 61, "start_col": 24, "start_line": 58 }
Prims.GTot
val refl (p: LSeq.lseq uint64 12 {point_inv_seq p}) : GTot S.aff_point
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let refl (p:LSeq.lseq uint64 12{point_inv_seq p}) : GTot S.aff_point = S.to_aff_point (from_mont_point (as_point_nat_seq p))
val refl (p: LSeq.lseq uint64 12 {point_inv_seq p}) : GTot S.aff_point let refl (p: LSeq.lseq uint64 12 {point_inv_seq p}) : GTot S.aff_point =
false
null
false
S.to_aff_point (from_mont_point (as_point_nat_seq p))
{ "checked_file": "Hacl.Impl.P256.Group.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.P256.PointDouble.fsti.checked", "Hacl.Impl.P256.PointAdd.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Group.fst" }
[ "sometrivial" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Impl.P256.Point.point_inv_seq", "Spec.P256.PointOps.to_aff_point", "Hacl.Impl.P256.Point.from_mont_point", "Hacl.Impl.P256.Point.as_point_nat_seq", "Spec.P256.PointOps.aff_point" ]
[]
module Hacl.Impl.P256.Group open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BE = Hacl.Impl.Exponentiation.Definitions module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold
false
false
Hacl.Impl.P256.Group.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val refl (p: LSeq.lseq uint64 12 {point_inv_seq p}) : GTot S.aff_point
[]
Hacl.Impl.P256.Group.refl
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Group.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Lib.Sequence.lseq Lib.IntTypes.uint64 12 {Hacl.Impl.P256.Point.point_inv_seq p} -> Prims.GTot Spec.P256.PointOps.aff_point
{ "end_col": 55, "end_line": 27, "start_col": 2, "start_line": 27 }