effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val lemma_gf128_mul_rev_distribute_left (a b c:poly) : Lemma ((a +. b) *~ c == a *~ c +. b *~ c)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_gf128_mul_rev_distribute_left a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { (a +. b) *~ c; == {} rev (rev (a +. b) *. rc %. g); == {lemma_add_reverse a b 127} rev ((ra +. rb) *. rc %. g); == {lemma_mul_distribute_left ra rb rc} rev ((ra *. rc +. rb *. rc) %. g); == {lemma_mod_distribute (ra *. rc) (rb *. rc) g} rev (ra *. rc %. g +. rb *. rc %. g); == {lemma_add_reverse (ra *. rc %. g) (rb *. rc %. g) 127} rev (ra *. rc %. g) +. rev (rb *. rc %. g); == {} (a *~ c) +. (b *~ c); }
val lemma_gf128_mul_rev_distribute_left (a b c:poly) : Lemma ((a +. b) *~ c == a *~ c +. b *~ c) let lemma_gf128_mul_rev_distribute_left a b c =
false
null
true
let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc ( == ) { (a +. b) *~ c; ( == ) { () } rev (rev (a +. b) *. rc %. g); ( == ) { lemma_add_reverse a b 127 } rev ((ra +. rb) *. rc %. g); ( == ) { lemma_mul_distribute_left ra rb rc } rev ((ra *. rc +. rb *. rc) %. g); ( == ) { lemma_mod_distribute (ra *. rc) (rb *. rc) g } rev (ra *. rc %. g +. rb *. rc %. g); ( == ) { lemma_add_reverse (ra *. rc %. g) (rb *. rc %. g) 127 } rev (ra *. rc %. g) +. rev (rb *. rc %. g); ( == ) { () } (a *~ c) +. (b *~ c); }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.AES.GF128.op_Star_Tilde", "Vale.Math.Poly2.op_Plus_Dot", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Star_Dot", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Math.Poly2.Lemmas.lemma_add_reverse", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_left", "Vale.Math.Poly2.Lemmas.lemma_mod_distribute", "Vale.AES.GF128.lemma_gf128_degree", "Vale.AES.GF128_s.gf128_modulus", "Vale.Math.Poly2_s.reverse" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; } let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; } let lemma_gf128_high_bit () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0x80000000 in let a = monomial 127 in let a3 = monomial 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_low_shift_1 () = let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_mul_rev_commute a b = lemma_mul_all () let lemma_gf128_mul_rev_associate a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { a *~ (b *~ c); == {} rev (ra *. (rb *. rc %. g) %. g); == {lemma_mod_mul_mod_right ra (rb *. rc) g} rev (ra *. (rb *. rc) %. g); == {lemma_mul_associate ra rb rc} rev ((ra *. rb) *. rc %. g); == {lemma_mod_mul_mod (ra *. rb) g rc} rev ((ra *. rb %. g) *. rc %. g); == {} (a *~ b) *~ c; }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_gf128_mul_rev_distribute_left (a b c:poly) : Lemma ((a +. b) *~ c == a *~ c +. b *~ c)
[]
Vale.AES.GF128.lemma_gf128_mul_rev_distribute_left
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> c: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (ensures (a +. b) *~ c == a *~ c +. b *~ c)
{ "end_col": 3, "end_line": 691, "start_col": 47, "start_line": 670 }
FStar.Pervasives.Lemma
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma (requires degree h >= 0 /\ n > 2 * degree h /\ degree (monomial n +. h) == n /\ degree a < n /\ degree b < n ) (ensures ( let m = monomial n in let g = m +. h in let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in degree (r rdhL) <= 2 * degree h /\ degree (r rdhLh) <= 2 * degree h /\ r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); ()
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma (requires degree h >= 0 /\ n > 2 * degree h /\ degree (monomial n +. h) == n /\ degree a < n /\ degree b < n ) (ensures ( let m = monomial n in let g = m +. h in let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in degree (r rdhL) <= 2 * degree h /\ degree (r rdhLh) <= 2 * degree h /\ r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m )) let lemma_gf128_reduce_rev a b h n =
false
null
true
let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); ()
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "Prims.unit", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.op_Slash_Dot", "Vale.Math.Poly2.Lemmas.lemma_split_define_forward", "Vale.Math.Poly2.Lemmas.lemma_split_define", "Vale.Math.Poly2.Lemmas.lemma_index_all", "Vale.Math.Poly2.Lemmas.lemma_reverse_define_all", "Vale.Math.Poly2.Lemmas.lemma_add_define_all", "Vale.Math.Poly2_s.reverse", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Vale.AES.GF128.lemma_gf128_reduce", "Vale.Math.Poly2_s.monomial" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m ()
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma (requires degree h >= 0 /\ n > 2 * degree h /\ degree (monomial n +. h) == n /\ degree a < n /\ degree b < n ) (ensures ( let m = monomial n in let g = m +. h in let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in degree (r rdhL) <= 2 * degree h /\ degree (r rdhLh) <= 2 * degree h /\ r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m ))
[]
Vale.AES.GF128.lemma_gf128_reduce_rev
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree h >= 0 /\ n > 2 * Vale.Math.Poly2_s.degree h /\ Vale.Math.Poly2_s.degree (Vale.Math.Poly2_s.monomial n +. h) == n /\ Vale.Math.Poly2_s.degree a < n /\ Vale.Math.Poly2_s.degree b < n) (ensures (let m = Vale.Math.Poly2_s.monomial n in let g = m +. h in let r x = Vale.Math.Poly2_s.reverse x (n - 1) in let rr x = Vale.Math.Poly2_s.reverse x (2 * n - 1) in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in Vale.Math.Poly2_s.degree (r rdhL) <= 2 * Vale.Math.Poly2_s.degree h /\ Vale.Math.Poly2_s.degree (r rdhLh) <= 2 * Vale.Math.Poly2_s.degree h /\ r (a *. b %. g) == rdhLh +. rdh /. m +. rab /. m))
{ "end_col": 4, "end_line": 221, "start_col": 36, "start_line": 186 }
FStar.Pervasives.Lemma
val lemma_gf128_low_shift_1 (_:unit) : Lemma (of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_gf128_low_shift_1 () = let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; }
val lemma_gf128_low_shift_1 (_:unit) : Lemma (of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127) let lemma_gf128_low_shift_1 () =
false
null
true
let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (- 1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc ( == ) { of_quad32 (Mkfour n0 n1 n2 n3); ( == ) { lemma_quad32_of_nat32s n0 n1 n2 n3 } of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); ( == ) { (lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a) } of_quad32 (to_quad32 a); ( == ) { lemma_of_to_quad32 a } a; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Prims.unit", "FStar.Calc.calc_finish", "Vale.Math.Poly2_s.poly", "Prims.eq2", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.Math.Poly2.Bits_s.to_quad32", "Vale.Math.Poly2.Bits.poly128_of_nat32s", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.Bits.lemma_quad32_of_nat32s", "Prims.squash", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Bits.lemma_to_nat", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Vale.Math.Poly2.Bits.lemma_of_to_quad32", "Vale.Math.Poly2_s.reverse", "Vale.AES.GF128.gf128_low_shift", "Vale.Math.Poly2_s.one", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2_s.monomial", "Vale.AES.GF128_s.gf128_modulus_low_terms", "Prims.op_Minus", "Vale.Def.Words_s.nat32" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; } let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; } let lemma_gf128_high_bit () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0x80000000 in let a = monomial 127 in let a3 = monomial 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_gf128_low_shift_1 (_:unit) : Lemma (of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127)
[]
Vale.AES.GF128.lemma_gf128_low_shift_1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Words_s.Mkfour 1 0 0 0xc2000000) == Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift (Vale.Math.Poly2_s.monomial 128 +. Vale.AES.GF128_s.gf128_modulus_low_terms) (- 1)) 127)
{ "end_col": 3, "end_line": 644, "start_col": 32, "start_line": 623 }
FStar.Pervasives.Lemma
val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; }
val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n =
false
null
true
let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc ( == ) { reverse (a *. h) nn1; ( == ) { lemma_mul_reverse_shift_1 a h n1 } shift (reverse a n1 *. reverse h n1) 1; ( == ) { lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1 } monomial 1 *. (reverse a n1 *. reverse h n1); ( == ) { lemma_mul_all () } reverse a n1 *. (monomial 1 *. reverse h n1); ( == ) { lemma_shift_is_mul_left (reverse h n1) 1 } reverse a n1 *. shift (reverse h n1) 1; ( == ) { lemma_odd_reverse_shift_right h n } reverse a n1 *. (m +. reverse (shift h (- 1)) n1); ( == ) { lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (- 1)) n1) } reverse a n1 *. m +. reverse a n1 *. reverse (shift h (- 1)) n1; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2_s.reverse", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2_s.shift", "Prims.op_Minus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2_s.monomial", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.Lemmas.lemma_mul_reverse_shift_1", "Prims.squash", "Vale.Math.Poly2.Lemmas.lemma_shift_is_mul_left", "Vale.Math.Poly2.Lemmas.lemma_mul_all", "Vale.AES.GF128.lemma_odd_reverse_shift_right", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_right", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 ))
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 ))
[]
Vale.AES.GF128.lemma_mul_odd_reverse_shift_right
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree h < n /\ Vale.Math.Poly2_s.degree a < n /\ h.[ 0 ]) (ensures (let n1 = n - 1 in let m = Vale.Math.Poly2_s.monomial n in Vale.Math.Poly2_s.reverse (a *. h) (n + n - 1) == Vale.Math.Poly2_s.reverse a n1 *. m +. Vale.Math.Poly2_s.reverse a n1 *. Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift h (- 1)) n1))
{ "end_col": 3, "end_line": 257, "start_col": 45, "start_line": 239 }
FStar.Pervasives.Lemma
val lemma_shift_key_1 (n:pos) (f h:poly) : Lemma (requires f.[0] /\ degree f < n /\ degree h < n) (ensures ( let g = monomial n +. f in shift (reverse (shift_key_1 n f h) (n - 1)) 1 %. g == reverse h (n - 1) %. g ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_shift_key_1 n f h = let g = monomial n +. f in lemma_monomial_add_degree n f; let rev x = reverse x (n - 1) in let h1 = shift h 1 in let offset = reverse (shift g (-1)) (n - 1) in if h1.[n] then calc (==) { shift (rev (mask h1 n +. offset)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. offset)) 1) (rev h +. g) } (rev h +. g) %. g; == {lemma_mod_distribute (rev h) g g; lemma_mod_cancel g; lemma_add_all ()} rev h %. g; } else calc (==) { shift (rev (mask h1 n +. zero)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. zero)) 1) (rev h) } rev h %. g; }
val lemma_shift_key_1 (n:pos) (f h:poly) : Lemma (requires f.[0] /\ degree f < n /\ degree h < n) (ensures ( let g = monomial n +. f in shift (reverse (shift_key_1 n f h) (n - 1)) 1 %. g == reverse h (n - 1) %. g )) let lemma_shift_key_1 n f h =
false
null
true
let g = monomial n +. f in lemma_monomial_add_degree n f; let rev x = reverse x (n - 1) in let h1 = shift h 1 in let offset = reverse (shift g (- 1)) (n - 1) in if h1.[ n ] then calc ( == ) { shift (rev (mask h1 n +. offset)) 1 %. g; ( == ) { (lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. offset)) 1) (rev h +. g)) } (rev h +. g) %. g; ( == ) { (lemma_mod_distribute (rev h) g g; lemma_mod_cancel g; lemma_add_all ()) } rev h %. g; } else calc ( == ) { shift (rev (mask h1 n +. zero)) 1 %. g; ( == ) { (lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. zero)) 1) (rev h)) } rev h %. g; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Prims.pos", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2_s.op_String_Access", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.mask", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Prims.squash", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Vale.Math.Poly2.Lemmas.lemma_mod_cancel", "Vale.Math.Poly2.Lemmas.lemma_mod_distribute", "Prims.bool", "Vale.Math.Poly2_s.zero", "Vale.Math.Poly2_s.reverse", "Prims.op_Minus", "Prims.op_Subtraction", "Vale.Math.Poly2.Lemmas.lemma_monomial_add_degree", "Vale.Math.Poly2_s.monomial" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; } let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; } let lemma_gf128_high_bit () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0x80000000 in let a = monomial 127 in let a3 = monomial 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_low_shift_1 () = let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_mul_rev_commute a b = lemma_mul_all () let lemma_gf128_mul_rev_associate a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { a *~ (b *~ c); == {} rev (ra *. (rb *. rc %. g) %. g); == {lemma_mod_mul_mod_right ra (rb *. rc) g} rev (ra *. (rb *. rc) %. g); == {lemma_mul_associate ra rb rc} rev ((ra *. rb) *. rc %. g); == {lemma_mod_mul_mod (ra *. rb) g rc} rev ((ra *. rb %. g) *. rc %. g); == {} (a *~ b) *~ c; } let lemma_gf128_mul_rev_distribute_left a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { (a +. b) *~ c; == {} rev (rev (a +. b) *. rc %. g); == {lemma_add_reverse a b 127} rev ((ra +. rb) *. rc %. g); == {lemma_mul_distribute_left ra rb rc} rev ((ra *. rc +. rb *. rc) %. g); == {lemma_mod_distribute (ra *. rc) (rb *. rc) g} rev (ra *. rc %. g +. rb *. rc %. g); == {lemma_add_reverse (ra *. rc %. g) (rb *. rc %. g) 127} rev (ra *. rc %. g) +. rev (rb *. rc %. g); == {} (a *~ c) +. (b *~ c); } let lemma_gf128_mul_rev_distribute_right a b c = calc (==) { a *~ (b +. c); == {lemma_gf128_mul_rev_commute a (b +. c)} (b +. c) *~ a; == {lemma_gf128_mul_rev_distribute_left b c a} b *~ a +. c *~ a; == {lemma_gf128_mul_rev_commute a b; lemma_gf128_mul_rev_commute a c} a *~ b +. a *~ c; } let lemma_add_mod_rev n a1 a2 b = let rev x = reverse x (n - 1) in let rev' x = reverse x (n + n - 1) in calc (==) { // mod_rev n (a1 +. a2) b; rev (rev' (a1 +. a2) %. b); == {lemma_add_reverse a1 a2 (n + n - 1)} rev ((rev' a1 +. rev' a2) %. b); == {lemma_mod_distribute (rev' a1) (rev' a2) b} rev (rev' a1 %. b +. rev' a2 %. b); == {lemma_add_reverse (rev' a1 %. b) (rev' a2 %. b) (n - 1)} rev (rev' a1 %. b) +. rev (rev' a2 %. b); // mod_rev n a1 b +. mod_rev n a2 b }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_shift_key_1 (n:pos) (f h:poly) : Lemma (requires f.[0] /\ degree f < n /\ degree h < n) (ensures ( let g = monomial n +. f in shift (reverse (shift_key_1 n f h) (n - 1)) 1 %. g == reverse h (n - 1) %. g ))
[]
Vale.AES.GF128.lemma_shift_key_1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.pos -> f: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires f.[ 0 ] /\ Vale.Math.Poly2_s.degree f < n /\ Vale.Math.Poly2_s.degree h < n) (ensures (let g = Vale.Math.Poly2_s.monomial n +. f in Vale.Math.Poly2_s.shift (Vale.Math.Poly2_s.reverse (Vale.AES.GF128.shift_key_1 n f h) (n - 1)) 1 %. g == Vale.Math.Poly2_s.reverse h (n - 1) %. g))
{ "end_col": 5, "end_line": 744, "start_col": 29, "start_line": 719 }
FStar.Pervasives.Lemma
val lemma_gf128_low_shift (_:unit) : Lemma (shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63)
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; }
val lemma_gf128_low_shift (_:unit) : Lemma (shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63) let lemma_gf128_low_shift () =
false
null
true
let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc ( == ) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (- 64); ( == ) { calc ( == ) { Mkfour n0 n1 n2 n3; ( == ) { lemma_quad32_of_nat32s n0 n1 n2 n3 } to_quad32 (poly128_of_nat32s n0 n1 n2 n3); ( == ) { (lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127)) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (- 64); ( == ) { lemma_of_to_quad32 (reverse r3 127) } shift (reverse r3 127) (- 64); ( == ) { (lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (- 64)) (reverse r3 63)) } reverse r3 63; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Prims.unit", "FStar.Calc.calc_finish", "Vale.Math.Poly2_s.poly", "Prims.eq2", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.op_Minus", "Vale.Math.Poly2_s.reverse", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.Math.Poly2.Bits_s.to_quad32", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat32", "Vale.Math.Poly2.Bits.poly128_of_nat32s", "Vale.Math.Poly2.Bits.lemma_quad32_of_nat32s", "Prims.squash", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Bits.lemma_to_nat", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Vale.Math.Poly2.Bits.lemma_of_to_quad32", "Vale.AES.GF128.gf128_low_shift" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_gf128_low_shift (_:unit) : Lemma (shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63)
[]
Vale.AES.GF128.lemma_gf128_low_shift
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Words_s.Mkfour 0 0 0 0xc2000000)) (- 64) == Vale.Math.Poly2_s.reverse Vale.AES.GF128.gf128_low_shift 63)
{ "end_col": 3, "end_line": 600, "start_col": 30, "start_line": 571 }
FStar.Pervasives.Lemma
val lemma_Mul128 (a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in a *. b == aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128 ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_Mul128 a b = let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in calc (==) { a *. b; == { lemma_bitwise_all (); lemma_equal a (aL +. shift aH 64); lemma_equal b (bL +. shift bH 64) } (aL +. shift aH 64) *. (bL +. shift bH 64); == {lemma_mul_distribute_left aL (shift aH 64) (bL +. shift bH 64)} aL *. (bL +. shift bH 64) +. shift aH 64 *. (bL +. shift bH 64); == {lemma_mul_distribute_right aL bL (shift bH 64)} aL *. bL +. aL *. shift bH 64 +. shift aH 64 *. (bL +. shift bH 64); == {lemma_mul_distribute_right (shift aH 64) bL (shift bH 64)} aL *. bL +. aL *. shift bH 64 +. (shift aH 64 *. bL +. shift aH 64 *. shift bH 64); == {lemma_add_all ()} aL *. bL +. (aL *. shift bH 64 +. shift aH 64 *. bL) +. shift aH 64 *. shift bH 64; == {lemma_shift_is_mul aH 64; lemma_shift_is_mul bH 64} aL *. bL +. (aL *. (bH *. monomial 64) +. aH *. monomial 64 *. bL) +. aH *. monomial 64 *. (bH *. monomial 64); == {lemma_mul_all ()} aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. (monomial 64 *. monomial 64); == {lemma_mul_monomials 64 64} aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. monomial 128; == {lemma_mul_distribute_left (aL *. bH) (aH *. bL) (monomial 64)} aL *. bL +. (aL *. bH +. aH *. bL) *. monomial 64 +. aH *. bH *. monomial 128; == {lemma_shift_is_mul (aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (aH *. bH) 128} aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128; }
val lemma_Mul128 (a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in a *. b == aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128 )) let lemma_Mul128 a b =
false
null
true
let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (- 64) in let bH = shift b (- 64) in calc ( == ) { a *. b; ( == ) { (lemma_bitwise_all (); lemma_equal a (aL +. shift aH 64); lemma_equal b (bL +. shift bH 64)) } (aL +. shift aH 64) *. (bL +. shift bH 64); ( == ) { lemma_mul_distribute_left aL (shift aH 64) (bL +. shift bH 64) } aL *. (bL +. shift bH 64) +. shift aH 64 *. (bL +. shift bH 64); ( == ) { lemma_mul_distribute_right aL bL (shift bH 64) } aL *. bL +. aL *. shift bH 64 +. shift aH 64 *. (bL +. shift bH 64); ( == ) { lemma_mul_distribute_right (shift aH 64) bL (shift bH 64) } aL *. bL +. aL *. shift bH 64 +. (shift aH 64 *. bL +. shift aH 64 *. shift bH 64); ( == ) { lemma_add_all () } aL *. bL +. (aL *. shift bH 64 +. shift aH 64 *. bL) +. shift aH 64 *. shift bH 64; ( == ) { (lemma_shift_is_mul aH 64; lemma_shift_is_mul bH 64) } aL *. bL +. (aL *. (bH *. monomial 64) +. aH *. monomial 64 *. bL) +. aH *. monomial 64 *. (bH *. monomial 64); ( == ) { lemma_mul_all () } aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. (monomial 64 *. monomial 64); ( == ) { lemma_mul_monomials 64 64 } aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. monomial 128; ( == ) { lemma_mul_distribute_left (aL *. bH) (aH *. bL) (monomial 64) } aL *. bL +. (aL *. bH +. aH *. bL) *. monomial 64 +. aH *. bH *. monomial 128; ( == ) { (lemma_shift_is_mul (aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (aH *. bH) 128) } aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2_s.shift", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2_s.monomial", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Prims.squash", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_left", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_right", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Vale.Math.Poly2.lemma_shift_is_mul", "Vale.Math.Poly2.Lemmas.lemma_mul_all", "Vale.Math.Poly2.Lemmas.lemma_mul_monomials", "Prims.op_Minus", "Vale.Math.Poly2.mask" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; } let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; } let lemma_gf128_high_bit () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0x80000000 in let a = monomial 127 in let a3 = monomial 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_low_shift_1 () = let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_mul_rev_commute a b = lemma_mul_all () let lemma_gf128_mul_rev_associate a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { a *~ (b *~ c); == {} rev (ra *. (rb *. rc %. g) %. g); == {lemma_mod_mul_mod_right ra (rb *. rc) g} rev (ra *. (rb *. rc) %. g); == {lemma_mul_associate ra rb rc} rev ((ra *. rb) *. rc %. g); == {lemma_mod_mul_mod (ra *. rb) g rc} rev ((ra *. rb %. g) *. rc %. g); == {} (a *~ b) *~ c; } let lemma_gf128_mul_rev_distribute_left a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { (a +. b) *~ c; == {} rev (rev (a +. b) *. rc %. g); == {lemma_add_reverse a b 127} rev ((ra +. rb) *. rc %. g); == {lemma_mul_distribute_left ra rb rc} rev ((ra *. rc +. rb *. rc) %. g); == {lemma_mod_distribute (ra *. rc) (rb *. rc) g} rev (ra *. rc %. g +. rb *. rc %. g); == {lemma_add_reverse (ra *. rc %. g) (rb *. rc %. g) 127} rev (ra *. rc %. g) +. rev (rb *. rc %. g); == {} (a *~ c) +. (b *~ c); } let lemma_gf128_mul_rev_distribute_right a b c = calc (==) { a *~ (b +. c); == {lemma_gf128_mul_rev_commute a (b +. c)} (b +. c) *~ a; == {lemma_gf128_mul_rev_distribute_left b c a} b *~ a +. c *~ a; == {lemma_gf128_mul_rev_commute a b; lemma_gf128_mul_rev_commute a c} a *~ b +. a *~ c; } let lemma_add_mod_rev n a1 a2 b = let rev x = reverse x (n - 1) in let rev' x = reverse x (n + n - 1) in calc (==) { // mod_rev n (a1 +. a2) b; rev (rev' (a1 +. a2) %. b); == {lemma_add_reverse a1 a2 (n + n - 1)} rev ((rev' a1 +. rev' a2) %. b); == {lemma_mod_distribute (rev' a1) (rev' a2) b} rev (rev' a1 %. b +. rev' a2 %. b); == {lemma_add_reverse (rev' a1 %. b) (rev' a2 %. b) (n - 1)} rev (rev' a1 %. b) +. rev (rev' a2 %. b); // mod_rev n a1 b +. mod_rev n a2 b } let lemma_shift_key_1 n f h = let g = monomial n +. f in lemma_monomial_add_degree n f; let rev x = reverse x (n - 1) in let h1 = shift h 1 in let offset = reverse (shift g (-1)) (n - 1) in if h1.[n] then calc (==) { shift (rev (mask h1 n +. offset)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. offset)) 1) (rev h +. g) } (rev h +. g) %. g; == {lemma_mod_distribute (rev h) g g; lemma_mod_cancel g; lemma_add_all ()} rev h %. g; } else calc (==) { shift (rev (mask h1 n +. zero)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. zero)) 1) (rev h) } rev h %. g; } let lemma_test_high_bit a = calc (==) { of_nat ((to_quad32 (monomial 127)).hi3); == {lemma_quad32_extract_nat32s (monomial 127)} shift (monomial 127) (-96); }; calc (==) { of_nat (to_quad32 (poly_and a (monomial 127))).hi3; == {lemma_quad32_extract_nat32s (poly_and a (monomial 127))} shift (poly_and a (monomial 127)) (-96); }; if (shift (monomial 127) (-96) = shift (poly_and a (monomial 127)) (-96)) then ( of_nat32_eq (to_quad32 (poly_and a (monomial 127))).hi3 ((to_quad32 (monomial 127)).hi3); lemma_bitwise_all (); assert ((shift (monomial 127) (-96)).[31]); assert ((shift (poly_and a (monomial 127)) (-96)).[31]); assert (a.[127]); () ); if a.[127] then ( lemma_bitwise_all (); lemma_equal (shift (monomial 127) (-96)) (shift (poly_and a (monomial 127)) (-96)); () )
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_Mul128 (a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in a *. b == aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128 ))
[]
Vale.AES.GF128.lemma_Mul128
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree a < 128 /\ Vale.Math.Poly2_s.degree b < 128) (ensures (let aL = Vale.Math.Poly2.mask a 64 in let bL = Vale.Math.Poly2.mask b 64 in let aH = Vale.Math.Poly2_s.shift a (- 64) in let bH = Vale.Math.Poly2_s.shift b (- 64) in a *. b == aL *. bL +. Vale.Math.Poly2_s.shift (aL *. bH +. aH *. bL) 64 +. Vale.Math.Poly2_s.shift (aH *. bH) 128))
{ "end_col": 3, "end_line": 804, "start_col": 22, "start_line": 773 }
FStar.Pervasives.Lemma
val lemma_Mul128_accum (z0 z1 z2 a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let z = z0 +. shift z1 64 +. shift z2 128 in let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in z +. a *. b == (z0 +. aL *. bL) +. shift (z1 +. aL *. bH +. aH *. bL) 64 +. shift (z2 +. aH *. bH) 128 ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_Mul128_accum z0 z1 z2 a b = let z = z0 +. shift z1 64 +. shift z2 128 in let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in calc (==) { z +. a *. b; == {lemma_Mul128 a b} z +. (aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128); == {lemma_shift_is_mul (aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (aH *. bH) 128} z +. (aL *. bL +. (aL *. bH +. aH *. bL) *. monomial 64 +. aH *. bH *. monomial 128); == {lemma_mul_distribute_left (aL *. bH) (aH *. bL) (monomial 64)} z +. (aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. monomial 128); == {lemma_add_all ()} z0 +. aL *. bL +. (shift z1 64 +. aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. (shift z2 128 +. aH *. bH *. monomial 128); == {lemma_shift_is_mul z1 64; lemma_shift_is_mul z2 128} z0 +. aL *. bL +. (z1 *. monomial 64 +. aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); == {lemma_mul_distribute_left z1 (aL *. bH) (monomial 64)} z0 +. aL *. bL +. ((z1 +. aL *. bH) *. monomial 64 +. aH *. bL *. monomial 64) +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); == {lemma_mul_distribute_left (z1 +. aL *. bH) (aH *. bL) (monomial 64)} z0 +. aL *. bL +. (z1 +. aL *. bH +. aH *. bL) *. monomial 64 +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); == {lemma_mul_distribute_left z2 (aH *. bH) (monomial 128)} z0 +. aL *. bL +. (z1 +. aL *. bH +. aH *. bL) *. monomial 64 +. (z2 +. aH *. bH) *. monomial 128; == {lemma_shift_is_mul (z1 +. aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (z2 +. aH *. bH) 128} (z0 +. aL *. bL) +. shift (z1 +. aL *. bH +. aH *. bL) 64 +. shift (z2 +. aH *. bH) 128; }
val lemma_Mul128_accum (z0 z1 z2 a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let z = z0 +. shift z1 64 +. shift z2 128 in let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in z +. a *. b == (z0 +. aL *. bL) +. shift (z1 +. aL *. bH +. aH *. bL) 64 +. shift (z2 +. aH *. bH) 128 )) let lemma_Mul128_accum z0 z1 z2 a b =
false
null
true
let z = z0 +. shift z1 64 +. shift z2 128 in let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (- 64) in let bH = shift b (- 64) in calc ( == ) { z +. a *. b; ( == ) { lemma_Mul128 a b } z +. (aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128); ( == ) { (lemma_shift_is_mul (aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (aH *. bH) 128) } z +. (aL *. bL +. (aL *. bH +. aH *. bL) *. monomial 64 +. aH *. bH *. monomial 128); ( == ) { lemma_mul_distribute_left (aL *. bH) (aH *. bL) (monomial 64) } z +. (aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. monomial 128); ( == ) { lemma_add_all () } z0 +. aL *. bL +. (shift z1 64 +. aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. (shift z2 128 +. aH *. bH *. monomial 128); ( == ) { (lemma_shift_is_mul z1 64; lemma_shift_is_mul z2 128) } z0 +. aL *. bL +. (z1 *. monomial 64 +. aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); ( == ) { lemma_mul_distribute_left z1 (aL *. bH) (monomial 64) } z0 +. aL *. bL +. ((z1 +. aL *. bH) *. monomial 64 +. aH *. bL *. monomial 64) +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); ( == ) { lemma_mul_distribute_left (z1 +. aL *. bH) (aH *. bL) (monomial 64) } z0 +. aL *. bL +. (z1 +. aL *. bH +. aH *. bL) *. monomial 64 +. (z2 *. monomial 128 +. aH *. bH *. monomial 128); ( == ) { lemma_mul_distribute_left z2 (aH *. bH) (monomial 128) } z0 +. aL *. bL +. (z1 +. aL *. bH +. aH *. bL) *. monomial 64 +. (z2 +. aH *. bH) *. monomial 128; ( == ) { (lemma_shift_is_mul (z1 +. aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (z2 +. aH *. bH) 128) } (z0 +. aL *. bL) +. shift (z1 +. aL *. bH +. aH *. bL) 64 +. shift (z2 +. aH *. bH) 128; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2_s.shift", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2_s.monomial", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.AES.GF128.lemma_Mul128", "Prims.squash", "Vale.Math.Poly2.lemma_shift_is_mul", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_left", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Prims.op_Minus", "Vale.Math.Poly2.mask" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; } let lemma_gf128_low_shift () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let r3 = gf128_low_shift in calc (==) { shift (of_quad32 (Mkfour n0 n1 n2 n3)) (-64); == { calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse r3 31) n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 127) } to_quad32 (reverse r3 127); } } shift (of_quad32 (to_quad32 (reverse r3 127))) (-64); == {lemma_of_to_quad32 (reverse r3 127)} shift (reverse r3 127) (-64); == { lemma_bitwise_all (); lemma_equal (shift (reverse r3 127) (-64)) (reverse r3 63) } reverse r3 63; } let lemma_gf128_high_bit () = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0x80000000 in let a = monomial 127 in let a3 = monomial 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_low_shift_1 () = let n0:nat32 = 1 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xc2000000 in let a = reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127 in let a0 = one in let a3 = reverse gf128_low_shift 31 in calc (==) { of_quad32 (Mkfour n0 n1 n2 n3); == {lemma_quad32_of_nat32s n0 n1 n2 n3} of_quad32 (to_quad32 (poly128_of_nat32s n0 n1 n2 n3)); == { lemma_bitwise_all (); lemma_to_nat 32 a0 n0; lemma_to_nat 32 a3 n3; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) a } of_quad32 (to_quad32 a); == {lemma_of_to_quad32 a} a; } let lemma_gf128_mul_rev_commute a b = lemma_mul_all () let lemma_gf128_mul_rev_associate a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { a *~ (b *~ c); == {} rev (ra *. (rb *. rc %. g) %. g); == {lemma_mod_mul_mod_right ra (rb *. rc) g} rev (ra *. (rb *. rc) %. g); == {lemma_mul_associate ra rb rc} rev ((ra *. rb) *. rc %. g); == {lemma_mod_mul_mod (ra *. rb) g rc} rev ((ra *. rb %. g) *. rc %. g); == {} (a *~ b) *~ c; } let lemma_gf128_mul_rev_distribute_left a b c = let rev x = reverse x 127 in let ra = rev a in let rb = rev b in let rc = rev c in let g = gf128_modulus in lemma_gf128_degree (); calc (==) { (a +. b) *~ c; == {} rev (rev (a +. b) *. rc %. g); == {lemma_add_reverse a b 127} rev ((ra +. rb) *. rc %. g); == {lemma_mul_distribute_left ra rb rc} rev ((ra *. rc +. rb *. rc) %. g); == {lemma_mod_distribute (ra *. rc) (rb *. rc) g} rev (ra *. rc %. g +. rb *. rc %. g); == {lemma_add_reverse (ra *. rc %. g) (rb *. rc %. g) 127} rev (ra *. rc %. g) +. rev (rb *. rc %. g); == {} (a *~ c) +. (b *~ c); } let lemma_gf128_mul_rev_distribute_right a b c = calc (==) { a *~ (b +. c); == {lemma_gf128_mul_rev_commute a (b +. c)} (b +. c) *~ a; == {lemma_gf128_mul_rev_distribute_left b c a} b *~ a +. c *~ a; == {lemma_gf128_mul_rev_commute a b; lemma_gf128_mul_rev_commute a c} a *~ b +. a *~ c; } let lemma_add_mod_rev n a1 a2 b = let rev x = reverse x (n - 1) in let rev' x = reverse x (n + n - 1) in calc (==) { // mod_rev n (a1 +. a2) b; rev (rev' (a1 +. a2) %. b); == {lemma_add_reverse a1 a2 (n + n - 1)} rev ((rev' a1 +. rev' a2) %. b); == {lemma_mod_distribute (rev' a1) (rev' a2) b} rev (rev' a1 %. b +. rev' a2 %. b); == {lemma_add_reverse (rev' a1 %. b) (rev' a2 %. b) (n - 1)} rev (rev' a1 %. b) +. rev (rev' a2 %. b); // mod_rev n a1 b +. mod_rev n a2 b } let lemma_shift_key_1 n f h = let g = monomial n +. f in lemma_monomial_add_degree n f; let rev x = reverse x (n - 1) in let h1 = shift h 1 in let offset = reverse (shift g (-1)) (n - 1) in if h1.[n] then calc (==) { shift (rev (mask h1 n +. offset)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. offset)) 1) (rev h +. g) } (rev h +. g) %. g; == {lemma_mod_distribute (rev h) g g; lemma_mod_cancel g; lemma_add_all ()} rev h %. g; } else calc (==) { shift (rev (mask h1 n +. zero)) 1 %. g; == { lemma_bitwise_all (); lemma_equal (shift (rev (mask h1 n +. zero)) 1) (rev h) } rev h %. g; } let lemma_test_high_bit a = calc (==) { of_nat ((to_quad32 (monomial 127)).hi3); == {lemma_quad32_extract_nat32s (monomial 127)} shift (monomial 127) (-96); }; calc (==) { of_nat (to_quad32 (poly_and a (monomial 127))).hi3; == {lemma_quad32_extract_nat32s (poly_and a (monomial 127))} shift (poly_and a (monomial 127)) (-96); }; if (shift (monomial 127) (-96) = shift (poly_and a (monomial 127)) (-96)) then ( of_nat32_eq (to_quad32 (poly_and a (monomial 127))).hi3 ((to_quad32 (monomial 127)).hi3); lemma_bitwise_all (); assert ((shift (monomial 127) (-96)).[31]); assert ((shift (poly_and a (monomial 127)) (-96)).[31]); assert (a.[127]); () ); if a.[127] then ( lemma_bitwise_all (); lemma_equal (shift (monomial 127) (-96)) (shift (poly_and a (monomial 127)) (-96)); () ) let lemma_Mul128 a b = let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in calc (==) { a *. b; == { lemma_bitwise_all (); lemma_equal a (aL +. shift aH 64); lemma_equal b (bL +. shift bH 64) } (aL +. shift aH 64) *. (bL +. shift bH 64); == {lemma_mul_distribute_left aL (shift aH 64) (bL +. shift bH 64)} aL *. (bL +. shift bH 64) +. shift aH 64 *. (bL +. shift bH 64); == {lemma_mul_distribute_right aL bL (shift bH 64)} aL *. bL +. aL *. shift bH 64 +. shift aH 64 *. (bL +. shift bH 64); == {lemma_mul_distribute_right (shift aH 64) bL (shift bH 64)} aL *. bL +. aL *. shift bH 64 +. (shift aH 64 *. bL +. shift aH 64 *. shift bH 64); == {lemma_add_all ()} aL *. bL +. (aL *. shift bH 64 +. shift aH 64 *. bL) +. shift aH 64 *. shift bH 64; == {lemma_shift_is_mul aH 64; lemma_shift_is_mul bH 64} aL *. bL +. (aL *. (bH *. monomial 64) +. aH *. monomial 64 *. bL) +. aH *. monomial 64 *. (bH *. monomial 64); == {lemma_mul_all ()} aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. (monomial 64 *. monomial 64); == {lemma_mul_monomials 64 64} aL *. bL +. (aL *. bH *. monomial 64 +. aH *. bL *. monomial 64) +. aH *. bH *. monomial 128; == {lemma_mul_distribute_left (aL *. bH) (aH *. bL) (monomial 64)} aL *. bL +. (aL *. bH +. aH *. bL) *. monomial 64 +. aH *. bH *. monomial 128; == {lemma_shift_is_mul (aL *. bH +. aH *. bL) 64; lemma_shift_is_mul (aH *. bH) 128} aL *. bL +. shift (aL *. bH +. aH *. bL) 64 +. shift (aH *. bH) 128; }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_Mul128_accum (z0 z1 z2 a b:poly) : Lemma (requires degree a < 128 /\ degree b < 128) (ensures ( let z = z0 +. shift z1 64 +. shift z2 128 in let aL = mask a 64 in let bL = mask b 64 in let aH = shift a (-64) in let bH = shift b (-64) in z +. a *. b == (z0 +. aL *. bL) +. shift (z1 +. aL *. bH +. aH *. bL) 64 +. shift (z2 +. aH *. bH) 128 ))
[]
Vale.AES.GF128.lemma_Mul128_accum
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
z0: Vale.Math.Poly2_s.poly -> z1: Vale.Math.Poly2_s.poly -> z2: Vale.Math.Poly2_s.poly -> a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree a < 128 /\ Vale.Math.Poly2_s.degree b < 128) (ensures (let z = z0 +. Vale.Math.Poly2_s.shift z1 64 +. Vale.Math.Poly2_s.shift z2 128 in let aL = Vale.Math.Poly2.mask a 64 in let bL = Vale.Math.Poly2.mask b 64 in let aH = Vale.Math.Poly2_s.shift a (- 64) in let bH = Vale.Math.Poly2_s.shift b (- 64) in z +. a *. b == z0 +. aL *. bL +. Vale.Math.Poly2_s.shift (z1 +. aL *. bH +. aH *. bL) 64 +. Vale.Math.Poly2_s.shift (z2 +. aH *. bH) 128))
{ "end_col": 3, "end_line": 832, "start_col": 37, "start_line": 806 }
FStar.Pervasives.Lemma
val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; }
val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n =
false
null
true
let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc ( == ) { reverse ((ah %. m) *. m) nn1; ( == ) { (lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n) } reverse (shift (mask ah n) n) nn1; ( == ) { (lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (- n))) } shift (reverse ah nn1) (- n); ( == ) { lemma_mul_odd_reverse_shift_right a h n } shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (- 1)) n1) (- n); ( == ) { lemma_shift_is_mul (reverse a n1) n } shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (- 1)) n1) (- n); ( == ) { (lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (- 1)) n1) (- n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (- 1)) n1) (- n))) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (- 1)) n1) (- n); ( == ) { lemma_shift_is_div (reverse a n1 *. reverse (shift h (- 1)) n1) n } reverse a n1 +. (reverse a n1 *. reverse (shift h (- 1)) n1) /. m; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2_s.reverse", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.op_Slash_Dot", "Vale.Math.Poly2_s.shift", "Prims.op_Minus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2.mask", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.Lemmas.lemma_mask_is_mod", "Vale.Math.Poly2.lemma_shift_is_mul", "Prims.squash", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Vale.AES.GF128.lemma_mul_odd_reverse_shift_right", "Vale.Math.Poly2.Lemmas.lemma_shift_is_div", "Vale.Math.Poly2_s.monomial", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m ))
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m ))
[]
Vale.AES.GF128.lemma_mul_odd_reverse_shift_right_lo_shift
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree h < n /\ Vale.Math.Poly2_s.degree a < n /\ h.[ 0 ]) (ensures (let n1 = n - 1 in let m = Vale.Math.Poly2_s.monomial n in Vale.Math.Poly2_s.reverse (a *. h %. m *. m) (n + n - 1) == Vale.Math.Poly2_s.reverse a n1 +. Vale.Math.Poly2_s.reverse a n1 *. Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift h (- 1)) n1 /. m))
{ "end_col": 3, "end_line": 324, "start_col": 54, "start_line": 298 }
FStar.Pervasives.Lemma
val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; }
val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n =
false
null
true
let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc ( == ) { reverse (ah /. m) n1; ( == ) { lemma_shift_is_div ah n } reverse (shift ah (- n)) n1; ( == ) { (lemma_bitwise_all (); lemma_equal (reverse (shift ah (- n)) n1) (mask (reverse ah nn1) n)) } mask (reverse ah nn1) n; ( == ) { lemma_mask_is_mod (reverse ah nn1) n } reverse ah nn1 %. m; ( == ) { lemma_mul_odd_reverse_shift_right a h n } (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (- 1)) n1) %. m; ( == ) { lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (- 1)) n1) m } (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (- 1)) n1) %. m; ( == ) { lemma_div_mod_exact (reverse a n1) m } zero +. (reverse a n1 *. reverse (shift h (- 1)) n1) %. m; ( == ) { lemma_add_all () } (reverse a n1 *. reverse (shift h (- 1)) n1) %. m; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2_s.reverse", "Vale.Math.Poly2.op_Slash_Dot", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2_s.shift", "Prims.op_Minus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2_s.zero", "Vale.Math.Poly2.mask", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.Lemmas.lemma_shift_is_div", "Prims.squash", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Vale.Math.Poly2.Lemmas.lemma_mask_is_mod", "Vale.AES.GF128.lemma_mul_odd_reverse_shift_right", "Vale.Math.Poly2.Lemmas.lemma_mod_distribute", "Vale.Math.Poly2.Lemmas.lemma_div_mod_exact", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Vale.Math.Poly2_s.monomial", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m ))
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m ))
[]
Vale.AES.GF128.lemma_mul_odd_reverse_shift_right_hi
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree h < n /\ Vale.Math.Poly2_s.degree a < n /\ h.[ 0 ]) (ensures (let n1 = n - 1 in let m = Vale.Math.Poly2_s.monomial n in Vale.Math.Poly2_s.reverse (a *. h /. m) n1 == Vale.Math.Poly2_s.reverse a n1 *. Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift h (- 1)) n1 %. m))
{ "end_col": 3, "end_line": 288, "start_col": 48, "start_line": 267 }
FStar.Pervasives.Lemma
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 64) 64 in let y_0 = mask y_10 64 in let y_10c = swap y_10 64 +. y_0 *. c in let a = a0 +. shift a1 64 +. shift a2 128 in let x = reverse a (nn + nn - 1) in reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_reduce_rev a0 a1 a2 h n = (* <-----256 bits------> | a2 | + | a1 | + | a0 | ----------------------- = | y3 | y2 | y1 | y0 | | | y_10 | *) let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { x %. g; == { lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; == {lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g} (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; == {lemma_mod_small (x0 +. shift x1 n) g} x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc (==) { rev (x %. g); == { lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g)) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); == {lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n} rev (x0 +. shift x1 n) +. rev (x32 %. g); == {lemma_reduce_rev_hi x3 x2 h n} rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); == {lemma_reduce_rev_bits a0 a1 a2 c n} swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c; }
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 64) 64 in let y_0 = mask y_10 64 in let y_10c = swap y_10 64 +. y_0 *. c in let a = a0 +. shift a1 64 +. shift a2 128 in let x = reverse a (nn + nn - 1) in reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c )) let lemma_reduce_rev a0 a1 a2 h n =
false
null
true
let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (- 1)) (n - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc ( == ) { x %. g; ( == ) { (lemma_bitwise_all (); lemma_equal x ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn)) } ((x0 +. shift x1 n) +. shift (x2 +. shift x3 n) nn) %. g; ( == ) { lemma_mod_distribute (x0 +. shift x1 n) (shift (x2 +. shift x3 n) nn) g } (x0 +. shift x1 n) %. g +. shift (x2 +. shift x3 n) nn %. g; ( == ) { lemma_mod_small (x0 +. shift x1 n) g } x0 +. shift x1 n +. shift (x2 +. shift x3 n) nn %. g; }; calc ( == ) { rev (x %. g); ( == ) { (lemma_bitwise_all (); lemma_equal (rev (x %. g)) (rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g))) } rev (x0 +. shift x1 n) +. rev (shift (x2 +. shift x3 n) nn %. g); ( == ) { (lemma_add_commute x2 (shift x3 n); lemma_shift_is_mul (x2 +. shift x3 n) nn; lemma_shift_is_mul x3 n) } rev (x0 +. shift x1 n) +. rev (x32 %. g); ( == ) { lemma_reduce_rev_hi x3 x2 h n } rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n)); ( == ) { lemma_reduce_rev_bits a0 a1 a2 c n } swap y_10c n +. (a2 +. shift a1 (- n)) +. mask y_10c n *. c; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.swap", "Vale.Math.Poly2_s.shift", "Prims.op_Minus", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.mask", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Prims.squash", "Vale.Math.Poly2.lemma_shift_is_mul", "Vale.Math.Poly2.lemma_add_commute", "Vale.AES.GF128.lemma_reduce_rev_hi", "Vale.AES.GF128.lemma_reduce_rev_bits", "Vale.Math.Poly2.Lemmas.lemma_mod_distribute", "Vale.Math.Poly2.Lemmas.lemma_mod_small", "Vale.Math.Poly2_s.reverse", "Prims.op_Subtraction", "Prims.op_Addition", "Vale.Math.Poly2_s.monomial", "Prims.int" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; }
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let y_10 = a0 +. shift (mask a1 64) 64 in let y_0 = mask y_10 64 in let y_10c = swap y_10 64 +. y_0 *. c in let a = a0 +. shift a1 64 +. shift a2 128 in let x = reverse a (nn + nn - 1) in reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c ))
[]
Vale.AES.GF128.lemma_reduce_rev
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Vale.Math.Poly2_s.poly -> a1: Vale.Math.Poly2_s.poly -> a2: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires n == 64 /\ Vale.Math.Poly2_s.degree a0 < n + n /\ Vale.Math.Poly2_s.degree a1 < n + n /\ Vale.Math.Poly2_s.degree a2 < n + n /\ Vale.Math.Poly2_s.degree (Vale.Math.Poly2_s.monomial (n + n) +. h) == n + n /\ Vale.Math.Poly2_s.degree h < n /\ h.[ 0 ]) (ensures (let nn = n + n in let mm = Vale.Math.Poly2_s.monomial nn in let m = Vale.Math.Poly2_s.monomial n in let g = mm +. h in let c = Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift h (- 1)) (n - 1) in let y_10 = a0 +. Vale.Math.Poly2_s.shift (Vale.Math.Poly2.mask a1 64) 64 in let y_0 = Vale.Math.Poly2.mask y_10 64 in let y_10c = Vale.Math.Poly2.swap y_10 64 +. y_0 *. c in let a = a0 +. Vale.Math.Poly2_s.shift a1 64 +. Vale.Math.Poly2_s.shift a2 128 in let x = Vale.Math.Poly2_s.reverse a (nn + nn - 1) in Vale.Math.Poly2_s.reverse (x %. g) (nn - 1) == Vale.Math.Poly2.swap y_10c 64 +. (a2 +. Vale.Math.Poly2_s.shift a1 (- 64)) +. Vale.Math.Poly2.mask y_10c 64 *. c))
{ "end_col": 3, "end_line": 569, "start_col": 35, "start_line": 514 }
FStar.Pervasives.Lemma
val lemma_shift_left_1 (a:poly) : Lemma (requires degree a < 128) (ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); ()
val lemma_shift_left_1 (a:poly) : Lemma (requires degree a < 128) (ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a)) let lemma_shift_left_1 a =
false
null
true
reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); ()
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.unit", "Vale.Arch.TypesNative.lemma_quad32_vec_equal", "Vale.Math.Poly2.Bits_s.to_quad32", "Vale.Math.Poly2_s.shift", "Vale.AES.GF128.quad32_shift_left_1", "Vale.Def.Types_s.reverse_bytes_nat32_reveal", "Vale.Def.Types_s.quad32_xor_reveal", "Vale.Math.Poly2.Lemmas.lemma_reverse_define_all", "Vale.Math.Poly2.Lemmas.lemma_shift_define", "Vale.Math.Poly2.Lemmas.lemma_index_all", "Vale.Arch.TypesNative.lemma_ixor_nth_all", "Vale.Arch.TypesNative.lemma_ishr_nth_all", "Vale.Arch.TypesNative.lemma_ishl_nth_all", "Vale.Arch.TypesNative.lemma_zero_nth", "Vale.Math.Poly2.Bits_s.reveal_to_quad32" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20"
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_shift_left_1 (a:poly) : Lemma (requires degree a < 128) (ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
[]
Vale.AES.GF128.lemma_shift_left_1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree a < 128) (ensures Vale.Math.Poly2.Bits_s.to_quad32 (Vale.Math.Poly2_s.shift a 1) == Vale.AES.GF128.quad32_shift_left_1 (Vale.Math.Poly2.Bits_s.to_quad32 a))
{ "end_col": 4, "end_line": 20, "start_col": 2, "start_line": 8 }
FStar.Pervasives.Lemma
val lemma_reduce_rev_bits (a0 a1 a2 c: poly) (n: pos) : Lemma (requires n == 64 /\ degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n) (ensures (let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (- n)) +. mask y_10c n *. c)))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c) )) = let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc (==) { y0; == {lemma_bitwise_all (); lemma_equal y0 y_0} y_0; }; calc (==) { shift y1 n +. y0; == {lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10} y_10; }; calc (==) { (shift y1 n +. y0 +. swap (y0 *. c) n); == {lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64} swap (swap y_10 n +. y_0 *. c) n; }; calc (==) { rev (x0 +. shift x1 n); == {lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (-n))} a2 +. shift a1 (-n); }; calc (==) { y1 +. mask (y0 *. c) n; == {lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)} mask y_10c n; }; calc (==) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); == {lemma_add_all ()} (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; }
val lemma_reduce_rev_bits (a0 a1 a2 c: poly) (n: pos) : Lemma (requires n == 64 /\ degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n) (ensures (let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (- n)) +. mask y_10c n *. c))) let lemma_reduce_rev_bits (a0 a1 a2 c: poly) (n: pos) : Lemma (requires n == 64 /\ degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n) (ensures (let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (- n)) +. mask y_10c n *. c))) =
false
null
true
let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in calc ( == ) { y0; ( == ) { (lemma_bitwise_all (); lemma_equal y0 y_0) } y_0; }; calc ( == ) { shift y1 n +. y0; ( == ) { (lemma_bitwise_all (); lemma_equal (shift y1 n +. y0) y_10) } y_10; }; calc ( == ) { (shift y1 n +. y0 +. swap (y0 *. c) n); ( == ) { lemma_swap_right (shift y1 n +. y0) (y0 *. c) 64 } swap (swap y_10 n +. y_0 *. c) n; }; calc ( == ) { rev (x0 +. shift x1 n); ( == ) { (lemma_bitwise_all (); lemma_equal (rev (x0 +. shift x1 n)) (a2 +. shift a1 (- n))) } a2 +. shift a1 (- n); }; calc ( == ) { y1 +. mask (y0 *. c) n; ( == ) { (lemma_bitwise_all (); lemma_equal (y1 +. mask (y0 *. c) n) (mask y_10c n)) } mask y_10c n; }; calc ( == ) { (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))); ( == ) { lemma_add_all () } (shift y1 n +. y0 +. swap (y0 *. c) n) +. rev (x0 +. shift x1 n) +. (y1 +. mask (y0 *. c) n) *. c; }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.mask", "Vale.Math.Poly2.swap", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Prims.squash", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Prims.op_Minus", "Vale.AES.GF128.lemma_swap_right", "Vale.Math.Poly2_s.reverse", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.int", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Vale.Math.Poly2_s.degree", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); } #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_swap_right (a b:poly) (n:nat) : Lemma (requires n == 64 /\ degree a < n + n /\ degree b < n + n) (ensures swap (swap a n +. b) n == a +. swap b n) = lemma_bitwise_all (); lemma_equal (swap (swap a n +. b) n) (a +. swap b n) #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0" let lemma_reduce_rev_bits (a0 a1 a2 c:poly) (n:pos) : Lemma (requires n == 64 /\ // verification times out unless n is known degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n ) (ensures ( let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (-n)) n in let x2 = mask (shift x (-nn)) n in let x3 = shift x (-nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (-n)) +. mask y_10c n *. c)
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_reduce_rev_bits (a0 a1 a2 c: poly) (n: pos) : Lemma (requires n == 64 /\ degree a0 < n + n /\ degree a1 < n + n /\ degree a2 < n + n /\ degree c < n) (ensures (let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = reverse a (nn - 1) in let y_10 = a0 +. shift (mask a1 n) n in let y_0 = mask y_10 n in let y_10c = swap y_10 n +. y_0 *. c in let a = a0 +. shift a1 n +. shift a2 nn in let x = reverse a (nn + nn - 1) in let x0 = mask x n in let x1 = mask (shift x (- n)) n in let x2 = mask (shift x (- nn)) n in let x3 = shift x (- nnn) in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in (rev (x0 +. shift x1 n) +. ((y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n))) == (swap y_10c n +. (a2 +. shift a1 (- n)) +. mask y_10c n *. c)))
[]
Vale.AES.GF128.lemma_reduce_rev_bits
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Vale.Math.Poly2_s.poly -> a1: Vale.Math.Poly2_s.poly -> a2: Vale.Math.Poly2_s.poly -> c: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires n == 64 /\ Vale.Math.Poly2_s.degree a0 < n + n /\ Vale.Math.Poly2_s.degree a1 < n + n /\ Vale.Math.Poly2_s.degree a2 < n + n /\ Vale.Math.Poly2_s.degree c < n) (ensures (let n1 = n - 1 in let nn = n + n in let nnn = nn + n in let rev a = Vale.Math.Poly2_s.reverse a (nn - 1) in let y_10 = a0 +. Vale.Math.Poly2_s.shift (Vale.Math.Poly2.mask a1 n) n in let y_0 = Vale.Math.Poly2.mask y_10 n in let y_10c = Vale.Math.Poly2.swap y_10 n +. y_0 *. c in let a = a0 +. Vale.Math.Poly2_s.shift a1 n +. Vale.Math.Poly2_s.shift a2 nn in let x = Vale.Math.Poly2_s.reverse a (nn + nn - 1) in let x0 = Vale.Math.Poly2.mask x n in let x1 = Vale.Math.Poly2.mask (Vale.Math.Poly2_s.shift x (- n)) n in let x2 = Vale.Math.Poly2.mask (Vale.Math.Poly2_s.shift x (- nn)) n in let x3 = Vale.Math.Poly2_s.shift x (- nnn) in let y0 = Vale.Math.Poly2_s.reverse x3 n1 in let y1 = Vale.Math.Poly2_s.reverse x2 n1 in rev (x0 +. Vale.Math.Poly2_s.shift x1 n) +. ((y1 +. Vale.Math.Poly2.mask (y0 *. c) n) *. c +. (Vale.Math.Poly2_s.shift y1 n +. y0 +. Vale.Math.Poly2.swap (y0 *. c) n)) == Vale.Math.Poly2.swap y_10c n +. (a2 +. Vale.Math.Poly2_s.shift a1 (- n)) +. Vale.Math.Poly2.mask y_10c n *. c))
{ "end_col": 3, "end_line": 511, "start_col": 1, "start_line": 466 }
FStar.Pervasives.Lemma
val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_reduce_rev_hi x3 x2 h n = let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc (==) { ((x3 *. m +. x2) *. mm) %. (mm +. h); == {lemma_mod_reduce (x3 *. m +. x2) mm h} ((x3 *. m +. x2) *. h) %. (mm +. h); == {lemma_mul_distribute_left (x3 *. m) x2 h} (x3 *. m *. h +. x2 *. h) %. (mm +. h); == {lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); == {lemma_mod_small (x2 *. h) (mm +. h)} (x3 *. m *. h) %. (mm +. h) +. x2 *. h; == {lemma_mul_all ()} (x3h *. m) %. (mm +. h) +. x2 *. h; == {lemma_div_mod x3h m} ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; == {lemma_mul_distribute_left (x3hh *. m) x3hl m} (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; == {lemma_mod_small (x3hl *. m) (mm +. h)} (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_associate x3hh m m} (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mul_monomials n n} (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_reduce x3hh mm h} (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; == {lemma_mod_small (x3hh *. h) (mm +. h)} x3hh *. h +. (x3hl *. m) +. x2 *. h; == {lemma_add_all ()} x3hh *. h +. x2 *. h +. (x3hl *. m); == {lemma_mul_distribute_left x3hh x2 h} (x3hh +. x2) *. h +. x3hl *. m; }; calc (==) { reverse (x32 %. g) nn1; == { // use the calc result from above (could put nested calc here, but it's slower) } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; == {lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1} reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; == {lemma_mul_odd_reverse_shift_right_lo_shift x3 h n} reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n} reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); == {lemma_add_reverse x3hh x2 n1} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left (reverse x3hh n1) y1 c} (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_odd_reverse_shift_right_hi x3 h n} ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); == {lemma_mul_distribute_left ((y0 *. c) %. m) y1 c} ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); == { lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (-n)); == {lemma_add_all ()} (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))); == { lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (-n))) (shift y1 n +. y0 +. swap (y0 *. c) n) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); }
val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) )) let lemma_reduce_rev_hi x3 x2 h n =
false
null
true
let n1 = n - 1 in let nn = n + n in let nn1 = n + n - 1 in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (- 1)) n1 in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 n1 in let y1 = reverse x2 n1 in let x3h = x3 *. h in let x3hl = x3h %. m in let x3hh = x3h /. m in lemma_index_i h 0; calc ( == ) { ((x3 *. m +. x2) *. mm) %. (mm +. h); ( == ) { lemma_mod_reduce (x3 *. m +. x2) mm h } ((x3 *. m +. x2) *. h) %. (mm +. h); ( == ) { lemma_mul_distribute_left (x3 *. m) x2 h } (x3 *. m *. h +. x2 *. h) %. (mm +. h); ( == ) { lemma_mod_distribute (x3 *. m *. h) (x2 *. h) (mm +. h) } (x3 *. m *. h) %. (mm +. h) +. (x2 *. h) %. (mm +. h); ( == ) { lemma_mod_small (x2 *. h) (mm +. h) } (x3 *. m *. h) %. (mm +. h) +. x2 *. h; ( == ) { lemma_mul_all () } (x3h *. m) %. (mm +. h) +. x2 *. h; ( == ) { lemma_div_mod x3h m } ((x3hh *. m +. x3hl) *. m) %. (mm +. h) +. x2 *. h; ( == ) { lemma_mul_distribute_left (x3hh *. m) x3hl m } (x3hh *. m *. m +. x3hl *. m) %. (mm +. h) +. x2 *. h; ( == ) { lemma_mod_distribute (x3hh *. m *. m) (x3hl *. m) (mm +. h) } (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) %. (mm +. h) +. x2 *. h; ( == ) { lemma_mod_small (x3hl *. m) (mm +. h) } (x3hh *. m *. m) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; ( == ) { lemma_mul_associate x3hh m m } (x3hh *. (m *. m)) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; ( == ) { lemma_mul_monomials n n } (x3hh *. mm) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; ( == ) { lemma_mod_reduce x3hh mm h } (x3hh *. h) %. (mm +. h) +. (x3hl *. m) +. x2 *. h; ( == ) { lemma_mod_small (x3hh *. h) (mm +. h) } x3hh *. h +. (x3hl *. m) +. x2 *. h; ( == ) { lemma_add_all () } x3hh *. h +. x2 *. h +. (x3hl *. m); ( == ) { lemma_mul_distribute_left x3hh x2 h } (x3hh +. x2) *. h +. x3hl *. m; }; calc ( == ) { reverse (x32 %. g) nn1; ( == ) { () } reverse ((x3hh +. x2) *. h +. x3hl *. m) nn1; ( == ) { lemma_add_reverse ((x3hh +. x2) *. h) (x3hl *. m) nn1 } reverse ((x3hh +. x2) *. h) nn1 +. reverse (x3hl *. m) nn1; ( == ) { lemma_mul_odd_reverse_shift_right_lo_shift x3 h n } reverse ((x3hh +. x2) *. h) nn1 +. (y0 +. (y0 *. c) /. m); ( == ) { lemma_mul_odd_reverse_shift_right (x3hh +. x2) h n } reverse (x3hh +. x2) n1 *. m +. reverse (x3hh +. x2) n1 *. c +. (y0 +. (y0 *. c) /. m); ( == ) { lemma_add_reverse x3hh x2 n1 } (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 +. y1) *. c +. (y0 +. (y0 *. c) /. m); ( == ) { lemma_mul_distribute_left (reverse x3hh n1) y1 c } (reverse x3hh n1 +. y1) *. m +. (reverse x3hh n1 *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); ( == ) { lemma_mul_odd_reverse_shift_right_hi x3 h n } ((y0 *. c) %. m +. y1) *. m +. (((y0 *. c) %. m) *. c +. y1 *. c) +. (y0 +. (y0 *. c) /. m); ( == ) { lemma_mul_distribute_left ((y0 *. c) %. m) y1 c } ((y0 *. c) %. m +. y1) *. m +. ((y0 *. c) %. m +. y1) *. c +. (y0 +. (y0 *. c) /. m); ( == ) { (lemma_shift_is_div (y0 *. c) n; lemma_mask_is_mod (y0 *. c) n; lemma_shift_is_mul ((y0 *. c) %. m +. y1) n) } shift (mask (y0 *. c) n +. y1) n +. (mask (y0 *. c) n +. y1) *. c +. (y0 +. shift (y0 *. c) (- n)); ( == ) { lemma_add_all () } (y1 +. mask (y0 *. c) n) *. c +. (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (- n))); ( == ) { (lemma_bitwise_all (); lemma_equal (shift (mask (y0 *. c) n +. y1) n +. (y0 +. shift (y0 *. c) (- n))) (shift y1 n +. y0 +. swap (y0 *. c) n)) } (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n); }
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.Math.Poly2_s.reverse", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.mask", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.swap", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Minus", "Vale.Math.Poly2.op_Slash_Dot", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Math.Poly2.Lemmas.lemma_add_reverse", "Vale.AES.GF128.lemma_mul_odd_reverse_shift_right_lo_shift", "Vale.AES.GF128.lemma_mul_odd_reverse_shift_right", "Vale.Math.Poly2.Lemmas.lemma_mul_distribute_left", "Vale.AES.GF128.lemma_mul_odd_reverse_shift_right_hi", "Vale.Math.Poly2.lemma_shift_is_mul", "Vale.Math.Poly2.Lemmas.lemma_mask_is_mod", "Vale.Math.Poly2.Lemmas.lemma_shift_is_div", "Vale.Math.Poly2.Lemmas.lemma_add_all", "Vale.Math.Poly2.lemma_equal", "Vale.Math.Poly2.Lemmas.lemma_bitwise_all", "Vale.Math.Poly2.Lemmas.lemma_mod_reduce", "Vale.Math.Poly2.Lemmas.lemma_mod_distribute", "Vale.Math.Poly2.Lemmas.lemma_mod_small", "Vale.Math.Poly2.Lemmas.lemma_mul_all", "Vale.Math.Poly2.lemma_div_mod", "Vale.Math.Poly2.lemma_mul_associate", "Vale.Math.Poly2.Lemmas.lemma_mul_monomials", "Vale.Math.Poly2.lemma_index_i", "Vale.Math.Poly2_s.monomial", "Prims.int", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); () let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); () #reset-options let lemma_reverse_reverse a n = lemma_reverse_define_all (); lemma_index_all (); lemma_equal a (reverse (reverse a n) n) let lemma_gf128_degree () = lemma_add_define_all (); lemma_monomial_define 128; lemma_degree_is gf128_modulus_low_terms 7; lemma_degree_is (monomial 128) 128; lemma_degree_is gf128_modulus 128; () let lemma_gf128_constant_rev q = let n0:nat32 = 0 in let n1:nat32 = 0 in let n2:nat32 = 0 in let n3:nat32 = 0xe1000000 in calc (==) { Mkfour n0 n1 n2 n3; == {lemma_quad32_of_nat32s n0 n1 n2 n3} to_quad32 (poly128_of_nat32s n0 n1 n2 n3); == { lemma_bitwise_all (); lemma_to_nat 32 (reverse gf128_modulus_low_terms 31) 0xe1000000; lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse gf128_modulus_low_terms 127) } to_quad32 (reverse gf128_modulus_low_terms 127); }; Vale.Arch.Types.lemma_quad32_xor () let lemma_quad32_double_hi_rev a = let ra = reverse a 127 in lemma_split_define ra 64; lemma_split_define_forward a 64; lemma_index_all (); lemma_add_define_all (); lemma_reverse_define_all (); lemma_equal (a /. monomial 64) (reverse ra 63); lemma_quad32_double a let lemma_gf128_mul a b c d n = let m = monomial n in let ab = a *. m +. b in let cd = c *. m +. d in let ac = a *. c in let ad = a *. d in let bc = b *. c in let bd = b *. d in let adh = ad /. m in let bch = bc /. m in let adl = ad %. m in let bcl = bc %. m in // ab *. cd // (a *. m +. b) *. (c *. m +. d) lemma_mul_distribute_right (a *. m +. b) (c *. m) d; lemma_mul_distribute_left (a *. m) b (c *. m); lemma_mul_distribute_left (a *. m) b d; // ((a *. m) *. (c *. m) +. b *. (c *. m)) +. ((a *. m) *. d +. b *. d); lemma_mul_associate b c m; lemma_mul_associate a m d; lemma_mul_commute m d; lemma_mul_associate a d m; lemma_mul_associate a m (c *. m); lemma_mul_associate m c m; lemma_mul_commute c m; lemma_mul_associate c m m; lemma_mul_associate a c (m *. m); // (ac *. (m *. m) +. bc *. m) +. (ad *. m +. bd) lemma_div_mod ad m; lemma_div_mod bc m; // (ac *. (m *. m) +. (bch *. m +. bcl) *. m) +. ((adh *. m +. adl) *. m +. bd) lemma_mul_distribute_left (bch *. m) bcl m; lemma_mul_distribute_left (adh *. m) adl m; // (ac *. (m *. m) +. (bch *. m *. m +. bcl *. m)) +. ((adh *. m *. m +. adl *. m) +. bd) lemma_mul_associate bch m m; lemma_mul_associate adh m m; // (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd) assert (ab *. cd == (ac *. (m *. m) +. (bch *. (m *. m) +. bcl *. m)) +. ((adh *. (m *. m) +. adl *. m) +. bd)); lemma_add_define_all (); lemma_equal (ab *. cd) ((ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd)); // (ac *. (m *. m) +. bch *. (m *. m) +. adh *. (m *. m)) +. (bcl *. m +. adl *. m +. bd) lemma_mul_distribute_left ac bch (m *. m); lemma_mul_distribute_left (ac +. bch) adh (m *. m); // (ac +. bch +. adh) *. (m *. m) +. (bcl *. m +. adl *. m +. bd) lemma_mul_monomials n n; lemma_shift_is_mul (ac +. bch +. adh) (n + n); // shift (ac +. bch +. adh) (n + n) +. (bcl *. m +. adl *. m +. bd) () let lemma_gf128_reduce a b g n h = let ab = a *. b in let d = ab /. n in let m = ab %. n in let dh = d *. h in let d' = dh /. n in let m' = dh %. n in lemma_div_mod ab n; lemma_div_mod dh n; // ab == d *. n +. m // dh == d' *. n +. m' // ab % g // (d *. n +. m) % g lemma_add_define_all (); lemma_zero_define (); lemma_equal n (g +. h); // (d *. (g +. h) +. m) % g lemma_mul_distribute_right d g h; // (d *. g +. dh +. m) % g // (d *. g +. (d' *. n +. m') + m) % g // (d *. g +. (d' *. (g +. h) +. m') + m) % g lemma_mul_distribute_right d' g h; // (d *. g +. (d' *. g +. d' *. h +. m') + m) % g lemma_equal ab ((d *. g +. d' *. g) +. (d' *. h +. m' +. m)); lemma_mul_distribute_left d d' g; // ((d +. d') *. g +. (d' *. h +. m' +. m)) % g lemma_mod_distribute ((d +. d') *. g) (d' *. h +. m' +. m) g; lemma_div_mod_exact (d +. d') g; lemma_equal (ab %. g) ((d' *. h +. m' +. m) %. g); // (d' *. h +. m' +. m) % g lemma_mod_small (d' *. h +. m' +. m) g; // d' *. h +. m' +. m () #reset-options "--max_ifuel 0" let lemma_gf128_reduce_rev a b h n = let m = monomial n in let g = m +. h in lemma_gf128_reduce a b g m h; let r x = reverse x (n - 1) in let rr x = reverse x (2 * n - 1) in let ab = a *. b in let d = (a *. b) /. m in let dh = d *. h in let rab = rr (a *. b) in let rd = rab %. m in let rdh = rr (r rd *. h) in let rdhL = rdh %. m in let rdhLh = r (r rdhL *. h) in lemma_add_define_all (); lemma_reverse_define_all (); lemma_index_all (); lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (r rd) d; lemma_split_define ab n; lemma_split_define_forward rab n; lemma_equal (rab /. m) (r (ab %. m)); lemma_split_define dh n; lemma_split_define_forward rdh n; lemma_equal (rdh /. m) (r (dh %. m)); lemma_equal (r rdhL) (dh /. m); lemma_equal rdhLh (r ((dh /. m) *. h)); lemma_equal (r ((a *. b) %. g)) (r ((dh /. m) *. h) +. r (dh %. m) +. r ((a *. b) %. m)); () val lemma_odd_reverse_shift_right (a:poly) (n:pos) : Lemma (requires degree a < n /\ a.[0]) (ensures shift (reverse a (n - 1)) 1 == monomial n +. reverse (shift a (-1)) (n - 1)) let lemma_odd_reverse_shift_right a n = lemma_bitwise_all (); lemma_equal (shift (reverse a (n - 1)) 1) (monomial n +. reverse (shift a (-1)) (n - 1)) val lemma_mul_odd_reverse_shift_right (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (a *. h) (n + n - 1) == reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1 )) let lemma_mul_odd_reverse_shift_right a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in calc (==) { reverse (a *. h) nn1; == {lemma_mul_reverse_shift_1 a h n1} shift (reverse a n1 *. reverse h n1) 1; == {lemma_shift_is_mul_left (reverse a n1 *. reverse h n1) 1} monomial 1 *. (reverse a n1 *. reverse h n1); == {lemma_mul_all ()} reverse a n1 *. (monomial 1 *. reverse h n1); == {lemma_shift_is_mul_left (reverse h n1) 1} reverse a n1 *. shift (reverse h n1) 1; == {lemma_odd_reverse_shift_right h n} reverse a n1 *. (m +. reverse (shift h (-1)) n1); == {lemma_mul_distribute_right (reverse a n1) m (reverse (shift h (-1)) n1)} reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1; } val lemma_mul_odd_reverse_shift_right_hi (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse ((a *. h) /. m) n1 == (reverse a n1 *. reverse (shift h (-1)) n1) %. m )) let lemma_mul_odd_reverse_shift_right_hi a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse (ah /. m) n1; == {lemma_shift_is_div ah n} reverse (shift ah (-n)) n1; == {lemma_bitwise_all (); lemma_equal (reverse (shift ah (-n)) n1) (mask (reverse ah nn1) n)} mask (reverse ah nn1) n; == {lemma_mask_is_mod (reverse ah nn1) n} reverse ah nn1 %. m; == {lemma_mul_odd_reverse_shift_right a h n} (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_mod_distribute (reverse a n1 *. m) (reverse a n1 *. reverse (shift h (-1)) n1) m} (reverse a n1 *. m) %. m +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_div_mod_exact (reverse a n1) m} zero +. (reverse a n1 *. reverse (shift h (-1)) n1) %. m; == {lemma_add_all ()} (reverse a n1 *. reverse (shift h (-1)) n1) %. m; } val lemma_mul_odd_reverse_shift_right_lo_shift (a h:poly) (n:pos) : Lemma (requires degree h < n /\ degree a < n /\ h.[0]) (ensures ( let n1 = n - 1 in let m = monomial n in reverse (((a *. h) %. m) *. m) (n + n - 1) == reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m )) let lemma_mul_odd_reverse_shift_right_lo_shift a h n = let n1 = n - 1 in let nn1 = n + n - 1 in let m = monomial n in let ah = a *. h in calc (==) { reverse ((ah %. m) *. m) nn1; == {lemma_shift_is_mul (ah %. m) n; lemma_mask_is_mod ah n} reverse (shift (mask ah n) n) nn1; == { lemma_bitwise_all (); lemma_equal (reverse (shift (mask ah n) n) nn1) (shift (reverse ah nn1) (-n)) } shift (reverse ah nn1) (-n); == {lemma_mul_odd_reverse_shift_right a h n} shift (reverse a n1 *. m +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_mul (reverse a n1) n} shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n); == { lemma_bitwise_all (); lemma_equal (shift (shift (reverse a n1) n +. reverse a n1 *. reverse (shift h (-1)) n1) (-n)) (reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n)) } reverse a n1 +. shift (reverse a n1 *. reverse (shift h (-1)) n1) (-n); == {lemma_shift_is_div (reverse a n1 *. reverse (shift h (-1)) n1) n} reverse a n1 +. (reverse a n1 *. reverse (shift h (-1)) n1) /. m; } val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) ))
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_reduce_rev_hi (x3 x2 h:poly) (n:pos) : Lemma (requires degree x3 < n /\ degree x2 < n /\ degree (monomial (n + n) +. h) == n + n /\ degree h < n /\ h.[0] ) (ensures ( let nn = n + n in let mm = monomial nn in let m = monomial n in let g = mm +. h in let c = reverse (shift h (-1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = reverse x3 (n - 1) in let y1 = reverse x2 (n - 1) in reverse (x32 %. g) (nn - 1) == (y1 +. mask (y0 *. c) n) *. c +. (shift y1 n +. y0 +. swap (y0 *. c) n) ))
[]
Vale.AES.GF128.lemma_reduce_rev_hi
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x3: Vale.Math.Poly2_s.poly -> x2: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> n: Prims.pos -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree x3 < n /\ Vale.Math.Poly2_s.degree x2 < n /\ Vale.Math.Poly2_s.degree (Vale.Math.Poly2_s.monomial (n + n) +. h) == n + n /\ Vale.Math.Poly2_s.degree h < n /\ h.[ 0 ]) (ensures (let nn = n + n in let mm = Vale.Math.Poly2_s.monomial nn in let m = Vale.Math.Poly2_s.monomial n in let g = mm +. h in let c = Vale.Math.Poly2_s.reverse (Vale.Math.Poly2_s.shift h (- 1)) (n - 1) in let x32 = (x3 *. m +. x2) *. mm in let y0 = Vale.Math.Poly2_s.reverse x3 (n - 1) in let y1 = Vale.Math.Poly2_s.reverse x2 (n - 1) in Vale.Math.Poly2_s.reverse (x32 %. g) (nn - 1) == (y1 +. Vale.Math.Poly2.mask (y0 *. c) n) *. c +. (Vale.Math.Poly2_s.shift y1 n +. y0 +. Vale.Math.Poly2.swap (y0 *. c) n)))
{ "end_col": 3, "end_line": 428, "start_col": 35, "start_line": 346 }
FStar.Pervasives.Lemma
val lemma_shift_2_left_1 (lo hi:poly) : Lemma (requires degree hi < 127 /\ degree lo < 128) (ensures ( let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in lo' == to_quad32 (a' %. n) /\ hi' == to_quad32 (a' /. n) ))
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_shift_2_left_1 lo hi = let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (qlo', qhi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); ()
val lemma_shift_2_left_1 (lo hi:poly) : Lemma (requires degree hi < 127 /\ degree lo < 128) (ensures ( let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in lo' == to_quad32 (a' %. n) /\ hi' == to_quad32 (a' /. n) )) let lemma_shift_2_left_1 lo hi =
false
null
true
let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let qlo', qhi' = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in reveal_to_quad32 lo; reveal_to_quad32 hi; reveal_to_quad32 (a' %. n); reveal_to_quad32 (a' /. n); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_add_define_all (); lemma_reverse_define_all (); lemma_div_mod a' n; lemma_shift_is_mul hi 128; lemma_shift_define hi 128; lemma_shift_is_mul (a' /. n) 128; let lemma_lo () : Lemma (qlo' == to_quad32 (a' %. n)) = lemma_shift_define (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qlo' (to_quad32 (a' %. n)) in let lemma_hi () : Lemma (qhi' == to_quad32 (a' /. n)) = lemma_shift_define_forward (a' /. n) 128; quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal qhi' (to_quad32 (a' /. n)) in lemma_lo (); lemma_hi (); ()
{ "checked_file": "Vale.AES.GF128.fst.checked", "dependencies": [ "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GF128.fst" }
[ "lemma" ]
[ "Vale.Math.Poly2_s.poly", "Vale.Def.Types_s.quad32", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Math.Poly2.Bits_s.to_quad32", "Vale.Math.Poly2_s.div", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Arch.TypesNative.lemma_quad32_vec_equal", "Vale.Math.Poly2.op_Slash_Dot", "Vale.Def.Types_s.reverse_bytes_nat32_reveal", "Vale.Def.Types_s.quad32_xor_reveal", "Vale.Math.Poly2.Lemmas.lemma_shift_define_forward", "Vale.Math.Poly2_s.mod", "Vale.Math.Poly2.op_Percent_Dot", "Vale.Math.Poly2.Lemmas.lemma_shift_define", "Vale.Math.Poly2.lemma_shift_is_mul", "Vale.Math.Poly2.lemma_div_mod", "Vale.Math.Poly2.Lemmas.lemma_reverse_define_all", "Vale.Math.Poly2.Lemmas.lemma_add_define_all", "Vale.Math.Poly2.Lemmas.lemma_index_all", "Vale.Arch.TypesNative.lemma_ixor_nth_all", "Vale.Arch.TypesNative.lemma_ishr_nth_all", "Vale.Arch.TypesNative.lemma_ishl_nth_all", "Vale.Arch.TypesNative.lemma_zero_nth", "Vale.Math.Poly2.Bits_s.reveal_to_quad32", "FStar.Pervasives.Native.tuple2", "Vale.AES.GF128.quad32_shift_2_left_1", "Vale.Math.Poly2_s.shift", "Vale.Math.Poly2.op_Plus_Dot", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2_s.monomial" ]
[]
module Vale.AES.GF128 open FStar.Mul open Vale.Arch.TypesNative open Vale.Math.Poly2.Bits #reset-options "--z3rlimit 20" let lemma_shift_left_1 a = reveal_to_quad32 a; reveal_to_quad32 (shift a 1); lemma_zero_nth 32; lemma_ishl_nth_all 32; lemma_ishr_nth_all 32; lemma_ixor_nth_all 32; lemma_index_all (); lemma_shift_define a 1; lemma_reverse_define_all (); quad32_xor_reveal (); reverse_bytes_nat32_reveal (); lemma_quad32_vec_equal (to_quad32 (shift a 1)) (quad32_shift_left_1 (to_quad32 a)); ()
false
false
Vale.AES.GF128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_shift_2_left_1 (lo hi:poly) : Lemma (requires degree hi < 127 /\ degree lo < 128) (ensures ( let n = monomial 128 in let a = hi *. n +. lo in let a' = shift a 1 in let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in lo' == to_quad32 (a' %. n) /\ hi' == to_quad32 (a' /. n) ))
[]
Vale.AES.GF128.lemma_shift_2_left_1
{ "file_name": "vale/code/crypto/aes/Vale.AES.GF128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
lo: Vale.Math.Poly2_s.poly -> hi: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree hi < 127 /\ Vale.Math.Poly2_s.degree lo < 128) (ensures (let n = Vale.Math.Poly2_s.monomial 128 in let a = hi *. n +. lo in let a' = Vale.Math.Poly2_s.shift a 1 in let _ = Vale.AES.GF128.quad32_shift_2_left_1 (Vale.Math.Poly2.Bits_s.to_quad32 lo) (Vale.Math.Poly2.Bits_s.to_quad32 hi) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ lo' hi' = _ in lo' == Vale.Math.Poly2.Bits_s.to_quad32 (a' %. n) /\ hi' == Vale.Math.Poly2.Bits_s.to_quad32 (a' /. n)) <: Type0))
{ "end_col": 4, "end_line": 57, "start_col": 32, "start_line": 22 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len
let kam (len: BN.meta_len t_limbs) =
false
null
false
AM.mk_runtime_almost_mont #t_limbs len
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.AlmostMontgomery.mk_runtime_almost_mont", "Hacl.Bignum.AlmostMontgomery.almost_mont" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract
false
true
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val kam : len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.AlmostMontgomery.almost_mont Hacl.Bignum32.t_limbs
[]
Hacl.Bignum32.kam
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.AlmostMontgomery.almost_mont Hacl.Bignum32.t_limbs
{ "end_col": 40, "end_line": 17, "start_col": 2, "start_line": 17 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len
let ke (len: BN.meta_len t_limbs) =
false
null
false
BE.mk_runtime_exp #t_limbs len
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Exponentiation.mk_runtime_exp", "Hacl.Bignum.Exponentiation.exp" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract
false
true
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ke : len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.Exponentiation.exp Hacl.Bignum32.t_limbs
[]
Hacl.Bignum32.ke
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.Exponentiation.exp Hacl.Bignum32.t_limbs
{ "end_col": 32, "end_line": 21, "start_col": 2, "start_line": 21 }
Prims.Tot
val new_bn_from_bytes_be: BS.new_bn_from_bytes_be_st t_limbs
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b
val new_bn_from_bytes_be: BS.new_bn_from_bytes_be_st t_limbs let new_bn_from_bytes_be r len b =
false
null
false
BS.new_bn_from_bytes_be r len b
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperHeap.rid", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.SafeAPI.new_bn_from_bytes_be", "Hacl.Bignum32.t_limbs", "LowStar.Buffer.buffer", "Hacl.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res
false
true
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_bn_from_bytes_be: BS.new_bn_from_bytes_be_st t_limbs
[]
Hacl.Bignum32.new_bn_from_bytes_be
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.SafeAPI.new_bn_from_bytes_be_st Hacl.Bignum32.t_limbs
{ "end_col": 33, "end_line": 81, "start_col": 2, "start_line": 81 }
Prims.Tot
val mont_ctx_free: MA.bn_field_free_st t_limbs
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_ctx_free k = MA.bn_field_free k
val mont_ctx_free: MA.bn_field_free_st t_limbs let mont_ctx_free k =
false
null
false
MA.bn_field_free k
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.MontArithmetic.bn_field_free", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n
false
true
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_ctx_free: MA.bn_field_free_st t_limbs
[]
Hacl.Bignum32.mont_ctx_free
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.MontArithmetic.bn_field_free_st Hacl.Bignum32.t_limbs
{ "end_col": 20, "end_line": 61, "start_col": 2, "start_line": 61 }
Prims.Tot
val new_bn_from_bytes_le: BS.new_bn_from_bytes_le_st t_limbs
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_bn_from_bytes_le r len b = BS.new_bn_from_bytes_le r len b
val new_bn_from_bytes_le: BS.new_bn_from_bytes_le_st t_limbs let new_bn_from_bytes_le r len b =
false
null
false
BS.new_bn_from_bytes_le r len b
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperHeap.rid", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.SafeAPI.new_bn_from_bytes_le", "Hacl.Bignum32.t_limbs", "LowStar.Buffer.buffer", "Hacl.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b
false
true
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_bn_from_bytes_le: BS.new_bn_from_bytes_le_st t_limbs
[]
Hacl.Bignum32.new_bn_from_bytes_le
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.SafeAPI.new_bn_from_bytes_le_st Hacl.Bignum32.t_limbs
{ "end_col": 33, "end_line": 84, "start_col": 2, "start_line": 84 }
Prims.Tot
val lt_mask: len:_ -> BN.bn_lt_mask_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt_mask len a b = BN.bn_lt_mask len a b
val lt_mask: len:_ -> BN.bn_lt_mask_st t_limbs len let lt_mask len a b =
false
null
false
BN.bn_lt_mask len a b
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.bn_lt_mask", "Hacl.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b let new_bn_from_bytes_le r len b = BS.new_bn_from_bytes_le r len b let bn_to_bytes_be len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_be false len b res let bn_to_bytes_le len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_le false len b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt_mask: len:_ -> BN.bn_lt_mask_st t_limbs len
[]
Hacl.Bignum32.lt_mask
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> Hacl.Bignum.bn_lt_mask_st Hacl.Bignum32.t_limbs len
{ "end_col": 23, "end_line": 93, "start_col": 2, "start_line": 93 }
Prims.Tot
val eq_mask: len:_ -> BN.bn_eq_mask_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask len a b = BN.bn_eq_mask len a b
val eq_mask: len:_ -> BN.bn_eq_mask_st t_limbs len let eq_mask len a b =
false
null
false
BN.bn_eq_mask len a b
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.bn_eq_mask", "Hacl.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b let new_bn_from_bytes_le r len b = BS.new_bn_from_bytes_le r len b let bn_to_bytes_be len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_be false len b res let bn_to_bytes_le len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_le false len b res let lt_mask len a b = BN.bn_lt_mask len a b
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask: len:_ -> BN.bn_eq_mask_st t_limbs len
[]
Hacl.Bignum32.eq_mask
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> Hacl.Bignum.bn_eq_mask_st Hacl.Bignum32.t_limbs len
{ "end_col": 23, "end_line": 96, "start_col": 2, "start_line": 96 }
Prims.Tot
val add: len:BN.meta_len t_limbs -> BN.bn_add_eq_len_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add len a b res = (ke len).BE.bn.BN.add a b res
val add: len:BN.meta_len t_limbs -> BN.bn_add_eq_len_st t_limbs len let add len a b res =
false
null
false
(ke len).BE.bn.BN.add a b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__add", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Hacl.Spec.Bignum.Base.carry" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add: len:BN.meta_len t_limbs -> BN.bn_add_eq_len_st t_limbs len
[]
Hacl.Bignum32.add
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.bn_add_eq_len_st Hacl.Bignum32.t_limbs len
{ "end_col": 31, "end_line": 24, "start_col": 2, "start_line": 24 }
Prims.Tot
val mont_ctx_init: len:BN.meta_len t_limbs -> MA.bn_field_init_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n
val mont_ctx_init: len:BN.meta_len t_limbs -> MA.bn_field_init_st t_limbs len let mont_ctx_init len r n =
false
null
false
MA.bn_field_init len (ke len).BE.precompr2 r n
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "FStar.Monotonic.HyperHeap.rid", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.MontArithmetic.bn_field_init", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__precompr2", "Hacl.Bignum32.ke", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_ctx_init: len:BN.meta_len t_limbs -> MA.bn_field_init_st t_limbs len
[]
Hacl.Bignum32.mont_ctx_init
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.MontArithmetic.bn_field_init_st Hacl.Bignum32.t_limbs len
{ "end_col": 48, "end_line": 58, "start_col": 2, "start_line": 58 }
Prims.Tot
val add_mod: len:BN.meta_len t_limbs -> BN.bn_add_mod_n_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res
val add_mod: len:BN.meta_len t_limbs -> BN.bn_add_mod_n_st t_limbs len let add_mod len n a b res =
false
null
false
(ke len).BE.bn.BN.add_mod_n n a b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__add_mod_n", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod: len:BN.meta_len t_limbs -> BN.bn_add_mod_n_st t_limbs len
[]
Hacl.Bignum32.add_mod
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.bn_add_mod_n_st Hacl.Bignum32.t_limbs len
{ "end_col": 39, "end_line": 30, "start_col": 2, "start_line": 30 }
Prims.Tot
val sub: len:BN.meta_len t_limbs -> BN.bn_sub_eq_len_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub len a b res = (ke len).BE.bn.BN.sub a b res
val sub: len:BN.meta_len t_limbs -> BN.bn_sub_eq_len_st t_limbs len let sub len a b res =
false
null
false
(ke len).BE.bn.BN.sub a b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__sub", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Hacl.Spec.Bignum.Base.carry" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub: len:BN.meta_len t_limbs -> BN.bn_sub_eq_len_st t_limbs len
[]
Hacl.Bignum32.sub
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.bn_sub_eq_len_st Hacl.Bignum32.t_limbs len
{ "end_col": 31, "end_line": 27, "start_col": 2, "start_line": 27 }
Prims.Tot
val bn_slow_precomp (len: BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len)
val bn_slow_precomp (len: BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len let bn_slow_precomp (len: BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len =
false
null
false
BR.bn_mod_slow_precomp (kam len)
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.ModReduction.bn_mod_slow_precomp", "Hacl.Bignum32.kam", "Hacl.Bignum.ModReduction.bn_mod_slow_precomp_st" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline]
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_slow_precomp (len: BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len
[]
Hacl.Bignum32.bn_slow_precomp
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.ModReduction.bn_mod_slow_precomp_st Hacl.Bignum32.t_limbs len
{ "end_col": 34, "end_line": 43, "start_col": 2, "start_line": 43 }
Prims.Tot
val sub_mod: len:BN.meta_len t_limbs -> BN.bn_sub_mod_n_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res
val sub_mod: len:BN.meta_len t_limbs -> BN.bn_sub_mod_n_st t_limbs len let sub_mod len n a b res =
false
null
false
(ke len).BE.bn.BN.sub_mod_n n a b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__sub_mod_n", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod: len:BN.meta_len t_limbs -> BN.bn_sub_mod_n_st t_limbs len
[]
Hacl.Bignum32.sub_mod
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.bn_sub_mod_n_st Hacl.Bignum32.t_limbs len
{ "end_col": 39, "end_line": 33, "start_col": 2, "start_line": 33 }
Prims.Tot
val mod_inv_prime_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_inv_prime_safe_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res
val mod_inv_prime_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_inv_prime_safe_st t_limbs len let mod_inv_prime_vartime len n a res =
false
null
false
BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.SafeAPI.mk_bn_mod_inv_prime_safe", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_vt", "Hacl.Bignum32.ke", "Prims.bool" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_inv_prime_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_inv_prime_safe_st t_limbs len
[]
Hacl.Bignum32.mod_inv_prime_vartime
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.SafeAPI.bn_mod_inv_prime_safe_st Hacl.Bignum32.t_limbs len
{ "end_col": 60, "end_line": 55, "start_col": 2, "start_line": 55 }
Prims.Tot
val mod_inv_prime_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_inv_prime_ctx_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res
val mod_inv_prime_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_inv_prime_ctx_st t_limbs len let mod_inv_prime_vartime_precomp len k a res =
false
null
false
let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "FStar.Ghost.reveal", "Hacl.Bignum.SafeAPI.mk_bn_mod_inv_prime_ctx", "Hacl.Bignum.ModInv.mk_bn_mod_inv_prime_precomp", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_vt_precomp", "Hacl.Bignum32.ke", "Prims.unit", "Hacl.Bignum.MontArithmetic.bn_field_get_len" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_inv_prime_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_inv_prime_ctx_st t_limbs len
[]
Hacl.Bignum32.mod_inv_prime_vartime_precomp
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: FStar.Ghost.erased (Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs) -> Hacl.Bignum.SafeAPI.bn_mod_inv_prime_ctx_st Hacl.Bignum32.t_limbs (FStar.Ghost.reveal len)
{ "end_col": 77, "end_line": 78, "start_col": 47, "start_line": 75 }
Prims.Tot
val mod: len:BN.meta_len t_limbs -> BS.bn_mod_slow_safe_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res
val mod: len:BN.meta_len t_limbs -> BS.bn_mod_slow_safe_st t_limbs len let mod len n a res =
false
null
false
BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.SafeAPI.mk_bn_mod_slow_safe", "Hacl.Bignum.ModReduction.mk_bn_mod_slow", "Hacl.Bignum.AlmostMontgomery.__proj__Mkalmost_mont__item__precomp", "Hacl.Bignum32.kam", "Hacl.Bignum32.bn_slow_precomp", "Prims.bool" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len)
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod: len:BN.meta_len t_limbs -> BS.bn_mod_slow_safe_st t_limbs len
[]
Hacl.Bignum32.mod
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.SafeAPI.bn_mod_slow_safe_st Hacl.Bignum32.t_limbs len
{ "end_col": 103, "end_line": 46, "start_col": 2, "start_line": 46 }
Prims.Tot
val mod_precomp: len:Ghost.erased _ -> BS.bn_mod_slow_ctx_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res
val mod_precomp: len:Ghost.erased _ -> BS.bn_mod_slow_ctx_st t_limbs len let mod_precomp len k a res =
false
null
false
let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Ghost.reveal", "Hacl.Bignum.SafeAPI.bn_mod_ctx", "Hacl.Bignum32.bn_slow_precomp", "Prims.unit", "Hacl.Bignum.MontArithmetic.bn_field_get_len" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_precomp: len:Ghost.erased _ -> BS.bn_mod_slow_ctx_st t_limbs len
[]
Hacl.Bignum32.mod_precomp
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: FStar.Ghost.erased (Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs) -> Hacl.Bignum.SafeAPI.bn_mod_slow_ctx_st Hacl.Bignum32.t_limbs (FStar.Ghost.reveal len)
{ "end_col": 50, "end_line": 65, "start_col": 29, "start_line": 63 }
Prims.Tot
val mod_exp_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res
val mod_exp_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len let mod_exp_vartime len n a bBits b res =
false
null
false
BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.SafeAPI.mk_bn_mod_exp_safe", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_check", "Hacl.Bignum32.ke", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_vt", "Prims.bool" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_exp_vartime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len
[]
Hacl.Bignum32.mod_exp_vartime
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.SafeAPI.bn_mod_exp_safe_st Hacl.Bignum32.t_limbs len
{ "end_col": 84, "end_line": 49, "start_col": 2, "start_line": 49 }
Prims.Tot
val mod_exp_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res
val mod_exp_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len let mod_exp_vartime_precomp len k a bBits b res =
false
null
false
let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "FStar.Ghost.reveal", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Hacl.Bignum.SafeAPI.mk_bn_mod_exp_ctx", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_vt_precomp", "Hacl.Bignum32.ke", "Prims.unit", "Hacl.Bignum.MontArithmetic.bn_field_get_len" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_exp_vartime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len
[]
Hacl.Bignum32.mod_exp_vartime_precomp
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: FStar.Ghost.erased (Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs) -> Hacl.Bignum.SafeAPI.bn_mod_exp_ctx_st Hacl.Bignum32.t_limbs (FStar.Ghost.reveal len)
{ "end_col": 70, "end_line": 69, "start_col": 49, "start_line": 67 }
Prims.Tot
val mod_exp_consttime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res
val mod_exp_consttime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len let mod_exp_consttime len n a bBits b res =
false
null
false
BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.SafeAPI.mk_bn_mod_exp_safe", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_check", "Hacl.Bignum32.ke", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_ct", "Prims.bool" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_exp_consttime: len:BN.meta_len t_limbs -> BS.bn_mod_exp_safe_st t_limbs len
[]
Hacl.Bignum32.mod_exp_consttime
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> Hacl.Bignum.SafeAPI.bn_mod_exp_safe_st Hacl.Bignum32.t_limbs len
{ "end_col": 84, "end_line": 52, "start_col": 2, "start_line": 52 }
Prims.Tot
val mod_exp_consttime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res
val mod_exp_consttime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len let mod_exp_consttime_precomp len k a bBits b res =
false
null
false
let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "FStar.Ghost.reveal", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Hacl.Bignum.SafeAPI.mk_bn_mod_exp_ctx", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__exp_ct_precomp", "Hacl.Bignum32.ke", "Prims.unit", "Hacl.Bignum.MontArithmetic.bn_field_get_len" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_exp_consttime_precomp: len:Ghost.erased _ -> BS.bn_mod_exp_ctx_st t_limbs len
[]
Hacl.Bignum32.mod_exp_consttime_precomp
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: FStar.Ghost.erased (Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs) -> Hacl.Bignum.SafeAPI.bn_mod_exp_ctx_st Hacl.Bignum32.t_limbs (FStar.Ghost.reveal len)
{ "end_col": 70, "end_line": 73, "start_col": 51, "start_line": 71 }
Prims.Tot
val bn_to_bytes_be: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_be_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_be len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_be false len b res
val bn_to_bytes_be: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_be_st t_limbs len let bn_to_bytes_be len b res =
false
null
false
Hacl.Bignum.Convert.mk_bn_to_bytes_be false len b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Convert.mk_bn_to_bytes_be", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b let new_bn_from_bytes_le r len b = BS.new_bn_from_bytes_le r len b
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_be: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_be_st t_limbs len
[]
Hacl.Bignum32.bn_to_bytes_be
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes Hacl.Bignum32.t_limbs * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes Hacl.Bignum32.t_limbs))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_be_st Hacl.Bignum32.t_limbs len
{ "end_col": 55, "end_line": 87, "start_col": 2, "start_line": 87 }
Prims.Tot
val sqr: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_sqr_st t_limbs len a
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sqr len a res = (ke len).BE.bn.BN.sqr a res
val sqr: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_sqr_st t_limbs len a let sqr len a res =
false
null
false
(ke len).BE.bn.BN.sqr a res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum32.lbignum", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.__proj__Mkbn__item__sqr", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sqr: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_sqr_st t_limbs len a
[]
Hacl.Bignum32.sqr
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> a: Hacl.Bignum32.lbignum Hacl.Bignum32.t_limbs len -> Hacl.Bignum.bn_karatsuba_sqr_st Hacl.Bignum32.t_limbs len a
{ "end_col": 29, "end_line": 39, "start_col": 2, "start_line": 39 }
Prims.Tot
val mul: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_mul_st t_limbs len a
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul len a b res = (ke len).BE.bn.BN.mul a b res
val mul: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_mul_st t_limbs len a let mul len a b res =
false
null
false
(ke len).BE.bn.BN.mul a b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Hacl.Bignum.meta_len", "Hacl.Bignum32.t_limbs", "Hacl.Bignum32.lbignum", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.__proj__Mkbn__item__mul", "Hacl.Bignum.Exponentiation.__proj__Mkexp__item__bn", "Hacl.Bignum32.ke", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul: len:BN.meta_len t_limbs -> a:lbignum t_limbs len -> BN.bn_karatsuba_mul_st t_limbs len a
[]
Hacl.Bignum32.mul
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Hacl.Bignum.meta_len Hacl.Bignum32.t_limbs -> a: Hacl.Bignum32.lbignum Hacl.Bignum32.t_limbs len -> Hacl.Bignum.bn_karatsuba_mul_st Hacl.Bignum32.t_limbs len a
{ "end_col": 31, "end_line": 36, "start_col": 2, "start_line": 36 }
Prims.Tot
val bn_to_bytes_le: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_le_st t_limbs len
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.AlmostMontgomery", "short_module": "AM" }, { "abbrev": true, "full_module": "Hacl.Bignum.ModReduction", "short_module": "BR" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_le len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_le false len b res
val bn_to_bytes_le: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_le_st t_limbs len let bn_to_bytes_le len b res =
false
null
false
Hacl.Bignum.Convert.mk_bn_to_bytes_le false len b res
{ "checked_file": "Hacl.Bignum32.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.ModReduction.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum32.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum32.t_limbs", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Convert.mk_bn_to_bytes_le", "Prims.unit" ]
[]
module Hacl.Bignum32 open FStar.Mul module BN = Hacl.Bignum module BE = Hacl.Bignum.Exponentiation module BR = Hacl.Bignum.ModReduction module AM = Hacl.Bignum.AlmostMontgomery module MA = Hacl.Bignum.MontArithmetic module BI = Hacl.Bignum.ModInv module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let kam (len:BN.meta_len t_limbs) = AM.mk_runtime_almost_mont #t_limbs len inline_for_extraction noextract let ke (len:BN.meta_len t_limbs) = BE.mk_runtime_exp #t_limbs len let add len a b res = (ke len).BE.bn.BN.add a b res let sub len a b res = (ke len).BE.bn.BN.sub a b res let add_mod len n a b res = (ke len).BE.bn.BN.add_mod_n n a b res let sub_mod len n a b res = (ke len).BE.bn.BN.sub_mod_n n a b res let mul len a b res = (ke len).BE.bn.BN.mul a b res let sqr len a res = (ke len).BE.bn.BN.sqr a res [@CInline] let bn_slow_precomp (len:BN.meta_len t_limbs) : BR.bn_mod_slow_precomp_st t_limbs len = BR.bn_mod_slow_precomp (kam len) let mod len n a res = BS.mk_bn_mod_slow_safe len (BR.mk_bn_mod_slow len (kam len).AM.precomp (bn_slow_precomp len)) n a res let mod_exp_vartime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_vt n a bBits b res let mod_exp_consttime len n a bBits b res = BS.mk_bn_mod_exp_safe len (ke len).BE.exp_check (ke len).BE.exp_ct n a bBits b res let mod_inv_prime_vartime len n a res = BS.mk_bn_mod_inv_prime_safe len (ke len).BE.exp_vt n a res let mont_ctx_init len r n = MA.bn_field_init len (ke len).BE.precompr2 r n let mont_ctx_free k = MA.bn_field_free k let mod_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.bn_mod_ctx len (bn_slow_precomp len1) k a res let mod_exp_vartime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_vt_precomp k a bBits b res let mod_exp_consttime_precomp len k a bBits b res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_exp_ctx len (ke len1).BE.exp_ct_precomp k a bBits b res let mod_inv_prime_vartime_precomp len k a res = let len1 = MA.bn_field_get_len k in BS.mk_bn_mod_inv_prime_ctx len (BI.mk_bn_mod_inv_prime_precomp len1 (ke len1).BE.exp_vt_precomp) k a res let new_bn_from_bytes_be r len b = BS.new_bn_from_bytes_be r len b let new_bn_from_bytes_le r len b = BS.new_bn_from_bytes_le r len b let bn_to_bytes_be len b res = Hacl.Bignum.Convert.mk_bn_to_bytes_be false len b res
false
false
Hacl.Bignum32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_le: len:_ -> Hacl.Bignum.Convert.bn_to_bytes_le_st t_limbs len
[]
Hacl.Bignum32.bn_to_bytes_le
{ "file_name": "code/bignum/Hacl.Bignum32.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes Hacl.Bignum32.t_limbs * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes Hacl.Bignum32.t_limbs))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_le_st Hacl.Bignum32.t_limbs len
{ "end_col": 55, "end_line": 90, "start_col": 2, "start_line": 90 }
Prims.Tot
val coerce_to_normal (#a: Type0) (x: a) : y: (normal a){x == y}
[ { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder // open so that we don't", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let coerce_to_normal (#a:Type0) (x:a) : y:(normal a){x == y} = x
val coerce_to_normal (#a: Type0) (x: a) : y: (normal a){x == y} let coerce_to_normal (#a: Type0) (x: a) : y: (normal a){x == y} =
false
null
false
x
{ "checked_file": "Vale.Transformers.PeepHole.fsti.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.Common.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PeepHole.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.normal", "Prims.eq2" ]
[]
(** This module defines a framework for peephole transformers. It needs to be instantiated with an actual pattern to generate a verified peephole transform. In particular, it needs to be provided a [peephole], and an [input_hint] to obtain a new transformer. A [peephole] is a function that converts a list of instructions into (optionally) another list of instructions. Usage: let foo = peephole_transform foo_ph let lemma_foo = lemma_peephole_transform foo_ph *) module Vale.Transformers.PeepHole open Vale.Transformers.Common open Vale.X64.Decls open Vale.X64.Lemmas open Vale.X64.StateLemmas open Vale.Transformers.Common open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s module L = FStar.List.Tot open Vale.Transformers.InstructionReorder // open so that we don't // need to redefine things // equivalence etc. open Vale.X64.InsLemmas /// Define what a peephole means, and what it means to be correct. noeq type pre_peephole = { ph: list ins -> Tot (option (list ins)); // The actual peephole transformer input_hint: pos; // The number of instructions it takes as input to transform } let rec eval_inss (is:list ins) (s:machine_state) : GTot machine_state = match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s) let peephole_correct (p:pre_peephole) (is:list ins) (s:machine_state) : GTot Type0 = match p.ph is with | None -> True | Some is' -> let s1 = eval_inss is s in let s2 = eval_inss is' s in s1.ms_ok ==> equiv_states s1 s2 type peephole = (p:pre_peephole{forall is s. {:pattern (peephole_correct p is s)} peephole_correct p is s}) /// Now, for the pièce de résistance, functions that give you /// something you can directly use as transformers! val peephole_transform : p:peephole -> orig:va_code -> va_transformation_result val lemma_peephole_transform : p:peephole -> orig:va_code -> transformed:va_code -> va_s0:va_state -> va_sM:va_state -> va_fM:va_fuel -> Ghost (va_state & va_fuel) (requires ( (va_require_total transformed (peephole_transform p orig).result va_s0) /\ (va_get_ok va_s0) /\ (va_ensure_total orig va_s0 va_sM va_fM) /\ (va_get_ok va_sM))) (ensures (fun (va_sM', va_fM') -> (va_fM' == va_fM) /\ (Vale.Transformers.Common.equiv_states va_sM va_sM') /\ (va_ensure_total transformed va_s0 va_sM' va_fM') /\ (va_get_ok va_sM'))) /// Common useful lemmas/definitions
false
false
Vale.Transformers.PeepHole.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val coerce_to_normal (#a: Type0) (x: a) : y: (normal a){x == y}
[]
Vale.Transformers.PeepHole.coerce_to_normal
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PeepHole.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a -> y: Vale.X64.Instruction_s.normal a {x == y}
{ "end_col": 64, "end_line": 93, "start_col": 63, "start_line": 93 }
Prims.GTot
val peephole_correct (p: pre_peephole) (is: list ins) (s: machine_state) : GTot Type0
[ { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder // open so that we don't", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let peephole_correct (p:pre_peephole) (is:list ins) (s:machine_state) : GTot Type0 = match p.ph is with | None -> True | Some is' -> let s1 = eval_inss is s in let s2 = eval_inss is' s in s1.ms_ok ==> equiv_states s1 s2
val peephole_correct (p: pre_peephole) (is: list ins) (s: machine_state) : GTot Type0 let peephole_correct (p: pre_peephole) (is: list ins) (s: machine_state) : GTot Type0 =
false
null
false
match p.ph is with | None -> True | Some is' -> let s1 = eval_inss is s in let s2 = eval_inss is' s in s1.ms_ok ==> equiv_states s1 s2
{ "checked_file": "Vale.Transformers.PeepHole.fsti.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.Common.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PeepHole.fsti" }
[ "sometrivial" ]
[ "Vale.Transformers.PeepHole.pre_peephole", "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.Transformers.PeepHole.__proj__Mkpre_peephole__item__ph", "Prims.l_True", "Prims.l_imp", "Prims.b2t", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.Transformers.InstructionReorder.equiv_states", "Vale.Transformers.PeepHole.eval_inss" ]
[]
(** This module defines a framework for peephole transformers. It needs to be instantiated with an actual pattern to generate a verified peephole transform. In particular, it needs to be provided a [peephole], and an [input_hint] to obtain a new transformer. A [peephole] is a function that converts a list of instructions into (optionally) another list of instructions. Usage: let foo = peephole_transform foo_ph let lemma_foo = lemma_peephole_transform foo_ph *) module Vale.Transformers.PeepHole open Vale.Transformers.Common open Vale.X64.Decls open Vale.X64.Lemmas open Vale.X64.StateLemmas open Vale.Transformers.Common open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s module L = FStar.List.Tot open Vale.Transformers.InstructionReorder // open so that we don't // need to redefine things // equivalence etc. open Vale.X64.InsLemmas /// Define what a peephole means, and what it means to be correct. noeq type pre_peephole = { ph: list ins -> Tot (option (list ins)); // The actual peephole transformer input_hint: pos; // The number of instructions it takes as input to transform } let rec eval_inss (is:list ins) (s:machine_state) : GTot machine_state = match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s)
false
false
Vale.Transformers.PeepHole.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val peephole_correct (p: pre_peephole) (is: list ins) (s: machine_state) : GTot Type0
[]
Vale.Transformers.PeepHole.peephole_correct
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PeepHole.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Vale.Transformers.PeepHole.pre_peephole -> is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> Prims.GTot Type0
{ "end_col": 35, "end_line": 60, "start_col": 2, "start_line": 55 }
Prims.GTot
val eval_inss (is: list ins) (s: machine_state) : GTot machine_state
[ { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder // open so that we don't", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eval_inss (is:list ins) (s:machine_state) : GTot machine_state = match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s)
val eval_inss (is: list ins) (s: machine_state) : GTot machine_state let rec eval_inss (is: list ins) (s: machine_state) : GTot machine_state =
false
null
false
match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s)
{ "checked_file": "Vale.Transformers.PeepHole.fsti.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.Common.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PeepHole.fsti" }
[ "sometrivial" ]
[ "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.Transformers.PeepHole.eval_inss", "Vale.X64.Machine_Semantics_s.machine_eval_ins" ]
[]
(** This module defines a framework for peephole transformers. It needs to be instantiated with an actual pattern to generate a verified peephole transform. In particular, it needs to be provided a [peephole], and an [input_hint] to obtain a new transformer. A [peephole] is a function that converts a list of instructions into (optionally) another list of instructions. Usage: let foo = peephole_transform foo_ph let lemma_foo = lemma_peephole_transform foo_ph *) module Vale.Transformers.PeepHole open Vale.Transformers.Common open Vale.X64.Decls open Vale.X64.Lemmas open Vale.X64.StateLemmas open Vale.Transformers.Common open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s module L = FStar.List.Tot open Vale.Transformers.InstructionReorder // open so that we don't // need to redefine things // equivalence etc. open Vale.X64.InsLemmas /// Define what a peephole means, and what it means to be correct. noeq type pre_peephole = { ph: list ins -> Tot (option (list ins)); // The actual peephole transformer input_hint: pos; // The number of instructions it takes as input to transform }
false
false
Vale.Transformers.PeepHole.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_inss (is: list ins) (s: machine_state) : GTot machine_state
[ "recursion" ]
Vale.Transformers.PeepHole.eval_inss
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PeepHole.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> Prims.GTot Vale.X64.Machine_Semantics_s.machine_state
{ "end_col": 52, "end_line": 52, "start_col": 2, "start_line": 50 }
FStar.Pervasives.Lemma
val lemma_double_update_reg (dst: operand64) (s0 s1 s2 s3: machine_state) (v v_fin: nat64) : Lemma (requires ((OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures (equiv_states s2 s3))
[ { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder // open so that we don't", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_double_update_reg (dst:operand64) (s0 s1 s2 s3:machine_state) (v v_fin:nat64) : Lemma (requires ( (OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures ( equiv_states s2 s3)) = match dst with | OReg r -> assert (equiv_states_ext s2 s3)
val lemma_double_update_reg (dst: operand64) (s0 s1 s2 s3: machine_state) (v v_fin: nat64) : Lemma (requires ((OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures (equiv_states s2 s3)) let lemma_double_update_reg (dst: operand64) (s0 s1 s2 s3: machine_state) (v v_fin: nat64) : Lemma (requires ((OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures (equiv_states s2 s3)) =
false
null
true
match dst with | OReg r -> assert (equiv_states_ext s2 s3)
{ "checked_file": "Vale.Transformers.PeepHole.fsti.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.Common.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PeepHole.fsti" }
[ "lemma" ]
[ "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Prims._assert", "Vale.Transformers.InstructionReorder.equiv_states_ext", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_Semantics_s.valid_dst_operand64", "Prims.eq2", "Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags''", "Prims.squash", "Vale.Transformers.InstructionReorder.equiv_states", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(** This module defines a framework for peephole transformers. It needs to be instantiated with an actual pattern to generate a verified peephole transform. In particular, it needs to be provided a [peephole], and an [input_hint] to obtain a new transformer. A [peephole] is a function that converts a list of instructions into (optionally) another list of instructions. Usage: let foo = peephole_transform foo_ph let lemma_foo = lemma_peephole_transform foo_ph *) module Vale.Transformers.PeepHole open Vale.Transformers.Common open Vale.X64.Decls open Vale.X64.Lemmas open Vale.X64.StateLemmas open Vale.Transformers.Common open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s module L = FStar.List.Tot open Vale.Transformers.InstructionReorder // open so that we don't // need to redefine things // equivalence etc. open Vale.X64.InsLemmas /// Define what a peephole means, and what it means to be correct. noeq type pre_peephole = { ph: list ins -> Tot (option (list ins)); // The actual peephole transformer input_hint: pos; // The number of instructions it takes as input to transform } let rec eval_inss (is:list ins) (s:machine_state) : GTot machine_state = match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s) let peephole_correct (p:pre_peephole) (is:list ins) (s:machine_state) : GTot Type0 = match p.ph is with | None -> True | Some is' -> let s1 = eval_inss is s in let s2 = eval_inss is' s in s1.ms_ok ==> equiv_states s1 s2 type peephole = (p:pre_peephole{forall is s. {:pattern (peephole_correct p is s)} peephole_correct p is s}) /// Now, for the pièce de résistance, functions that give you /// something you can directly use as transformers! val peephole_transform : p:peephole -> orig:va_code -> va_transformation_result val lemma_peephole_transform : p:peephole -> orig:va_code -> transformed:va_code -> va_s0:va_state -> va_sM:va_state -> va_fM:va_fuel -> Ghost (va_state & va_fuel) (requires ( (va_require_total transformed (peephole_transform p orig).result va_s0) /\ (va_get_ok va_s0) /\ (va_ensure_total orig va_s0 va_sM va_fM) /\ (va_get_ok va_sM))) (ensures (fun (va_sM', va_fM') -> (va_fM' == va_fM) /\ (Vale.Transformers.Common.equiv_states va_sM va_sM') /\ (va_ensure_total transformed va_s0 va_sM' va_fM') /\ (va_get_ok va_sM'))) /// Common useful lemmas/definitions let coerce_to_normal (#a:Type0) (x:a) : y:(normal a){x == y} = x #push-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 2 --max_ifuel 2 --z3cliopt smt.arith.nl=true" let lemma_update_to_valid_destination_keeps_it_as_valid_src (o:operand64) (s:machine_state) (v:nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures ( let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v)) = reveal_opaque (`%valid_addr64) valid_addr64; update_heap64_reveal (); get_heap_val64_reveal () #pop-options let lemma_double_update_reg (dst:operand64) (s0 s1 s2 s3:machine_state) (v v_fin:nat64) : Lemma (requires ( (OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures (
false
false
Vale.Transformers.PeepHole.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_double_update_reg (dst: operand64) (s0 s1 s2 s3: machine_state) (v v_fin: nat64) : Lemma (requires ((OReg? dst) /\ (valid_dst_operand64 dst s0) /\ (s1 == update_operand64_preserve_flags'' dst v s0 s0) /\ (s2 == update_operand64_preserve_flags'' dst v_fin s1 s1) /\ (s3 == update_operand64_preserve_flags'' dst v_fin s0 s0))) (ensures (equiv_states s2 s3))
[]
Vale.Transformers.PeepHole.lemma_double_update_reg
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PeepHole.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Machine_s.operand64 -> s0: Vale.X64.Machine_Semantics_s.machine_state -> s1: Vale.X64.Machine_Semantics_s.machine_state -> s2: Vale.X64.Machine_Semantics_s.machine_state -> s3: Vale.X64.Machine_Semantics_s.machine_state -> v: Vale.X64.Machine_s.nat64 -> v_fin: Vale.X64.Machine_s.nat64 -> FStar.Pervasives.Lemma (requires OReg? dst /\ Vale.X64.Machine_Semantics_s.valid_dst_operand64 dst s0 /\ s1 == Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags'' dst v s0 s0 /\ s2 == Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags'' dst v_fin s1 s1 /\ s3 == Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags'' dst v_fin s0 s0) (ensures Vale.Transformers.InstructionReorder.equiv_states s2 s3)
{ "end_col": 45, "end_line": 119, "start_col": 2, "start_line": 118 }
FStar.Pervasives.Lemma
val lemma_update_to_valid_destination_keeps_it_as_valid_src (o: operand64) (s: machine_state) (v: nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures (let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v))
[ { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder // open so that we don't", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Common", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_update_to_valid_destination_keeps_it_as_valid_src (o:operand64) (s:machine_state) (v:nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures ( let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v)) = reveal_opaque (`%valid_addr64) valid_addr64; update_heap64_reveal (); get_heap_val64_reveal ()
val lemma_update_to_valid_destination_keeps_it_as_valid_src (o: operand64) (s: machine_state) (v: nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures (let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v)) let lemma_update_to_valid_destination_keeps_it_as_valid_src (o: operand64) (s: machine_state) (v: nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures (let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v)) =
false
null
true
reveal_opaque (`%valid_addr64) valid_addr64; update_heap64_reveal (); get_heap_val64_reveal ()
{ "checked_file": "Vale.Transformers.PeepHole.fsti.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.Common.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PeepHole.fsti" }
[ "lemma" ]
[ "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_s.nat64", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.update_heap64_reveal", "FStar.Pervasives.reveal_opaque", "Prims.int", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64", "Prims.b2t", "Vale.X64.Machine_Semantics_s.valid_dst_operand64", "Prims.squash", "Prims.l_and", "Vale.X64.Machine_Semantics_s.valid_src_operand64_and_taint", "Prims.eq2", "Vale.Def.Types_s.nat64", "Vale.X64.Machine_Semantics_s.eval_operand", "Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags''", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(** This module defines a framework for peephole transformers. It needs to be instantiated with an actual pattern to generate a verified peephole transform. In particular, it needs to be provided a [peephole], and an [input_hint] to obtain a new transformer. A [peephole] is a function that converts a list of instructions into (optionally) another list of instructions. Usage: let foo = peephole_transform foo_ph let lemma_foo = lemma_peephole_transform foo_ph *) module Vale.Transformers.PeepHole open Vale.Transformers.Common open Vale.X64.Decls open Vale.X64.Lemmas open Vale.X64.StateLemmas open Vale.Transformers.Common open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s module L = FStar.List.Tot open Vale.Transformers.InstructionReorder // open so that we don't // need to redefine things // equivalence etc. open Vale.X64.InsLemmas /// Define what a peephole means, and what it means to be correct. noeq type pre_peephole = { ph: list ins -> Tot (option (list ins)); // The actual peephole transformer input_hint: pos; // The number of instructions it takes as input to transform } let rec eval_inss (is:list ins) (s:machine_state) : GTot machine_state = match is with | [] -> s | i :: is' -> eval_inss is' (machine_eval_ins i s) let peephole_correct (p:pre_peephole) (is:list ins) (s:machine_state) : GTot Type0 = match p.ph is with | None -> True | Some is' -> let s1 = eval_inss is s in let s2 = eval_inss is' s in s1.ms_ok ==> equiv_states s1 s2 type peephole = (p:pre_peephole{forall is s. {:pattern (peephole_correct p is s)} peephole_correct p is s}) /// Now, for the pièce de résistance, functions that give you /// something you can directly use as transformers! val peephole_transform : p:peephole -> orig:va_code -> va_transformation_result val lemma_peephole_transform : p:peephole -> orig:va_code -> transformed:va_code -> va_s0:va_state -> va_sM:va_state -> va_fM:va_fuel -> Ghost (va_state & va_fuel) (requires ( (va_require_total transformed (peephole_transform p orig).result va_s0) /\ (va_get_ok va_s0) /\ (va_ensure_total orig va_s0 va_sM va_fM) /\ (va_get_ok va_sM))) (ensures (fun (va_sM', va_fM') -> (va_fM' == va_fM) /\ (Vale.Transformers.Common.equiv_states va_sM va_sM') /\ (va_ensure_total transformed va_s0 va_sM' va_fM') /\ (va_get_ok va_sM'))) /// Common useful lemmas/definitions let coerce_to_normal (#a:Type0) (x:a) : y:(normal a){x == y} = x #push-options "--z3rlimit 10 --initial_fuel 0 --max_fuel 0 --initial_ifuel 2 --max_ifuel 2 --z3cliopt smt.arith.nl=true" let lemma_update_to_valid_destination_keeps_it_as_valid_src (o:operand64) (s:machine_state) (v:nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures ( let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\
false
false
Vale.Transformers.PeepHole.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3", "smt.arith.nl=true" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_update_to_valid_destination_keeps_it_as_valid_src (o: operand64) (s: machine_state) (v: nat64) : Lemma (requires (valid_dst_operand64 o s)) (ensures (let s' = update_operand64_preserve_flags'' o v s s in valid_src_operand64_and_taint o s' /\ eval_operand o s' == v))
[]
Vale.Transformers.PeepHole.lemma_update_to_valid_destination_keeps_it_as_valid_src
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PeepHole.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Machine_s.operand64 -> s: Vale.X64.Machine_Semantics_s.machine_state -> v: Vale.X64.Machine_s.nat64 -> FStar.Pervasives.Lemma (requires Vale.X64.Machine_Semantics_s.valid_dst_operand64 o s) (ensures (let s' = Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags'' o v s s in Vale.X64.Machine_Semantics_s.valid_src_operand64_and_taint o s' /\ Vale.X64.Machine_Semantics_s.eval_operand o s' == v))
{ "end_col": 26, "end_line": 105, "start_col": 2, "start_line": 103 }
Prims.Tot
val return (a: Type) (x: a) (state: Type u#2) (rel: P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0
val return (a: Type) (x: a) (state: Type u#2) (rel: P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) let return (a: Type) (x: a) (state: Type u#2) (rel: P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) =
false
null
false
fun s0 -> x, s0
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[ "total" ]
[ "FStar.Preorder.preorder", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.MST.repr", "Prims.l_True", "Prims.l_and", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val return (a: Type) (x: a) (state: Type u#2) (rel: P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1)
[]
FStar.MST.return
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> x: a -> state: Type -> rel: FStar.Preorder.preorder state -> FStar.MST.repr a state rel (fun _ -> Prims.l_True) (fun s0 r s1 -> r == x /\ s0 == s1)
{ "end_col": 17, "end_line": 48, "start_col": 2, "start_line": 48 }
FStar.MST.MSTATE
val get: #state: Type u#2 -> #rel: P.preorder state -> Prims.unit -> MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0)
val get: #state: Type u#2 -> #rel: P.preorder state -> Prims.unit -> MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) let get (#state: Type u#2) (#rel: P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) =
true
null
false
MSTATE?.reflect (fun s0 -> s0, s0)
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[]
[ "FStar.Preorder.preorder", "Prims.unit", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "Prims.l_True", "Prims.l_and", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get: #state: Type u#2 -> #rel: P.preorder state -> Prims.unit -> MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1)
[]
FStar.MST.get
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.MST.MSTATE state
{ "end_col": 36, "end_line": 120, "start_col": 2, "start_line": 120 }
FStar.MST.MSTATE
val put (#state: Type u#2) (#rel: P.preorder state) (s: state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) = MSTATE?.reflect (fun _ -> (), s)
val put (#state: Type u#2) (#rel: P.preorder state) (s: state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) let put (#state: Type u#2) (#rel: P.preorder state) (s: state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) =
true
null
false
MSTATE?.reflect (fun _ -> (), s)
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[]
[ "FStar.Preorder.preorder", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0) [@@ noextract_to "krml"] let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val put (#state: Type u#2) (#rel: P.preorder state) (s: state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s)
[]
FStar.MST.put
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: state -> FStar.MST.MSTATE Prims.unit
{ "end_col": 34, "end_line": 128, "start_col": 2, "start_line": 128 }
Prims.Tot
val lift_mst_total_mst (a: Type) (state: Type u#2) (rel: P.preorder state) (req: pre_t state) (ens: post_t state a) (f: MSTTotal.repr a state rel req ens) : repr a state rel req ens
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_mst_total_mst (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) (f:MSTTotal.repr a state rel req ens) : repr a state rel req ens = fun s0 -> f s0
val lift_mst_total_mst (a: Type) (state: Type u#2) (rel: P.preorder state) (req: pre_t state) (ens: post_t state a) (f: MSTTotal.repr a state rel req ens) : repr a state rel req ens let lift_mst_total_mst (a: Type) (state: Type u#2) (rel: P.preorder state) (req: pre_t state) (ens: post_t state a) (f: MSTTotal.repr a state rel req ens) : repr a state rel req ens =
false
null
false
fun s0 -> f s0
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[ "total" ]
[ "FStar.Preorder.preorder", "FStar.MST.pre_t", "FStar.MST.post_t", "FStar.MSTTotal.repr", "FStar.Pervasives.Native.tuple2", "FStar.MST.repr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0) [@@ noextract_to "krml"] let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) = MSTATE?.reflect (fun _ -> (), s) assume val witness (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) : MSTATE (W.witnessed state rel p) state rel (fun s0 -> p s0 /\ W.stable state rel p) (fun s0 _ s1 -> s0 == s1) assume val recall (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) (w:W.witnessed state rel p) : MSTATE unit state rel (fun _ -> True) (fun s0 _ s1 -> s0 == s1 /\ p s1) (* * AR: why do we need the first conjunct in the postcondition? * * without this some proofs that use `assert e by t` fail * the way `assert e by t` works is that, it is desugared into `with_tactic e t` * that is abstract and remains in the VC as is at some point, we take a pass over * the VC, find the `with_tactic e t` nodes in it, farm out `G |= e by t` where `G` * is the context at that point in the VC in the original VC, `with_tactic e t` * is simply replace by `True`. * So why is it OK to replace it by `True`, don't we lose the fact that `e` holds for * the rest of the VC? * In the wp world of things, this works fine, since the wp of `assert e by t` is * (fun _ -> with_tactic e t /\ (e ==> ...)) * i.e. the type of `assert e by t` already introduces a cut, so replacing it by * `True` works fine. * * But this doesn't work when we use the intricate `~ (wp (fun r -> r =!= x))` * combinator to convert from wp to pre post * * Basically, the shape of the VC in that case becomes: * (with_tactic e t /\ (((~ with_tactic e t) \/ (e /\ ...)) ==> ...)) * * In this VC, if we replace the first `with_tactic e t` with `True`, for the second conjunct, * the solver can no longer reason that the first disjunct cannot hold * * The wp (fun _ -> True) below helps add that assumption to the second conjunct *) let lift_pure_mst (a:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (f:eqtype_as_type unit -> PURE a wp) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~ (wp (fun r -> r =!= x \/ s0 =!= s1)))) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in x, s0 sub_effect PURE ~> MSTATE = lift_pure_mst (* * A polymonadic bind between DIV and MSTATE * * This is ultimately used when defining par and frame in Steel.Effect.fst (via NMST layer) * par and frame try to compose reified Steel with Steel, since Steel is non total, its reification * incurs a Div effect, and so, we need a way to compose Div and Steel * * To do so, we have to go all the way down and have a story for MST and NMST too * * This polymonadic bind gives us bare minimum to realize that * It is quite imprecise, in that it doesn't say anything about the post of the Div computation * That's because, the as_ensures combinator is not encoded for Div effect in the SMT, * the way it is done for PURE and GHOST * * However, since the reification use case gives us Dv anyway, this is fine for now *) let bind_div_mst (a:Type) (b:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (req:a -> pre_t state) (ens:a -> post_t state b) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in (g x) s0 polymonadic_bind (DIV, MSTATE) |> MSTATE = bind_div_mst let mst_assume (#state:Type u#2) (#rel:P.preorder state) (p:Type) : MSTATE unit state rel (fun _ -> True) (fun m0 _ m1 -> p /\ m0 == m1) = assume p let mst_admit (#state:Type u#2) (#rel:P.preorder state) (#a:Type) () : MSTATE a state rel (fun _ -> True) (fun _ _ _ -> False) = admit () let mst_assert (#state:Type u#2) (#rel:P.preorder state) (p:Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1) = assert p let lift_mst_total_mst (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) (f:MSTTotal.repr a state rel req ens)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_mst_total_mst (a: Type) (state: Type u#2) (rel: P.preorder state) (req: pre_t state) (ens: post_t state a) (f: MSTTotal.repr a state rel req ens) : repr a state rel req ens
[]
FStar.MST.lift_mst_total_mst
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> state: Type -> rel: FStar.Preorder.preorder state -> req: FStar.MST.pre_t state -> ens: FStar.MST.post_t state a -> f: FStar.MSTTotal.repr a state rel req ens -> FStar.MST.repr a state rel req ens
{ "end_col": 16, "end_line": 245, "start_col": 2, "start_line": 245 }
Prims.Pure
val subcomp (a: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: pre_t state) (ens_g: post_t state a) (f: repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f
val subcomp (a: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: pre_t state) (ens_g: post_t state a) (f: repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) let subcomp (a: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: pre_t state) (ens_g: post_t state a) (f: repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) =
false
null
false
f
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[]
[ "FStar.Preorder.preorder", "FStar.MST.pre_t", "FStar.MST.post_t", "FStar.MST.repr", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.l_True" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subcomp (a: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: pre_t state) (ens_g: post_t state a) (f: repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True)
[]
FStar.MST.subcomp
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> state: Type -> rel: FStar.Preorder.preorder state -> req_f: FStar.MST.pre_t state -> ens_f: FStar.MST.post_t state a -> req_g: FStar.MST.pre_t state -> ens_g: FStar.MST.post_t state a -> f: FStar.MST.repr a state rel req_f ens_f -> Prims.Pure (FStar.MST.repr a state rel req_g ens_g)
{ "end_col": 3, "end_line": 84, "start_col": 2, "start_line": 84 }
Prims.Tot
val lift_pure_mst (a: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (f: (eqtype_as_type unit -> PURE a wp)) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~(wp (fun r -> r =!= x \/ s0 =!= s1))))
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_pure_mst (a:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (f:eqtype_as_type unit -> PURE a wp) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~ (wp (fun r -> r =!= x \/ s0 =!= s1)))) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in x, s0
val lift_pure_mst (a: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (f: (eqtype_as_type unit -> PURE a wp)) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~(wp (fun r -> r =!= x \/ s0 =!= s1)))) let lift_pure_mst (a: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (f: (eqtype_as_type unit -> PURE a wp)) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~(wp (fun r -> r =!= x \/ s0 =!= s1)))) =
false
null
false
elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in x, s0
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[ "total" ]
[ "Prims.pure_wp", "FStar.Preorder.preorder", "FStar.Pervasives.eqtype_as_type", "Prims.unit", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Pure.elim_pure_wp_monotonicity", "FStar.MST.repr", "Prims.l_True", "Prims.l_and", "Prims.l_not", "Prims.l_or", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0) [@@ noextract_to "krml"] let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) = MSTATE?.reflect (fun _ -> (), s) assume val witness (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) : MSTATE (W.witnessed state rel p) state rel (fun s0 -> p s0 /\ W.stable state rel p) (fun s0 _ s1 -> s0 == s1) assume val recall (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) (w:W.witnessed state rel p) : MSTATE unit state rel (fun _ -> True) (fun s0 _ s1 -> s0 == s1 /\ p s1) (* * AR: why do we need the first conjunct in the postcondition? * * without this some proofs that use `assert e by t` fail * the way `assert e by t` works is that, it is desugared into `with_tactic e t` * that is abstract and remains in the VC as is at some point, we take a pass over * the VC, find the `with_tactic e t` nodes in it, farm out `G |= e by t` where `G` * is the context at that point in the VC in the original VC, `with_tactic e t` * is simply replace by `True`. * So why is it OK to replace it by `True`, don't we lose the fact that `e` holds for * the rest of the VC? * In the wp world of things, this works fine, since the wp of `assert e by t` is * (fun _ -> with_tactic e t /\ (e ==> ...)) * i.e. the type of `assert e by t` already introduces a cut, so replacing it by * `True` works fine. * * But this doesn't work when we use the intricate `~ (wp (fun r -> r =!= x))` * combinator to convert from wp to pre post * * Basically, the shape of the VC in that case becomes: * (with_tactic e t /\ (((~ with_tactic e t) \/ (e /\ ...)) ==> ...)) * * In this VC, if we replace the first `with_tactic e t` with `True`, for the second conjunct, * the solver can no longer reason that the first disjunct cannot hold * * The wp (fun _ -> True) below helps add that assumption to the second conjunct *) let lift_pure_mst (a:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (f:eqtype_as_type unit -> PURE a wp) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~ (wp (fun r -> r =!= x \/ s0 =!= s1))))
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_pure_mst (a: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (f: (eqtype_as_type unit -> PURE a wp)) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~(wp (fun r -> r =!= x \/ s0 =!= s1))))
[]
FStar.MST.lift_pure_mst
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: Prims.pure_wp a -> state: Type -> rel: FStar.Preorder.preorder state -> f: (_: FStar.Pervasives.eqtype_as_type Prims.unit -> Prims.PURE a) -> FStar.MST.repr a state rel (fun _ -> wp (fun _ -> Prims.l_True)) (fun s0 x s1 -> wp (fun _ -> Prims.l_True) /\ ~(wp (fun r -> ~(r == x) \/ ~(s0 == s1))))
{ "end_col": 9, "end_line": 189, "start_col": 2, "start_line": 186 }
Prims.Tot
val bind_div_mst (a b: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (req: (a -> pre_t state)) (ens: (a -> post_t state b)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_div_mst (a:Type) (b:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (req:a -> pre_t state) (ens:a -> post_t state b) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in (g x) s0
val bind_div_mst (a b: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (req: (a -> pre_t state)) (ens: (a -> post_t state b)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1) let bind_div_mst (a b: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (req: (a -> pre_t state)) (ens: (a -> post_t state b)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1) =
false
null
false
elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in (g x) s0
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[ "total" ]
[ "Prims.pure_wp", "FStar.Preorder.preorder", "FStar.MST.pre_t", "FStar.MST.post_t", "FStar.Pervasives.eqtype_as_type", "Prims.unit", "FStar.MST.repr", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Pure.elim_pure_wp_monotonicity", "Prims.l_and", "Prims.l_True", "Prims.l_Forall", "Prims.l_Exists" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0) [@@ noextract_to "krml"] let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) = MSTATE?.reflect (fun _ -> (), s) assume val witness (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) : MSTATE (W.witnessed state rel p) state rel (fun s0 -> p s0 /\ W.stable state rel p) (fun s0 _ s1 -> s0 == s1) assume val recall (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) (w:W.witnessed state rel p) : MSTATE unit state rel (fun _ -> True) (fun s0 _ s1 -> s0 == s1 /\ p s1) (* * AR: why do we need the first conjunct in the postcondition? * * without this some proofs that use `assert e by t` fail * the way `assert e by t` works is that, it is desugared into `with_tactic e t` * that is abstract and remains in the VC as is at some point, we take a pass over * the VC, find the `with_tactic e t` nodes in it, farm out `G |= e by t` where `G` * is the context at that point in the VC in the original VC, `with_tactic e t` * is simply replace by `True`. * So why is it OK to replace it by `True`, don't we lose the fact that `e` holds for * the rest of the VC? * In the wp world of things, this works fine, since the wp of `assert e by t` is * (fun _ -> with_tactic e t /\ (e ==> ...)) * i.e. the type of `assert e by t` already introduces a cut, so replacing it by * `True` works fine. * * But this doesn't work when we use the intricate `~ (wp (fun r -> r =!= x))` * combinator to convert from wp to pre post * * Basically, the shape of the VC in that case becomes: * (with_tactic e t /\ (((~ with_tactic e t) \/ (e /\ ...)) ==> ...)) * * In this VC, if we replace the first `with_tactic e t` with `True`, for the second conjunct, * the solver can no longer reason that the first disjunct cannot hold * * The wp (fun _ -> True) below helps add that assumption to the second conjunct *) let lift_pure_mst (a:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (f:eqtype_as_type unit -> PURE a wp) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~ (wp (fun r -> r =!= x \/ s0 =!= s1)))) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in x, s0 sub_effect PURE ~> MSTATE = lift_pure_mst (* * A polymonadic bind between DIV and MSTATE * * This is ultimately used when defining par and frame in Steel.Effect.fst (via NMST layer) * par and frame try to compose reified Steel with Steel, since Steel is non total, its reification * incurs a Div effect, and so, we need a way to compose Div and Steel * * To do so, we have to go all the way down and have a story for MST and NMST too * * This polymonadic bind gives us bare minimum to realize that * It is quite imprecise, in that it doesn't say anything about the post of the Div computation * That's because, the as_ensures combinator is not encoded for Div effect in the SMT, * the way it is done for PURE and GHOST * * However, since the reification use case gives us Dv anyway, this is fine for now *) let bind_div_mst (a:Type) (b:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (req:a -> pre_t state) (ens:a -> post_t state b) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0))
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_div_mst (a b: Type) (wp: pure_wp a) (state: Type u#2) (rel: P.preorder state) (req: (a -> pre_t state)) (ens: (a -> post_t state b)) (f: (eqtype_as_type unit -> DIV a wp)) (g: (x: a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1)
[]
FStar.MST.bind_div_mst
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> b: Type -> wp: Prims.pure_wp a -> state: Type -> rel: FStar.Preorder.preorder state -> req: (_: a -> FStar.MST.pre_t state) -> ens: (_: a -> FStar.MST.post_t state b) -> f: (_: FStar.Pervasives.eqtype_as_type Prims.unit -> FStar.Pervasives.DIV a) -> g: (x: a -> FStar.MST.repr b state rel (req x) (ens x)) -> FStar.MST.repr b state rel (fun s0 -> wp (fun _ -> Prims.l_True) /\ (forall (x: a). req x s0)) (fun s0 y s1 -> exists (x: a). ens x s0 y s1)
{ "end_col": 10, "end_line": 220, "start_col": 2, "start_line": 217 }
Prims.Tot
val bind (a b: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: (a -> pre_t state)) (ens_g: (a -> post_t state b)) (f: repr a state rel req_f ens_f) (g: (x: a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2))
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1
val bind (a b: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: (a -> pre_t state)) (ens_g: (a -> post_t state b)) (f: repr a state rel req_f ens_f) (g: (x: a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) let bind (a b: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: (a -> pre_t state)) (ens_g: (a -> post_t state b)) (f: repr a state rel req_f ens_f) (g: (x: a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) =
false
null
false
fun s0 -> let x, s1 = f s0 in (g x) s1
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[ "total" ]
[ "FStar.Preorder.preorder", "FStar.MST.pre_t", "FStar.MST.post_t", "FStar.MST.repr", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.l_Exists" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2))
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind (a b: Type) (state: Type u#2) (rel: P.preorder state) (req_f: pre_t state) (ens_f: post_t state a) (req_g: (a -> pre_t state)) (ens_g: (a -> post_t state b)) (f: repr a state rel req_f ens_f) (g: (x: a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2))
[]
FStar.MST.bind
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> b: Type -> state: Type -> rel: FStar.Preorder.preorder state -> req_f: FStar.MST.pre_t state -> ens_f: FStar.MST.post_t state a -> req_g: (_: a -> FStar.MST.pre_t state) -> ens_g: (_: a -> FStar.MST.post_t state b) -> f: FStar.MST.repr a state rel req_f ens_f -> g: (x: a -> FStar.MST.repr b state rel (req_g x) (ens_g x)) -> FStar.MST.repr b state rel (fun s0 -> req_f s0 /\ (forall (x: a) (s1: state). ens_f s0 x s1 ==> req_g x s1)) (fun s0 r s2 -> req_f s0 /\ (exists (x: a) (s1: state). ens_f s0 x s1 /\ req_g x s1 /\ ens_g x s1 r s2))
{ "end_col": 12, "end_line": 67, "start_col": 2, "start_line": 65 }
FStar.MST.MSTATE
val mst_assert (#state: Type u#2) (#rel: P.preorder state) (p: Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1)
[ { "abbrev": false, "full_module": "FStar.Monotonic.Pure", "short_module": null }, { "abbrev": true, "full_module": "FStar.Witnessed.Core", "short_module": "W" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mst_assert (#state:Type u#2) (#rel:P.preorder state) (p:Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1) = assert p
val mst_assert (#state: Type u#2) (#rel: P.preorder state) (p: Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1) let mst_assert (#state: Type u#2) (#rel: P.preorder state) (p: Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1) =
true
null
false
assert p
{ "checked_file": "FStar.MST.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Witnessed.Core.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.MSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked" ], "interface_file": false, "source_file": "FStar.MST.fst" }
[]
[ "FStar.Preorder.preorder", "Prims._assert", "Prims.unit", "Prims.l_and", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.MST module P = FStar.Preorder module W = FStar.Witnessed.Core open FStar.Monotonic.Pure type pre_t (state:Type u#2) = state -> Type0 type post_t (state:Type u#2) (a:Type u#a) = state -> a -> state -> Type0 type repr (a:Type) (state:Type u#2) (rel:P.preorder state) (req:pre_t state) (ens:post_t state a) = s0:state -> DIV (a & state) (as_pure_wp (fun p -> req s0 /\ (forall (x:a) (s1:state). (ens s0 x s1 /\ rel s0 s1) ==> p (x, s1)))) let return (a:Type) (x:a) (state:Type u#2) (rel:P.preorder state) : repr a state rel (fun _ -> True) (fun s0 r s1 -> r == x /\ s0 == s1) = fun s0 -> x, s0 let bind (a:Type) (b:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:a -> pre_t state) (ens_g:a -> post_t state b) (f:repr a state rel req_f ens_f) (g:(x:a -> repr b state rel (req_g x) (ens_g x))) : repr b state rel (fun s0 -> req_f s0 /\ (forall x s1. ens_f s0 x s1 ==> (req_g x) s1)) (fun s0 r s2 -> req_f s0 /\ (exists x s1. ens_f s0 x s1 /\ (req_g x) s1 /\ (ens_g x) s1 r s2)) = fun s0 -> let x, s1 = f s0 in (g x) s1 let subcomp (a:Type) (state:Type u#2) (rel:P.preorder state) (req_f:pre_t state) (ens_f:post_t state a) (req_g:pre_t state) (ens_g:post_t state a) (f:repr a state rel req_f ens_f) : Pure (repr a state rel req_g ens_g) (requires (forall s. req_g s ==> req_f s) /\ (forall s0 x s1. (req_g s0 /\ ens_f s0 x s1) ==> ens_g s0 x s1)) (ensures fun _ -> True) = f let if_then_else (a:Type) (state:Type u#2) (rel:P.preorder state) (req_then:pre_t state) (ens_then:post_t state a) (req_else:pre_t state) (ens_else:post_t state a) (f:repr a state rel req_then ens_then) (g:repr a state rel req_else ens_else) (p:bool) : Type = repr a state rel (fun s -> (p ==> req_then s) /\ ((~ p) ==> req_else s)) (fun s0 x s1 -> (p ==> ens_then s0 x s1) /\ ((~ p) ==> ens_else s0 x s1)) [@@ primitive_extraction] reflectable effect { MSTATE (a:Type) ([@@@ effect_param] state:Type u#2) ([@@@ effect_param] rel:P.preorder state) (req:pre_t state) (ens:post_t state a) with { repr; return; bind; subcomp; if_then_else } } [@@ noextract_to "krml"] let get (#state:Type u#2) (#rel:P.preorder state) () : MSTATE state state rel (fun _ -> True) (fun s0 r s1 -> s0 == r /\ r == s1) = MSTATE?.reflect (fun s0 -> s0, s0) [@@ noextract_to "krml"] let put (#state:Type u#2) (#rel:P.preorder state) (s:state) : MSTATE unit state rel (fun s0 -> rel s0 s) (fun _ _ s1 -> s1 == s) = MSTATE?.reflect (fun _ -> (), s) assume val witness (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) : MSTATE (W.witnessed state rel p) state rel (fun s0 -> p s0 /\ W.stable state rel p) (fun s0 _ s1 -> s0 == s1) assume val recall (state:Type u#2) (rel:P.preorder state) (p:W.s_predicate state) (w:W.witnessed state rel p) : MSTATE unit state rel (fun _ -> True) (fun s0 _ s1 -> s0 == s1 /\ p s1) (* * AR: why do we need the first conjunct in the postcondition? * * without this some proofs that use `assert e by t` fail * the way `assert e by t` works is that, it is desugared into `with_tactic e t` * that is abstract and remains in the VC as is at some point, we take a pass over * the VC, find the `with_tactic e t` nodes in it, farm out `G |= e by t` where `G` * is the context at that point in the VC in the original VC, `with_tactic e t` * is simply replace by `True`. * So why is it OK to replace it by `True`, don't we lose the fact that `e` holds for * the rest of the VC? * In the wp world of things, this works fine, since the wp of `assert e by t` is * (fun _ -> with_tactic e t /\ (e ==> ...)) * i.e. the type of `assert e by t` already introduces a cut, so replacing it by * `True` works fine. * * But this doesn't work when we use the intricate `~ (wp (fun r -> r =!= x))` * combinator to convert from wp to pre post * * Basically, the shape of the VC in that case becomes: * (with_tactic e t /\ (((~ with_tactic e t) \/ (e /\ ...)) ==> ...)) * * In this VC, if we replace the first `with_tactic e t` with `True`, for the second conjunct, * the solver can no longer reason that the first disjunct cannot hold * * The wp (fun _ -> True) below helps add that assumption to the second conjunct *) let lift_pure_mst (a:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (f:eqtype_as_type unit -> PURE a wp) : repr a state rel (fun s0 -> wp (fun _ -> True)) (fun s0 x s1 -> wp (fun _ -> True) /\ (~ (wp (fun r -> r =!= x \/ s0 =!= s1)))) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in x, s0 sub_effect PURE ~> MSTATE = lift_pure_mst (* * A polymonadic bind between DIV and MSTATE * * This is ultimately used when defining par and frame in Steel.Effect.fst (via NMST layer) * par and frame try to compose reified Steel with Steel, since Steel is non total, its reification * incurs a Div effect, and so, we need a way to compose Div and Steel * * To do so, we have to go all the way down and have a story for MST and NMST too * * This polymonadic bind gives us bare minimum to realize that * It is quite imprecise, in that it doesn't say anything about the post of the Div computation * That's because, the as_ensures combinator is not encoded for Div effect in the SMT, * the way it is done for PURE and GHOST * * However, since the reification use case gives us Dv anyway, this is fine for now *) let bind_div_mst (a:Type) (b:Type) (wp:pure_wp a) (state:Type u#2) (rel:P.preorder state) (req:a -> pre_t state) (ens:a -> post_t state b) (f:eqtype_as_type unit -> DIV a wp) (g:(x:a -> repr b state rel (req x) (ens x))) : repr b state rel (fun s0 -> wp (fun _ -> True) /\ (forall x. req x s0)) (fun s0 y s1 -> exists x. (ens x) s0 y s1) = elim_pure_wp_monotonicity wp; fun s0 -> let x = f () in (g x) s0 polymonadic_bind (DIV, MSTATE) |> MSTATE = bind_div_mst let mst_assume (#state:Type u#2) (#rel:P.preorder state) (p:Type) : MSTATE unit state rel (fun _ -> True) (fun m0 _ m1 -> p /\ m0 == m1) = assume p let mst_admit (#state:Type u#2) (#rel:P.preorder state) (#a:Type) () : MSTATE a state rel (fun _ -> True) (fun _ _ _ -> False) = admit () let mst_assert (#state:Type u#2) (#rel:P.preorder state) (p:Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1)
false
false
FStar.MST.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mst_assert (#state: Type u#2) (#rel: P.preorder state) (p: Type) : MSTATE unit state rel (fun _ -> p) (fun m0 _ m1 -> p /\ m0 == m1)
[]
FStar.MST.mst_assert
{ "file_name": "ulib/experimental/FStar.MST.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: Type0 -> FStar.MST.MSTATE Prims.unit
{ "end_col": 10, "end_line": 238, "start_col": 2, "start_line": 238 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ctr (r:ref int) = prev:erased int -> SteelT (y:int{y == prev + 1}) (repr r prev) (repr r)
let ctr (r: ref int) =
false
null
false
prev: erased int -> SteelT (y: int{y == prev + 1}) (repr r prev) (repr r)
{ "checked_file": "Steel.Closure.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Closure.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Prims.int", "FStar.Ghost.erased", "Prims.eq2", "Prims.op_Addition", "FStar.Ghost.reveal", "Steel.Closure.repr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Closure open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission [@@__reduce__] let repr (r:ref int) (x:int) = pts_to r full_perm (hide x)
false
true
Steel.Closure.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ctr : r: Steel.Reference.ref Prims.int -> Type0
[]
Steel.Closure.ctr
{ "file_name": "lib/steel/Steel.Closure.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref Prims.int -> Type0
{ "end_col": 94, "end_line": 28, "start_col": 22, "start_line": 28 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repr (r:ref int) (x:int) = pts_to r full_perm (hide x)
let repr (r: ref int) (x: int) =
false
null
false
pts_to r full_perm (hide x)
{ "checked_file": "Steel.Closure.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Closure.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Prims.int", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Closure open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission
false
true
Steel.Closure.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repr : r: Steel.Reference.ref Prims.int -> x: Prims.int -> Steel.Effect.Common.vprop
[]
Steel.Closure.repr
{ "file_name": "lib/steel/Steel.Closure.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref Prims.int -> x: Prims.int -> Steel.Effect.Common.vprop
{ "end_col": 58, "end_line": 26, "start_col": 31, "start_line": 26 }
Steel.Effect.SteelT
val new_counter (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_counter = new_counter'
val new_counter (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0) let new_counter =
true
null
false
new_counter'
{ "checked_file": "Steel.Closure.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Closure.fst" }
[]
[ "Steel.Closure.new_counter'" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Closure open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission [@@__reduce__] let repr (r:ref int) (x:int) = pts_to r full_perm (hide x) let ctr (r:ref int) = prev:erased int -> SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) let next (r:ref int) (prev:erased int) : SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) = let v = read_pt r in let (x:int { x == prev + 1 }) = v + 1 in write_pt r x; x val new_counter' (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0) let new_counter' () = let x = alloc_pt 0 in let f : ctr x = next x in let res : ctr_t = (| repr x, f |) in rewrite_slprop (repr x 0) (dfst res 0) (fun _ -> ()); return res
false
false
Steel.Closure.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_counter (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0)
[]
Steel.Closure.new_counter
{ "file_name": "lib/steel/Steel.Closure.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u7: Prims.unit -> Steel.Effect.SteelT Steel.Closure.ctr_t
{ "end_col": 30, "end_line": 47, "start_col": 18, "start_line": 47 }
Steel.Effect.SteelT
val next (r: ref int) (prev: erased int) : SteelT (y: int{y == prev + 1}) (repr r prev) (repr r)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let next (r:ref int) (prev:erased int) : SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) = let v = read_pt r in let (x:int { x == prev + 1 }) = v + 1 in write_pt r x; x
val next (r: ref int) (prev: erased int) : SteelT (y: int{y == prev + 1}) (repr r prev) (repr r) let next (r: ref int) (prev: erased int) : SteelT (y: int{y == prev + 1}) (repr r prev) (repr r) =
true
null
false
let v = read_pt r in let x:x: int{x == prev + 1} = v + 1 in write_pt r x; x
{ "checked_file": "Steel.Closure.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Closure.fst" }
[]
[ "Steel.Reference.ref", "Prims.int", "FStar.Ghost.erased", "Prims.eq2", "Prims.op_Addition", "FStar.Ghost.reveal", "Prims.unit", "Steel.Reference.write_pt", "FStar.Ghost.hide", "Steel.Reference.read_pt", "Steel.FractionalPermission.full_perm", "Steel.Closure.repr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Closure open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission [@@__reduce__] let repr (r:ref int) (x:int) = pts_to r full_perm (hide x) let ctr (r:ref int) = prev:erased int -> SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) let next (r:ref int) (prev:erased int)
false
false
Steel.Closure.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val next (r: ref int) (prev: erased int) : SteelT (y: int{y == prev + 1}) (repr r prev) (repr r)
[]
Steel.Closure.next
{ "file_name": "lib/steel/Steel.Closure.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref Prims.int -> prev: FStar.Ghost.erased Prims.int -> Steel.Effect.SteelT (y: Prims.int{y == FStar.Ghost.reveal prev + 1})
{ "end_col": 5, "end_line": 35, "start_col": 3, "start_line": 32 }
Steel.Effect.SteelT
val new_counter' (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0)
[ { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_counter' () = let x = alloc_pt 0 in let f : ctr x = next x in let res : ctr_t = (| repr x, f |) in rewrite_slprop (repr x 0) (dfst res 0) (fun _ -> ()); return res
val new_counter' (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0) let new_counter' () =
true
null
false
let x = alloc_pt 0 in let f:ctr x = next x in let res:ctr_t = (| repr x, f |) in rewrite_slprop (repr x 0) (dfst res 0) (fun _ -> ()); return res
{ "checked_file": "Steel.Closure.fst.checked", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Closure.fst" }
[]
[ "Prims.unit", "Steel.Effect.Atomic.return", "Steel.Closure.ctr_t", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "FStar.Pervasives.dfst", "Prims.int", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Prims.eq2", "Prims.op_Addition", "FStar.Ghost.reveal", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Closure.repr", "Steel.Memory.mem", "Prims.Mkdtuple2", "Steel.Closure.ctr", "Steel.Closure.next", "Steel.Reference.ref", "Steel.Reference.alloc_pt" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Closure open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.Reference open Steel.FractionalPermission [@@__reduce__] let repr (r:ref int) (x:int) = pts_to r full_perm (hide x) let ctr (r:ref int) = prev:erased int -> SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) let next (r:ref int) (prev:erased int) : SteelT (y:int{y == prev + 1}) (repr r prev) (repr r) = let v = read_pt r in let (x:int { x == prev + 1 }) = v + 1 in write_pt r x; x val new_counter' (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0)
false
false
Steel.Closure.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_counter' (u:unit) : SteelT ctr_t emp (fun r -> dfst r 0)
[]
Steel.Closure.new_counter'
{ "file_name": "lib/steel/Steel.Closure.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u6: Prims.unit -> Steel.Effect.SteelT Steel.Closure.ctr_t
{ "end_col": 12, "end_line": 45, "start_col": 21, "start_line": 40 }
FStar.Pervasives.Lemma
val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c
val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d =
false
null
true
Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_lt_left" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d)
[]
Hacl.Spec.K256.MathLemmas.lemma_ab_lt_cd
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> b: Prims.pos -> c: Prims.pos -> d: Prims.pos -> FStar.Pervasives.Lemma (requires a < c /\ b < d) (ensures a * b < c * d)
{ "end_col": 39, "end_line": 45, "start_col": 2, "start_line": 44 }
FStar.Pervasives.Lemma
val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c
val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d =
false
null
true
Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_left" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d)
[]
Hacl.Spec.K256.MathLemmas.lemma_ab_le_cd
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat -> FStar.Pervasives.Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d)
{ "end_col": 39, "end_line": 37, "start_col": 2, "start_line": 36 }
FStar.Pervasives.Lemma
val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; }
val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c =
false
null
true
calc ( == ) { (a * b) * c; ( == ) { Math.Lemmas.paren_mul_right a b c } a * (b * c); ( == ) { Math.Lemmas.swap_mul b c } a * (c * b); ( == ) { Math.Lemmas.paren_mul_right a c b } (a * c) * b; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.swap_mul" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b)
[]
Hacl.Spec.K256.MathLemmas.lemma_swap_mul3
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> c: Prims.int -> FStar.Pervasives.Lemma (ensures (a * b) * c == (a * c) * b)
{ "end_col": 3, "end_line": 17, "start_col": 2, "start_line": 9 }
FStar.Pervasives.Lemma
val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n
val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n =
false
null
true
Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_sub_distr", "Prims.op_Modulus", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.op_Minus" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n)
[]
Hacl.Spec.K256.MathLemmas.lemma_mod_sub_distr
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures (a - b) % n = (a % n - b % n) % n)
{ "end_col": 45, "end_line": 29, "start_col": 2, "start_line": 28 }
FStar.Pervasives.Lemma
val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n
val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n =
false
null
true
Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.op_Modulus", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n)
[]
Hacl.Spec.K256.MathLemmas.lemma_mod_mul_distr
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures a * b % n = (a % n) * (b % n) % n)
{ "end_col": 47, "end_line": 23, "start_col": 2, "start_line": 22 }
FStar.Pervasives.Lemma
val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c
val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c =
false
null
true
assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2)
[]
Hacl.Spec.K256.MathLemmas.lemma_a_plus_b_pow2_mod2
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> c: Prims.pos -> FStar.Pervasives.Lemma (ensures (a + b * Prims.pow2 c) % 2 = a % 2)
{ "end_col": 54, "end_line": 130, "start_col": 2, "start_line": 128 }
FStar.Pervasives.Lemma
val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52)
val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b =
false
null
true
lemma_distr_eucl_mul_add 1 a b (pow2 52)
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add", "Prims.pow2", "Prims.unit" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; }
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52)
[]
Hacl.Spec.K256.MathLemmas.lemma_distr_eucl
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (ensures (a / Prims.pow2 52 + b) * Prims.pow2 52 + a % Prims.pow2 52 = a + b * Prims.pow2 52)
{ "end_col": 67, "end_line": 123, "start_col": 27, "start_line": 123 }
FStar.Pervasives.Lemma
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); }
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b =
false
null
true
calc ( <= ) { a * b; ( <= ) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); ( == ) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); ( == ) { (Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb) } ma * (mb * (mma * mmb)); ( == ) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } (ma * mb) * (mma * mmb); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_ab_le_cd", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb))
[]
Hacl.Spec.K256.MathLemmas.lemma_bound_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ma: Prims.nat -> mb: Prims.nat -> mma: Prims.nat -> mmb: Prims.nat -> a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= (ma * mb) * (mma * mmb))
{ "end_col": 3, "end_line": 66, "start_col": 2, "start_line": 53 }
FStar.Pervasives.Lemma
val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); }
val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e =
false
null
true
calc ( == ) { (a * pow2 b + c * pow2 d) * pow2 e; ( == ) { lemma_distr_pow (a * pow2 b) c d e } (a * pow2 b) * pow2 e + c * pow2 (d + e); ( == ) { (Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e) } a * pow2 (b + e) + c * pow2 (d + e); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e))
[]
Hacl.Spec.K256.MathLemmas.lemma_distr_pow_pow
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.nat -> c: Prims.int -> d: Prims.nat -> e: Prims.nat -> FStar.Pervasives.Lemma (ensures (a * Prims.pow2 b + c * Prims.pow2 d) * Prims.pow2 e = a * Prims.pow2 (b + e) + c * Prims.pow2 (d + e))
{ "end_col": 3, "end_line": 89, "start_col": 2, "start_line": 83 }
FStar.Pervasives.Lemma
val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); }
val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d =
false
null
true
calc ( == ) { (a + b * pow2 c) * pow2 d; ( == ) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + (b * pow2 c) * pow2 d; ( == ) { (Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d) } a * pow2 d + b * pow2 (c + d); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_add_left", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d))
[]
Hacl.Spec.K256.MathLemmas.lemma_distr_pow
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> c: Prims.nat -> d: Prims.nat -> FStar.Pervasives.Lemma (ensures (a + b * Prims.pow2 c) * Prims.pow2 d = a * Prims.pow2 d + b * Prims.pow2 (c + d))
{ "end_col": 3, "end_line": 77, "start_col": 2, "start_line": 71 }
FStar.Pervasives.Lemma
val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_mod_b_mul_c_mod_d a b c d = Math.Lemmas.pow2_multiplication_modulo_lemma_2 (a % pow2 b) d c; Math.Lemmas.pow2_modulo_modulo_lemma_2 a (d - c) b
val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c) let lemma_a_mod_b_mul_c_mod_d a b c d =
false
null
true
Math.Lemmas.pow2_multiplication_modulo_lemma_2 (a % pow2 b) d c; Math.Lemmas.pow2_modulo_modulo_lemma_2 a (d - c) b
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_2", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "Prims.op_Modulus", "Prims.pow2" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); } val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e = let t_r = c % pow2 d * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c)
[]
Hacl.Spec.K256.MathLemmas.lemma_a_mod_b_mul_c_mod_d
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat -> FStar.Pervasives.Lemma (requires c <= d /\ b <= d - c) (ensures (a % Prims.pow2 b) * Prims.pow2 c % Prims.pow2 d = (a % Prims.pow2 b) * Prims.pow2 c)
{ "end_col": 52, "end_line": 274, "start_col": 2, "start_line": 273 }
FStar.Pervasives.Lemma
val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e = let t_r = c % pow2 d * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e))
val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e =
false
null
true
let t_r = (c % pow2 d) * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + (c % pow2 d) * pow2 e < pow2 (d + e))
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.unit", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.int" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); } val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e))
[]
Hacl.Spec.K256.MathLemmas.lemma_a_div_b_plus_c_mod_d_mul_e
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat -> e: Prims.nat -> FStar.Pervasives.Lemma (requires a / Prims.pow2 b < Prims.pow2 e) (ensures a / Prims.pow2 b + (c % Prims.pow2 d) * Prims.pow2 e < Prims.pow2 (d + e))
{ "end_col": 58, "end_line": 265, "start_col": 48, "start_line": 258 }
FStar.Pervasives.Lemma
val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; }
val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b =
false
null
true
calc ( == ) { (a0 + a1 + a2 + a3 + a4) * b; ( == ) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; ( == ) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; ( == ) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; ( == ) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_add_left", "Prims.squash" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b)
[]
Hacl.Spec.K256.MathLemmas.lemma_distr5
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Prims.int -> a1: Prims.int -> a2: Prims.int -> a3: Prims.int -> a4: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (ensures (a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b)
{ "end_col": 3, "end_line": 183, "start_col": 2, "start_line": 173 }
FStar.Pervasives.Lemma
val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; }
val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b =
false
null
true
calc ( == ) { r * (a % b) + (r * (a / b)) * b; ( == ) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); ( == ) { Math.Lemmas.distributivity_add_right r (a % b) ((a / b) * b) } r * (a % b + (a / b) * b); ( == ) { Math.Lemmas.euclidean_division_definition a b } r * a; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Math.Lemmas.euclidean_division_definition" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a)
[]
Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Prims.int -> a: Prims.int -> b: Prims.pos -> FStar.Pervasives.Lemma (ensures r * (a % b) + (r * (a / b)) * b = r * a)
{ "end_col": 3, "end_line": 102, "start_col": 2, "start_line": 94 }
FStar.Pervasives.Lemma
val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_mul_c_plus_d_mod_e_mul_f_g a b c d f g = calc (==) { a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g; (==) { lemma_distr_pow (a / pow2 b) d f g } a % pow2 b * pow2 c + (a / pow2 b) * pow2 (c + b) + d * pow2 (f + g); (==) { lemma_distr_pow (a % pow2 b) (a / pow2 b) b c } (a % pow2 b + (a / pow2 b) * pow2 b) * pow2 c + d * pow2 (f + g); (==) { Math.Lemmas.euclidean_division_definition a (pow2 b) } a * pow2 c + d * pow2 (f + g); }
val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g)) let lemma_a_mul_c_plus_d_mod_e_mul_f_g a b c d f g =
false
null
true
calc ( == ) { (a % pow2 b) * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g; ( == ) { lemma_distr_pow (a / pow2 b) d f g } (a % pow2 b) * pow2 c + (a / pow2 b) * pow2 (c + b) + d * pow2 (f + g); ( == ) { lemma_distr_pow (a % pow2 b) (a / pow2 b) b c } (a % pow2 b + (a / pow2 b) * pow2 b) * pow2 c + d * pow2 (f + g); ( == ) { Math.Lemmas.euclidean_division_definition a (pow2 b) } a * pow2 c + d * pow2 (f + g); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Prims.squash", "FStar.Math.Lemmas.euclidean_division_definition" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); } val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e = let t_r = c % pow2 d * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c) let lemma_a_mod_b_mul_c_mod_d a b c d = Math.Lemmas.pow2_multiplication_modulo_lemma_2 (a % pow2 b) d c; Math.Lemmas.pow2_modulo_modulo_lemma_2 a (d - c) b val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g))
[]
Hacl.Spec.K256.MathLemmas.lemma_a_mul_c_plus_d_mod_e_mul_f_g
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat -> f: Prims.nat -> g: Prims.nat -> FStar.Pervasives.Lemma (requires c == g - b) (ensures (a % Prims.pow2 b) * Prims.pow2 c + (a / Prims.pow2 b + d * Prims.pow2 f) * Prims.pow2 g == a * Prims.pow2 c + d * Prims.pow2 (f + g))
{ "end_col": 3, "end_line": 292, "start_col": 2, "start_line": 284 }
FStar.Pervasives.Lemma
val lemma_a_mod_52_mul_b (a b:nat) : Lemma ((a % pow2 52) * pow2 b = a * pow2 b - a / pow2 52 * pow2 (b + 52))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_mod_52_mul_b a b = calc (==) { (a % pow2 52) * pow2 b; (==) { Math.Lemmas.euclidean_division_definition a (pow2 52) } (a - a / pow2 52 * pow2 52) * pow2 b; (==) { Math.Lemmas.distributivity_sub_left a (a / pow2 52 * pow2 52) (pow2 b) } a * pow2 b - a / pow2 52 * pow2 52 * pow2 b; (==) { Math.Lemmas.paren_mul_right (a / pow2 52) (pow2 52) (pow2 b); Math.Lemmas.pow2_plus 52 b } a * pow2 b - a / pow2 52 * pow2 (52 + b); }
val lemma_a_mod_52_mul_b (a b:nat) : Lemma ((a % pow2 52) * pow2 b = a * pow2 b - a / pow2 52 * pow2 (b + 52)) let lemma_a_mod_52_mul_b a b =
false
null
true
calc ( == ) { (a % pow2 52) * pow2 b; ( == ) { Math.Lemmas.euclidean_division_definition a (pow2 52) } (a - (a / pow2 52) * pow2 52) * pow2 b; ( == ) { Math.Lemmas.distributivity_sub_left a ((a / pow2 52) * pow2 52) (pow2 b) } a * pow2 b - ((a / pow2 52) * pow2 52) * pow2 b; ( == ) { (Math.Lemmas.paren_mul_right (a / pow2 52) (pow2 52) (pow2 b); Math.Lemmas.pow2_plus 52 b) } a * pow2 b - (a / pow2 52) * pow2 (52 + b); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Subtraction", "Prims.op_Division", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); } val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e = let t_r = c % pow2 d * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c) let lemma_a_mod_b_mul_c_mod_d a b c d = Math.Lemmas.pow2_multiplication_modulo_lemma_2 (a % pow2 b) d c; Math.Lemmas.pow2_modulo_modulo_lemma_2 a (d - c) b val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g)) let lemma_a_mul_c_plus_d_mod_e_mul_f_g a b c d f g = calc (==) { a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g; (==) { lemma_distr_pow (a / pow2 b) d f g } a % pow2 b * pow2 c + (a / pow2 b) * pow2 (c + b) + d * pow2 (f + g); (==) { lemma_distr_pow (a % pow2 b) (a / pow2 b) b c } (a % pow2 b + (a / pow2 b) * pow2 b) * pow2 c + d * pow2 (f + g); (==) { Math.Lemmas.euclidean_division_definition a (pow2 b) } a * pow2 c + d * pow2 (f + g); } val lemma_a_mod_52_mul_b (a b:nat) : Lemma ((a % pow2 52) * pow2 b = a * pow2 b - a / pow2 52 * pow2 (b + 52))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_mod_52_mul_b (a b:nat) : Lemma ((a % pow2 52) * pow2 b = a * pow2 b - a / pow2 52 * pow2 (b + 52))
[]
Hacl.Spec.K256.MathLemmas.lemma_a_mod_52_mul_b
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures (a % Prims.pow2 52) * Prims.pow2 b = a * Prims.pow2 b - (a / Prims.pow2 52) * Prims.pow2 (b + 52))
{ "end_col": 3, "end_line": 307, "start_col": 2, "start_line": 299 }
FStar.Pervasives.Lemma
val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; }
val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b =
false
null
true
calc ( == ) { r * (a % b) + (r * (a / b + c)) * b; ( == ) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); ( == ) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * (((a / b) * b) + c * b); ( == ) { Math.Lemmas.distributivity_add_right r ((a / b) * b) (c * b) } r * (a % b) + r * ((a / b) * b) + r * (c * b); ( == ) { (Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b) } r * (a % b) + (r * (a / b)) * b + (r * c) * b; ( == ) { lemma_distr_eucl_mul r a b } r * a + (r * c) * b; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.distributivity_add_right", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b)
[]
Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Prims.int -> a: Prims.int -> c: Prims.int -> b: Prims.pos -> FStar.Pervasives.Lemma (ensures r * (a % b) + (r * (a / b + c)) * b = r * a + (r * c) * b)
{ "end_col": 3, "end_line": 119, "start_col": 2, "start_line": 107 }
FStar.Pervasives.Lemma
val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; }
val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 =
false
null
true
calc ( == ) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; ( == ) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; ( == ) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; ( == ) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Prims.squash" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0)
[]
Hacl.Spec.K256.MathLemmas.lemma_as_nat_horner
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r0: Prims.int -> r1: Prims.int -> r2: Prims.int -> r3: Prims.int -> r4: Prims.int -> FStar.Pervasives.Lemma (ensures r0 + r1 * Prims.pow2 52 + r2 * Prims.pow2 104 + r3 * Prims.pow2 156 + r4 * Prims.pow2 208 == (((r4 * Prims.pow2 52 + r3) * Prims.pow2 52 + r2) * Prims.pow2 52 + r1) * Prims.pow2 52 + r0)
{ "end_col": 3, "end_line": 166, "start_col": 2, "start_line": 158 }
FStar.Pervasives.Lemma
val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; }
val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 =
false
null
true
calc ( == ) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); ( == ) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; ( == ) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; ( == ) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; ( == ) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; ( == ) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0)
[]
Hacl.Spec.K256.MathLemmas.lemma_as_nat64_horner
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r0: Prims.int -> r1: Prims.int -> r2: Prims.int -> r3: Prims.int -> FStar.Pervasives.Lemma (ensures r0 + r1 * Prims.pow2 64 + r2 * Prims.pow2 128 + r3 * Prims.pow2 192 == ((r3 * Prims.pow2 64 + r2) * Prims.pow2 64 + r1) * Prims.pow2 64 + r0)
{ "end_col": 3, "end_line": 150, "start_col": 2, "start_line": 138 }
FStar.Pervasives.Lemma
val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); }
val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p =
false
null
true
let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc ( == ) { (a * pow2 p) * b_sum; ( == ) { lemma_swap_mul3 a (pow2 p) b_sum } (a * b_sum) * pow2 p; ( == ) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + (a * b1) * pow2 52 + (a * b2) * pow2 104 + (a * b3) * pow2 156 + (a * b4) * pow2 208) * pow2 p; ( == ) { lemma_distr_pow (a * b0 + (a * b1) * pow2 52 + (a * b2) * pow2 104 + (a * b3) * pow2 156) (a * b4) 208 p } (a * b0 + (a * b1) * pow2 52 + (a * b2) * pow2 104 + (a * b3) * pow2 156) * pow2 p + (a * b4) * pow2 (208 + p); ( == ) { lemma_distr_pow (a * b0 + (a * b1) * pow2 52 + (a * b2) * pow2 104) (a * b3) 156 p } (a * b0 + (a * b1) * pow2 52 + (a * b2) * pow2 104) * pow2 p + (a * b3) * pow2 (156 + p) + (a * b4) * pow2 (208 + p); ( == ) { lemma_distr_pow (a * b0 + (a * b1) * pow2 52) (a * b2) 104 p } (a * b0 + (a * b1) * pow2 52) * pow2 p + (a * b2) * pow2 (104 + p) + (a * b3) * pow2 (156 + p) + (a * b4) * pow2 (208 + p); ( == ) { lemma_distr_pow (a * b0) (a * b1) 52 p } (a * b0) * pow2 p + (a * b1) * pow2 (52 + p) + (a * b2) * pow2 (104 + p) + (a * b3) * pow2 (156 + p) + (a * b4) * pow2 (208 + p); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p))
[]
Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52_mul_pow
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b0: Prims.int -> b1: Prims.int -> b2: Prims.int -> b3: Prims.int -> b4: Prims.int -> p: Prims.nat -> FStar.Pervasives.Lemma (ensures (a * Prims.pow2 p) * (b0 + b1 * Prims.pow2 52 + b2 * Prims.pow2 104 + b3 * Prims.pow2 156 + b4 * Prims.pow2 208) = (a * b0) * Prims.pow2 p + (a * b1) * Prims.pow2 (52 + p) + (a * b2) * Prims.pow2 (104 + p) + (a * b3) * Prims.pow2 (156 + p) + (a * b4) * Prims.pow2 (208 + p))
{ "end_col": 3, "end_line": 223, "start_col": 51, "start_line": 207 }
FStar.Pervasives.Lemma
val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; }
val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 =
false
null
true
calc ( == ) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); ( == ) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + (b1 * pow2 52) * a + (b2 * pow2 104) * a + (b3 * pow2 156) * a + (b4 * pow2 208) * a; ( == ) { (lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a) } b0 * a + (b1 * a) * pow2 52 + (b2 * a) * pow2 104 + (b3 * pow2 156) * a + (b4 * pow2 208) * a; ( == ) { (lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a) } b0 * a + (b1 * a) * pow2 52 + (b2 * a) * pow2 104 + (b3 * a) * pow2 156 + (b4 * a) * pow2 208; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr5", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208)
[]
Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b0: Prims.int -> b1: Prims.int -> b2: Prims.int -> b3: Prims.int -> b4: Prims.int -> FStar.Pervasives.Lemma (ensures a * (b0 + b1 * Prims.pow2 52 + b2 * Prims.pow2 104 + b3 * Prims.pow2 156 + b4 * Prims.pow2 208) = a * b0 + (a * b1) * Prims.pow2 52 + (a * b2) * Prims.pow2 104 + (a * b3) * Prims.pow2 156 + (a * b4) * Prims.pow2 208)
{ "end_col": 3, "end_line": 199, "start_col": 2, "start_line": 191 }
FStar.Pervasives.Lemma
val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); }
val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c =
false
null
true
calc ( == ) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; ( == ) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + (c * b1) * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; ( == ) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + (c * b1) * pow2 52 - a1 * pow2 52 + (c * b2) * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; ( == ) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + (c * b1) * pow2 52 - a1 * pow2 52 + (c * b2) * pow2 104 - a2 * pow2 104 + (c * b3) * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; ( == ) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + (c * b1) * pow2 52 - a1 * pow2 52 + (c * b2) * pow2 104 - a2 * pow2 104 + (c * b3) * pow2 156 - a3 * pow2 156 + (c * b4) * pow2 208 - a4 * pow2 208; ( == ) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_sub_left", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208))
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208))
[]
Hacl.Spec.K256.MathLemmas.lemma_distr5_pow52_sub
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Prims.int -> a1: Prims.int -> a2: Prims.int -> a3: Prims.int -> a4: Prims.int -> b0: Prims.int -> b1: Prims.int -> b2: Prims.int -> b3: Prims.int -> b4: Prims.int -> c: Prims.int -> FStar.Pervasives.Lemma (ensures b0 * c - a0 + (b1 * c - a1) * Prims.pow2 52 + (b2 * c - a2) * Prims.pow2 104 + (b3 * c - a3) * Prims.pow2 156 + (b4 * c - a4) * Prims.pow2 208 == (b0 + b1 * Prims.pow2 52 + b2 * Prims.pow2 104 + b3 * Prims.pow2 156 + b4 * Prims.pow2 208) * c - (a0 + a1 * Prims.pow2 52 + a2 * Prims.pow2 104 + a3 * Prims.pow2 156 + a4 * Prims.pow2 208))
{ "end_col": 3, "end_line": 251, "start_col": 2, "start_line": 233 }
FStar.Pervasives.Lemma
val lemma_simplify_carry_round (t0 t1 t2 t3 t4:nat) : Lemma (let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208 == t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_simplify_carry_round t0 t1 t2 t3 t4 = let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in calc (==) { t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; (==) { lemma_a_mod_52_mul_b a 52 } t0 % pow2 52 + (t1 + t0 / pow2 52) * pow2 52 - a / pow2 52 * pow2 104 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; (==) { lemma_distr_eucl t0 t1 } t0 + t1 * pow2 52 - a / pow2 52 * pow2 104 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; (==) { lemma_a_mod_52_mul_b b 104 } t0 + t1 * pow2 52 - a / pow2 52 * pow2 104 + (t2 + a / pow2 52) * pow2 104 - b / pow2 52 * pow2 156 + (c % pow2 52) * pow2 156 + d * pow2 208; (==) { Math.Lemmas.distributivity_add_left t2 (a / pow2 52) (pow2 104) } t0 + t1 * pow2 52 + t2 * pow2 104 - b / pow2 52 * pow2 156 + (c % pow2 52) * pow2 156 + d * pow2 208; (==) { lemma_a_mod_52_mul_b c 156 } t0 + t1 * pow2 52 + t2 * pow2 104 - b / pow2 52 * pow2 156 + (t3 + b / pow2 52) * pow2 156 - c / pow2 52 * pow2 208 + d * pow2 208; (==) { Math.Lemmas.distributivity_add_left t3 (b / pow2 52) (pow2 156) } t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 - c / pow2 52 * pow2 208 + (t4 + c / pow2 52) * pow2 208; (==) { Math.Lemmas.distributivity_add_left t4 (c / pow2 52) (pow2 208) } t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208; }
val lemma_simplify_carry_round (t0 t1 t2 t3 t4:nat) : Lemma (let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208 == t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208) let lemma_simplify_carry_round t0 t1 t2 t3 t4 =
false
null
true
let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in calc ( == ) { t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; ( == ) { lemma_a_mod_52_mul_b a 52 } t0 % pow2 52 + (t1 + t0 / pow2 52) * pow2 52 - (a / pow2 52) * pow2 104 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; ( == ) { lemma_distr_eucl t0 t1 } t0 + t1 * pow2 52 - (a / pow2 52) * pow2 104 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208; ( == ) { lemma_a_mod_52_mul_b b 104 } t0 + t1 * pow2 52 - (a / pow2 52) * pow2 104 + (t2 + a / pow2 52) * pow2 104 - (b / pow2 52) * pow2 156 + (c % pow2 52) * pow2 156 + d * pow2 208; ( == ) { Math.Lemmas.distributivity_add_left t2 (a / pow2 52) (pow2 104) } t0 + t1 * pow2 52 + t2 * pow2 104 - (b / pow2 52) * pow2 156 + (c % pow2 52) * pow2 156 + d * pow2 208; ( == ) { lemma_a_mod_52_mul_b c 156 } t0 + t1 * pow2 52 + t2 * pow2 104 - (b / pow2 52) * pow2 156 + (t3 + b / pow2 52) * pow2 156 - (c / pow2 52) * pow2 208 + d * pow2 208; ( == ) { Math.Lemmas.distributivity_add_left t3 (b / pow2 52) (pow2 156) } t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 - (c / pow2 52) * pow2 208 + (t4 + c / pow2 52) * pow2 208; ( == ) { Math.Lemmas.distributivity_add_left t4 (c / pow2 52) (pow2 208) } t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208; }
{ "checked_file": "Hacl.Spec.K256.MathLemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.MathLemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Prims.op_Modulus", "Prims.pow2", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "Prims.op_Division", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_a_mod_52_mul_b", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "FStar.Math.Lemmas.distributivity_add_left" ]
[]
module Hacl.Spec.K256.MathLemmas open FStar.Mul #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_swap_mul3 (a b c:int) : Lemma (a * b * c == a * c * b) let lemma_swap_mul3 a b c = calc (==) { a * b * c; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c); (==) { Math.Lemmas.swap_mul b c } a * (c * b); (==) { Math.Lemmas.paren_mul_right a c b } a * c * b; } val lemma_mod_mul_distr (a b:int) (n:pos) : Lemma (a * b % n = (a % n) * (b % n) % n) let lemma_mod_mul_distr a b n = Math.Lemmas.lemma_mod_mul_distr_l a b n; Math.Lemmas.lemma_mod_mul_distr_r (a % n) b n val lemma_mod_sub_distr (a b:int) (n:pos) : Lemma ((a - b) % n = (a % n - b % n) % n) let lemma_mod_sub_distr a b n = Math.Lemmas.lemma_mod_plus_distr_l a (- b) n; Math.Lemmas.lemma_mod_sub_distr (a % n) b n val lemma_ab_le_cd (a b c d:nat) : Lemma (requires a <= c /\ b <= d) (ensures a * b <= c * d) let lemma_ab_le_cd a b c d = Math.Lemmas.lemma_mult_le_left a b d; Math.Lemmas.lemma_mult_le_right d a c val lemma_ab_lt_cd (a b c d:pos) : Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let lemma_ab_lt_cd a b c d = Math.Lemmas.lemma_mult_lt_left a b d; Math.Lemmas.lemma_mult_lt_right d a c val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:nat) : Lemma (requires a <= ma * mma /\ b <= mb * mmb) (ensures a * b <= ma * mb * (mma * mmb)) let lemma_bound_mul64_wide ma mb mma mmb a b = calc (<=) { a * b; (<=) { lemma_ab_le_cd a b (ma * mma) (mb * mmb) } (ma * mma) * (mb * mmb); (==) { Math.Lemmas.paren_mul_right ma mma (mb * mmb) } ma * (mma * (mb * mmb)); (==) { Math.Lemmas.paren_mul_right mma mb mmb; Math.Lemmas.swap_mul mma mb; Math.Lemmas.paren_mul_right mb mma mmb } ma * (mb * (mma * mmb)); (==) { Math.Lemmas.paren_mul_right ma mb (mma * mmb) } ma * mb * (mma * mmb); } val lemma_distr_pow (a b:int) (c d:nat) : Lemma ((a + b * pow2 c) * pow2 d = a * pow2 d + b * pow2 (c + d)) let lemma_distr_pow a b c d = calc (==) { (a + b * pow2 c) * pow2 d; (==) { Math.Lemmas.distributivity_add_left a (b * pow2 c) (pow2 d) } a * pow2 d + b * pow2 c * pow2 d; (==) { Math.Lemmas.paren_mul_right b (pow2 c) (pow2 d); Math.Lemmas.pow2_plus c d } a * pow2 d + b * pow2 (c + d); } val lemma_distr_pow_pow (a:int) (b:nat) (c:int) (d e:nat) : Lemma ((a * pow2 b + c * pow2 d) * pow2 e = a * pow2 (b + e) + c * pow2 (d + e)) let lemma_distr_pow_pow a b c d e = calc (==) { (a * pow2 b + c * pow2 d) * pow2 e; (==) { lemma_distr_pow (a * pow2 b) c d e } a * pow2 b * pow2 e + c * pow2 (d + e); (==) { Math.Lemmas.paren_mul_right a (pow2 b) (pow2 e); Math.Lemmas.pow2_plus b e } a * pow2 (b + e) + c * pow2 (d + e); } val lemma_distr_eucl_mul (r a:int) (b:pos) : Lemma (r * (a % b) + r * (a / b) * b = r * a) let lemma_distr_eucl_mul r a b = calc (==) { r * (a % b) + r * (a / b) * b; (==) { Math.Lemmas.paren_mul_right r (a / b) b } r * (a % b) + r * ((a / b) * b); (==) { Math.Lemmas.distributivity_add_right r (a % b) (a / b * b) } r * (a % b + a / b * b); (==) { Math.Lemmas.euclidean_division_definition a b } r * a; } val lemma_distr_eucl_mul_add (r a c:int) (b:pos) : Lemma (r * (a % b) + r * (a / b + c) * b = r * a + r * c * b) let lemma_distr_eucl_mul_add r a c b = calc (==) { r * (a % b) + r * (a / b + c) * b; (==) { Math.Lemmas.paren_mul_right r (a / b + c) b } r * (a % b) + r * ((a / b + c) * b); (==) { Math.Lemmas.distributivity_add_left (a / b) c b } r * (a % b) + r * ((a / b * b) + c * b); (==) { Math.Lemmas.distributivity_add_right r (a / b * b) (c * b) } r * (a % b) + r * (a / b * b) + r * (c * b); (==) { Math.Lemmas.paren_mul_right r (a / b) b; Math.Lemmas.paren_mul_right r c b } r * (a % b) + r * (a / b) * b + r * c * b; (==) { lemma_distr_eucl_mul r a b } r * a + r * c * b; } val lemma_distr_eucl (a b:int) : Lemma ((a / pow2 52 + b) * pow2 52 + a % pow2 52 = a + b * pow2 52) let lemma_distr_eucl a b = lemma_distr_eucl_mul_add 1 a b (pow2 52) val lemma_a_plus_b_pow2_mod2 (a b:int) (c:pos) : Lemma ((a + b * pow2 c) % 2 = a % 2) let lemma_a_plus_b_pow2_mod2 a b c = assert_norm (pow2 1 = 2); Math.Lemmas.lemma_mod_plus_distr_r a (b * pow2 c) 2; Math.Lemmas.pow2_multiplication_modulo_lemma_1 b 1 c val lemma_as_nat64_horner (r0 r1 r2 r3:int) : Lemma (r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192 == ((r3 * pow2 64 + r2) * pow2 64 + r1) * pow2 64 + r0) let lemma_as_nat64_horner r0 r1 r2 r3 = calc (==) { r0 + pow2 64 * (r1 + pow2 64 * (r2 + pow2 64 * r3)); (==) { Math.Lemmas.swap_mul (pow2 64) (r1 + pow2 64 * (r2 + pow2 64 * r3)) } r0 + (r1 + pow2 64 * (r2 + pow2 64 * r3)) * pow2 64; (==) { Math.Lemmas.swap_mul (pow2 64) (r2 + pow2 64 * r3) } r0 + (r1 + (r2 + pow2 64 * r3) * pow2 64) * pow2 64; (==) { lemma_distr_pow r1 (r2 + pow2 64 * r3) 64 64 } r0 + r1 * pow2 64 + (r2 + pow2 64 * r3) * pow2 128; (==) { Math.Lemmas.swap_mul (pow2 64) r3 } r0 + r1 * pow2 64 + (r2 + r3 * pow2 64) * pow2 128; (==) { lemma_distr_pow r2 r3 64 128 } r0 + r1 * pow2 64 + r2 * pow2 128 + r3 * pow2 192; } val lemma_as_nat_horner (r0 r1 r2 r3 r4:int) : Lemma (r0 + r1 * pow2 52 + r2 * pow2 104 + r3 * pow2 156 + r4 * pow2 208 == (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0) let lemma_as_nat_horner r0 r1 r2 r3 r4 = calc (==) { (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_distr_pow r1 ((r4 * pow2 52 + r3) * pow2 52 + r2) 52 52 } ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r2 (r4 * pow2 52 + r3) 52 104 } (r4 * pow2 52 + r3) * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; (==) { lemma_distr_pow r3 r4 52 156 } r4 * pow2 208 + r3 * pow2 156 + r2 * pow2 104 + r1 * pow2 52 + r0; } val lemma_distr5 (a0 a1 a2 a3 a4 b:int) : Lemma ((a0 + a1 + a2 + a3 + a4) * b = a0 * b + a1 * b + a2 * b + a3 * b + a4 * b) let lemma_distr5 a0 a1 a2 a3 a4 b = calc (==) { (a0 + a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a0 (a1 + a2 + a3 + a4) b } a0 * b + (a1 + a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a1 (a2 + a3 + a4) b } a0 * b + a1 * b + (a2 + a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a2 (a3 + a4) b } a0 * b + a1 * b + a2 * b + (a3 + a4) * b; (==) { Math.Lemmas.distributivity_add_left a3 a4 b } a0 * b + a1 * b + a2 * b + a3 * b + a4 * b; } val lemma_distr5_pow52 (a b0 b1 b2 b3 b4:int) : Lemma (a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) let lemma_distr5_pow52 a b0 b1 b2 b3 b4 = calc (==) { a * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208); (==) { lemma_distr5 b0 (b1 * pow2 52) (b2 * pow2 104) (b3 * pow2 156) (b4 * pow2 208) a } b0 * a + b1 * pow2 52 * a + b2 * pow2 104 * a + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b1 (pow2 52) a; lemma_swap_mul3 b2 (pow2 104) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * pow2 156 * a + b4 * pow2 208 * a; (==) { lemma_swap_mul3 b3 (pow2 156) a; lemma_swap_mul3 b4 (pow2 208) a } b0 * a + b1 * a * pow2 52 + b2 * a * pow2 104 + b3 * a * pow2 156 + b4 * a * pow2 208; } val lemma_distr5_pow52_mul_pow (a b0 b1 b2 b3 b4: int) (p:nat) : Lemma (a * pow2 p * (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) = a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p)) let lemma_distr5_pow52_mul_pow a b0 b1 b2 b3 b4 p = let b_sum = b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208 in calc (==) { a * pow2 p * b_sum; (==) { lemma_swap_mul3 a (pow2 p) b_sum } a * b_sum * pow2 p; (==) { lemma_distr5_pow52 a b0 b1 b2 b3 b4 } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156 + a * b4 * pow2 208) * pow2 p; (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) (a * b4) 208 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104 + a * b3 * pow2 156) * pow2 p + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) (a * b3) 156 p } (a * b0 + a * b1 * pow2 52 + a * b2 * pow2 104) * pow2 p + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0 + a * b1 * pow2 52) (a * b2) 104 p } (a * b0 + a * b1 * pow2 52) * pow2 p + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); (==) { lemma_distr_pow (a * b0) (a * b1) 52 p } a * b0 * pow2 p + a * b1 * pow2 (52 + p) + a * b2 * pow2 (104 + p) + a * b3 * pow2 (156 + p) + a * b4 * pow2 (208 + p); } val lemma_distr5_pow52_sub (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c:int) : Lemma ((b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208 == (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208)) let lemma_distr5_pow52_sub a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 c = calc (==) { (b0 * c - a0) + (b1 * c - a1) * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b1 * c) a1 (pow2 52) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + (b2 * c - a2) * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b2 * c) a2 (pow2 104) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + (b3 * c - a3) * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b3 * c) a3 (pow2 156) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + (b4 * c - a4) * pow2 208; (==) { Math.Lemmas.distributivity_sub_left (b4 * c) a4 (pow2 208) } c * b0 - a0 + c * b1 * pow2 52 - a1 * pow2 52 + c * b2 * pow2 104 - a2 * pow2 104 + c * b3 * pow2 156 - a3 * pow2 156 + c * b4 * pow2 208 - a4 * pow2 208; (==) { lemma_distr5_pow52 c b0 b1 b2 b3 b4 } (b0 + b1 * pow2 52 + b2 * pow2 104 + b3 * pow2 156 + b4 * pow2 208) * c - (a0 + a1 * pow2 52 + a2 * pow2 104 + a3 * pow2 156 + a4 * pow2 208); } val lemma_a_div_b_plus_c_mod_d_mul_e (a b c d e:nat) : Lemma (requires a / pow2 b < pow2 e) (ensures a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) let lemma_a_div_b_plus_c_mod_d_mul_e a b c d e = let t_r = c % pow2 d * pow2 e in Math.Lemmas.lemma_mult_le_right (pow2 e) (c % pow2 d) (pow2 d - 1); assert (t_r <= (pow2 d - 1) * pow2 e); assert (t_r <= pow2 d * pow2 e - pow2 e); Math.Lemmas.pow2_plus d e; assert (t_r <= pow2 (d + e) - pow2 e); assert (a / pow2 b + c % pow2 d * pow2 e < pow2 (d + e)) val lemma_a_mod_b_mul_c_mod_d (a b c d:nat) : Lemma (requires c <= d /\ b <= d - c) (ensures (a % pow2 b) * pow2 c % pow2 d = (a % pow2 b) * pow2 c) let lemma_a_mod_b_mul_c_mod_d a b c d = Math.Lemmas.pow2_multiplication_modulo_lemma_2 (a % pow2 b) d c; Math.Lemmas.pow2_modulo_modulo_lemma_2 a (d - c) b val lemma_a_mul_c_plus_d_mod_e_mul_f_g (a b c d f g:nat) : Lemma (requires c == g - b) (ensures a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g == a * pow2 c + d * pow2 (f + g)) let lemma_a_mul_c_plus_d_mod_e_mul_f_g a b c d f g = calc (==) { a % pow2 b * pow2 c + (a / pow2 b + d * pow2 f) * pow2 g; (==) { lemma_distr_pow (a / pow2 b) d f g } a % pow2 b * pow2 c + (a / pow2 b) * pow2 (c + b) + d * pow2 (f + g); (==) { lemma_distr_pow (a % pow2 b) (a / pow2 b) b c } (a % pow2 b + (a / pow2 b) * pow2 b) * pow2 c + d * pow2 (f + g); (==) { Math.Lemmas.euclidean_division_definition a (pow2 b) } a * pow2 c + d * pow2 (f + g); } val lemma_a_mod_52_mul_b (a b:nat) : Lemma ((a % pow2 52) * pow2 b = a * pow2 b - a / pow2 52 * pow2 (b + 52)) let lemma_a_mod_52_mul_b a b = calc (==) { (a % pow2 52) * pow2 b; (==) { Math.Lemmas.euclidean_division_definition a (pow2 52) } (a - a / pow2 52 * pow2 52) * pow2 b; (==) { Math.Lemmas.distributivity_sub_left a (a / pow2 52 * pow2 52) (pow2 b) } a * pow2 b - a / pow2 52 * pow2 52 * pow2 b; (==) { Math.Lemmas.paren_mul_right (a / pow2 52) (pow2 52) (pow2 b); Math.Lemmas.pow2_plus 52 b } a * pow2 b - a / pow2 52 * pow2 (52 + b); } val lemma_simplify_carry_round (t0 t1 t2 t3 t4:nat) : Lemma (let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208 == t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208)
false
false
Hacl.Spec.K256.MathLemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_simplify_carry_round (t0 t1 t2 t3 t4:nat) : Lemma (let a = t1 + t0 / pow2 52 in let b = t2 + a / pow2 52 in let c = t3 + b / pow2 52 in let d = t4 + c / pow2 52 in t0 % pow2 52 + (a % pow2 52) * pow2 52 + (b % pow2 52) * pow2 104 + (c % pow2 52) * pow2 156 + d * pow2 208 == t0 + t1 * pow2 52 + t2 * pow2 104 + t3 * pow2 156 + t4 * pow2 208)
[]
Hacl.Spec.K256.MathLemmas.lemma_simplify_carry_round
{ "file_name": "code/k256/Hacl.Spec.K256.MathLemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t0: Prims.nat -> t1: Prims.nat -> t2: Prims.nat -> t3: Prims.nat -> t4: Prims.nat -> FStar.Pervasives.Lemma (ensures (let a = t1 + t0 / Prims.pow2 52 in let b = t2 + a / Prims.pow2 52 in let c = t3 + b / Prims.pow2 52 in let d = t4 + c / Prims.pow2 52 in t0 % Prims.pow2 52 + (a % Prims.pow2 52) * Prims.pow2 52 + (b % Prims.pow2 52) * Prims.pow2 104 + (c % Prims.pow2 52) * Prims.pow2 156 + d * Prims.pow2 208 == t0 + t1 * Prims.pow2 52 + t2 * Prims.pow2 104 + t3 * Prims.pow2 156 + t4 * Prims.pow2 208))
{ "end_col": 3, "end_line": 347, "start_col": 47, "start_line": 319 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point = lbuffer uint64 20ul
let point =
false
null
false
lbuffer uint64 20ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[ "total" ]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *) inline_for_extraction noextract let felem = lbuffer uint64 5ul (* A point is buffer of size 20, that is 4 consecutive buffers of size 5 *)
false
true
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point : Type0
[]
Hacl.Bignum25519.point
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 31, "end_line": 23, "start_col": 12, "start_line": 23 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem = lbuffer uint64 5ul
let felem =
false
null
false
lbuffer uint64 5ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[ "total" ]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *)
false
true
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem : Type0
[]
Hacl.Bignum25519.felem
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 30, "end_line": 19, "start_col": 12, "start_line": 19 }
FStar.HyperStack.ST.Stack
val getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1)
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let getz (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1) = sub p 10ul 5ul
val getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1) let getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1) =
true
null
false
sub p 10ul 5ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Bignum25519.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *) inline_for_extraction noextract let felem = lbuffer uint64 5ul (* A point is buffer of size 20, that is 4 consecutive buffers of size 5 *) inline_for_extraction noextract let point = lbuffer uint64 20ul inline_for_extraction noextract let getx (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) = sub p 0ul 5ul inline_for_extraction noextract let gety (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1) = sub p 5ul 5ul inline_for_extraction noextract let getz (p:point) : Stack felem (requires fun h -> live h p)
false
false
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val getz (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1)
[]
Hacl.Bignum25519.getz
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Hacl.Bignum25519.felem
{ "end_col": 18, "end_line": 41, "start_col": 4, "start_line": 41 }
FStar.HyperStack.ST.Stack
val gety (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1)
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gety (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1) = sub p 5ul 5ul
val gety (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1) let gety (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1) =
true
null
false
sub p 5ul 5ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Bignum25519.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *) inline_for_extraction noextract let felem = lbuffer uint64 5ul (* A point is buffer of size 20, that is 4 consecutive buffers of size 5 *) inline_for_extraction noextract let point = lbuffer uint64 20ul inline_for_extraction noextract let getx (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) = sub p 0ul 5ul inline_for_extraction noextract let gety (p:point) : Stack felem (requires fun h -> live h p)
false
false
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gety (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1)
[]
Hacl.Bignum25519.gety
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Hacl.Bignum25519.felem
{ "end_col": 17, "end_line": 35, "start_col": 4, "start_line": 35 }
FStar.HyperStack.ST.Stack
val gett (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 15ul 5ul /\ h0 == h1)
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gett (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 15ul 5ul /\ h0 == h1) = sub p 15ul 5ul
val gett (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 15ul 5ul /\ h0 == h1) let gett (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 15ul 5ul /\ h0 == h1) =
true
null
false
sub p 15ul 5ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Bignum25519.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *) inline_for_extraction noextract let felem = lbuffer uint64 5ul (* A point is buffer of size 20, that is 4 consecutive buffers of size 5 *) inline_for_extraction noextract let point = lbuffer uint64 20ul inline_for_extraction noextract let getx (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) = sub p 0ul 5ul inline_for_extraction noextract let gety (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 5ul 5ul /\ h0 == h1) = sub p 5ul 5ul inline_for_extraction noextract let getz (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 10ul 5ul /\ h0 == h1) = sub p 10ul 5ul inline_for_extraction noextract let gett (p:point) : Stack felem (requires fun h -> live h p)
false
false
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gett (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 15ul 5ul /\ h0 == h1)
[]
Hacl.Bignum25519.gett
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Hacl.Bignum25519.felem
{ "end_col": 18, "end_line": 47, "start_col": 4, "start_line": 47 }
FStar.HyperStack.ST.Stack
val getx (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1)
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let getx (p:point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) = sub p 0ul 5ul
val getx (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) let getx (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1) =
true
null
false
sub p 0ul 5ul
{ "checked_file": "Hacl.Bignum25519.fsti.checked", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum25519.fsti" }
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Hacl.Bignum25519.felem", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Prims.l_and", "Prims.eq2", "Lib.Buffer.gsub" ]
[]
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open Lib.IntTypes open Lib.Buffer module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module F51 = Hacl.Impl.Ed25519.Field51 module SC = Spec.Curve25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" (* Type abbreviations *) inline_for_extraction noextract let felem = lbuffer uint64 5ul (* A point is buffer of size 20, that is 4 consecutive buffers of size 5 *) inline_for_extraction noextract let point = lbuffer uint64 20ul inline_for_extraction noextract let getx (p:point) : Stack felem (requires fun h -> live h p)
false
false
Hacl.Bignum25519.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val getx (p: point) : Stack felem (requires fun h -> live h p) (ensures fun h0 f h1 -> f == gsub p 0ul 5ul /\ h0 == h1)
[]
Hacl.Bignum25519.getx
{ "file_name": "code/ed25519/Hacl.Bignum25519.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Hacl.Bignum25519.felem
{ "end_col": 17, "end_line": 29, "start_col": 4, "start_line": 29 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nb = 4
let nb =
false
null
false
4
{ "checked_file": "Vale.AES.AES_common_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_common_s.fst" }
[ "total" ]
[]
[]
module Vale.AES.AES_common_s // IMPORTANT: This specification is written assuming a little-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open FStar.Seq open FStar.Mul // substitution is endian-neutral; assume val sub_bytes (q:quad32) : quad32 assume val inv_sub_bytes (q:quad32) : quad32 assume val sub_word (w:nat32) : nat32 type algorithm:eqtype = | AES_128 | AES_192 | AES_256 let aes_rcon (i:int) : nat32 = if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36
false
true
Vale.AES.AES_common_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nb : Prims.int
[]
Vale.AES.AES_common_s.nb
{ "file_name": "vale/specs/crypto/Vale.AES.AES_common_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 10, "end_line": 36, "start_col": 9, "start_line": 36 }
Prims.Tot
val is_aes_key (alg: algorithm) (s: seq nat8) : prop0
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_aes_key (alg:algorithm) (s:seq nat8) : prop0 = length s == 4 * nk alg
val is_aes_key (alg: algorithm) (s: seq nat8) : prop0 let is_aes_key (alg: algorithm) (s: seq nat8) : prop0 =
false
null
false
length s == 4 * nk alg
{ "checked_file": "Vale.AES.AES_common_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_common_s.fst" }
[ "total" ]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Vale.AES.AES_common_s.nk", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.AES.AES_common_s // IMPORTANT: This specification is written assuming a little-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open FStar.Seq open FStar.Mul // substitution is endian-neutral; assume val sub_bytes (q:quad32) : quad32 assume val inv_sub_bytes (q:quad32) : quad32 assume val sub_word (w:nat32) : nat32 type algorithm:eqtype = | AES_128 | AES_192 | AES_256 let aes_rcon (i:int) : nat32 = if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36 // AES fixes Rijndael's block size at 4 32-bit words let nb = 4 // Number of key words unfold let nk(alg:algorithm) = match alg with | AES_128 -> 4 | AES_192 -> 6 | AES_256 -> 8 // Number of rounds unfold let nr(alg:algorithm) = match alg with | AES_128 -> 10 | AES_192 -> 12 | AES_256 -> 14
false
true
Vale.AES.AES_common_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_aes_key (alg: algorithm) (s: seq nat8) : prop0
[]
Vale.AES.AES_common_s.is_aes_key
{ "file_name": "vale/specs/crypto/Vale.AES.AES_common_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 -> Vale.Def.Prop_s.prop0
{ "end_col": 76, "end_line": 52, "start_col": 54, "start_line": 52 }
Prims.Tot
val aes_rcon (i: int) : nat32
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_rcon (i:int) : nat32 = if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36
val aes_rcon (i: int) : nat32 let aes_rcon (i: int) : nat32 =
false
null
false
if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36
{ "checked_file": "Vale.AES.AES_common_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_common_s.fst" }
[ "total" ]
[ "Prims.int", "Prims.op_Equality", "Prims.bool", "Vale.Def.Types_s.nat32" ]
[]
module Vale.AES.AES_common_s // IMPORTANT: This specification is written assuming a little-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open FStar.Seq open FStar.Mul // substitution is endian-neutral; assume val sub_bytes (q:quad32) : quad32 assume val inv_sub_bytes (q:quad32) : quad32 assume val sub_word (w:nat32) : nat32 type algorithm:eqtype = | AES_128 | AES_192 | AES_256
false
true
Vale.AES.AES_common_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_rcon (i: int) : nat32
[]
Vale.AES.AES_common_s.aes_rcon
{ "file_name": "vale/specs/crypto/Vale.AES.AES_common_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Prims.int -> Vale.Def.Types_s.nat32
{ "end_col": 6, "end_line": 33, "start_col": 2, "start_line": 24 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nr(alg:algorithm) = match alg with | AES_128 -> 10 | AES_192 -> 12 | AES_256 -> 14
let nr (alg: algorithm) =
false
null
false
match alg with | AES_128 -> 10 | AES_192 -> 12 | AES_256 -> 14
{ "checked_file": "Vale.AES.AES_common_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_common_s.fst" }
[ "total" ]
[ "Vale.AES.AES_common_s.algorithm", "Prims.int" ]
[]
module Vale.AES.AES_common_s // IMPORTANT: This specification is written assuming a little-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open FStar.Seq open FStar.Mul // substitution is endian-neutral; assume val sub_bytes (q:quad32) : quad32 assume val inv_sub_bytes (q:quad32) : quad32 assume val sub_word (w:nat32) : nat32 type algorithm:eqtype = | AES_128 | AES_192 | AES_256 let aes_rcon (i:int) : nat32 = if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36 // AES fixes Rijndael's block size at 4 32-bit words let nb = 4 // Number of key words unfold let nk(alg:algorithm) = match alg with | AES_128 -> 4 | AES_192 -> 6 | AES_256 -> 8 // Number of rounds
false
true
Vale.AES.AES_common_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nr : alg: Vale.AES.AES_common_s.algorithm -> Prims.int
[]
Vale.AES.AES_common_s.nr
{ "file_name": "vale/specs/crypto/Vale.AES.AES_common_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> Prims.int
{ "end_col": 17, "end_line": 50, "start_col": 2, "start_line": 47 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nk(alg:algorithm) = match alg with | AES_128 -> 4 | AES_192 -> 6 | AES_256 -> 8
let nk (alg: algorithm) =
false
null
false
match alg with | AES_128 -> 4 | AES_192 -> 6 | AES_256 -> 8
{ "checked_file": "Vale.AES.AES_common_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_common_s.fst" }
[ "total" ]
[ "Vale.AES.AES_common_s.algorithm", "Prims.int" ]
[]
module Vale.AES.AES_common_s // IMPORTANT: This specification is written assuming a little-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open FStar.Seq open FStar.Mul // substitution is endian-neutral; assume val sub_bytes (q:quad32) : quad32 assume val inv_sub_bytes (q:quad32) : quad32 assume val sub_word (w:nat32) : nat32 type algorithm:eqtype = | AES_128 | AES_192 | AES_256 let aes_rcon (i:int) : nat32 = if i = 0 then 0x01 else if i = 1 then 0x02 else if i = 2 then 0x04 else if i = 3 then 0x08 else if i = 4 then 0x10 else if i = 5 then 0x20 else if i = 6 then 0x40 else if i = 7 then 0x80 else if i = 8 then 0x1b else 0x36 // AES fixes Rijndael's block size at 4 32-bit words let nb = 4 // Number of key words
false
true
Vale.AES.AES_common_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nk : alg: Vale.AES.AES_common_s.algorithm -> Prims.int
[]
Vale.AES.AES_common_s.nk
{ "file_name": "vale/specs/crypto/Vale.AES.AES_common_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
alg: Vale.AES.AES_common_s.algorithm -> Prims.int
{ "end_col": 16, "end_line": 43, "start_col": 2, "start_line": 40 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.HKDF", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let extract_st (a:fixed_len_alg) = prk : B.buffer uint8 -> salt : B.buffer uint8 -> saltlen : pub_uint32 -> ikm : B.buffer uint8 -> ikmlen : pub_uint32 -> Stack unit (requires fun h0 -> B.live h0 prk /\ B.live h0 salt /\ B.live h0 ikm /\ B.disjoint salt prk /\ B.disjoint ikm prk /\ B.length prk == hash_length a /\ v saltlen == B.length salt /\ v ikmlen == B.length ikm /\ Spec.Agile.HMAC.keysized a (v saltlen) /\ B.length ikm + block_length a < pow2 32) (ensures fun h0 _ h1 -> key_and_data_fits a; B.modifies (B.loc_buffer prk) h0 h1 /\ B.as_seq h1 prk == extract a (B.as_seq h0 salt) (B.as_seq h0 ikm))
let extract_st (a: fixed_len_alg) =
false
null
false
prk: B.buffer uint8 -> salt: B.buffer uint8 -> saltlen: pub_uint32 -> ikm: B.buffer uint8 -> ikmlen: pub_uint32 -> Stack unit (requires fun h0 -> B.live h0 prk /\ B.live h0 salt /\ B.live h0 ikm /\ B.disjoint salt prk /\ B.disjoint ikm prk /\ B.length prk == hash_length a /\ v saltlen == B.length salt /\ v ikmlen == B.length ikm /\ Spec.Agile.HMAC.keysized a (v saltlen) /\ B.length ikm + block_length a < pow2 32) (ensures fun h0 _ h1 -> key_and_data_fits a; B.modifies (B.loc_buffer prk) h0 h1 /\ B.as_seq h1 prk == extract a (B.as_seq h0 salt) (B.as_seq h0 ikm))
{ "checked_file": "EverCrypt.HKDF.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "Spec.Agile.HKDF.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "EverCrypt.HMAC.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.HKDF.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.fixed_len_alg", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.pub_uint32", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.disjoint", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Spec.Hash.Definitions.hash_length", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Spec.Agile.HMAC.keysized", "Prims.op_LessThan", "Prims.op_Addition", "Spec.Hash.Definitions.block_length", "Prims.pow2", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq", "Spec.Agile.HKDF.extract", "EverCrypt.HKDF.key_and_data_fits" ]
[]
(** Agile HKDF *) module EverCrypt.HKDF module B = LowStar.Buffer open Spec.Agile.HKDF open Spec.Hash.Definitions open FStar.HyperStack.ST open Lib.IntTypes #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 20" /// Auxiliary lemmas let key_and_data_fits (a:hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) = let open FStar.Mul in assert_norm (8 * 16 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125) let hash_block_length_fits (a:hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v(max_input_length a)) = let open FStar.Mul in assert_norm (8 * 16 + 8 * 8 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125) /// Types for expand and extract /// Duplicated from Hacl.HKDF because we don't want clients to depend on Hacl.HKDF inline_for_extraction noextract
false
true
EverCrypt.HKDF.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extract_st : a: Spec.Hash.Definitions.fixed_len_alg -> Type0
[]
EverCrypt.HKDF.extract_st
{ "file_name": "providers/evercrypt/EverCrypt.HKDF.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> Type0
{ "end_col": 70, "end_line": 52, "start_col": 2, "start_line": 35 }
FStar.Pervasives.Lemma
val key_and_data_fits (a: hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a)
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.HKDF", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let key_and_data_fits (a:hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) = let open FStar.Mul in assert_norm (8 * 16 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125)
val key_and_data_fits (a: hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) let key_and_data_fits (a: hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) =
false
null
true
let open FStar.Mul in assert_norm (8 * 16 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125)
{ "checked_file": "EverCrypt.HKDF.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "Spec.Agile.HKDF.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "EverCrypt.HMAC.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.HKDF.fsti" }
[ "lemma" ]
[ "Spec.Hash.Definitions.hash_alg", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.unit", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Spec.Hash.Definitions.less_than_max_input_length", "Spec.Hash.Definitions.block_length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(** Agile HKDF *) module EverCrypt.HKDF module B = LowStar.Buffer open Spec.Agile.HKDF open Spec.Hash.Definitions open FStar.HyperStack.ST open Lib.IntTypes #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 20" /// Auxiliary lemmas let key_and_data_fits (a:hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a)
false
false
EverCrypt.HKDF.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val key_and_data_fits (a: hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a)
[]
EverCrypt.HKDF.key_and_data_fits
{ "file_name": "providers/evercrypt/EverCrypt.HKDF.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg -> FStar.Pervasives.Lemma (ensures Spec.Hash.Definitions.less_than_max_input_length (Spec.Hash.Definitions.block_length a + Prims.pow2 32) a)
{ "end_col": 34, "end_line": 21, "start_col": 2, "start_line": 19 }
FStar.Pervasives.Lemma
val hash_block_length_fits (a: hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v (max_input_length a))
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.HKDF", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_block_length_fits (a:hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v(max_input_length a)) = let open FStar.Mul in assert_norm (8 * 16 + 8 * 8 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125)
val hash_block_length_fits (a: hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v (max_input_length a)) let hash_block_length_fits (a: hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v (max_input_length a)) =
false
null
true
let open FStar.Mul in assert_norm (8 * 16 + 8 * 8 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125)
{ "checked_file": "EverCrypt.HKDF.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "Spec.Agile.HKDF.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "EverCrypt.HMAC.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.HKDF.fsti" }
[ "lemma" ]
[ "Spec.Hash.Definitions.hash_alg", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.unit", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.l_True", "Prims.squash", "Spec.Hash.Definitions.is_keccak", "Prims.bool", "Spec.Hash.Definitions.hash_length", "Spec.Hash.Definitions.block_length", "FStar.Pervasives.Native.__proj__Some__item__v", "Prims.pos", "Spec.Hash.Definitions.max_input_length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(** Agile HKDF *) module EverCrypt.HKDF module B = LowStar.Buffer open Spec.Agile.HKDF open Spec.Hash.Definitions open FStar.HyperStack.ST open Lib.IntTypes #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 20" /// Auxiliary lemmas let key_and_data_fits (a:hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) = let open FStar.Mul in assert_norm (8 * 16 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125) let hash_block_length_fits (a:hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v(max_input_length a))
false
false
EverCrypt.HKDF.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_block_length_fits (a: hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v (max_input_length a))
[]
EverCrypt.HKDF.hash_block_length_fits
{ "file_name": "providers/evercrypt/EverCrypt.HKDF.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg -> FStar.Pervasives.Lemma (ensures ((match Spec.Hash.Definitions.is_keccak a with | true -> Prims.l_True | _ -> Spec.Hash.Definitions.hash_length a + Prims.pow2 32 + Spec.Hash.Definitions.block_length a < Some?.v (Spec.Hash.Definitions.max_input_length a)) <: Type0))
{ "end_col": 34, "end_line": 28, "start_col": 2, "start_line": 26 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.HKDF", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let expand_st (a:fixed_len_alg) = okm : B.buffer uint8 -> prk : B.buffer uint8 -> prklen : pub_uint32 -> info : B.buffer uint8 -> infolen : pub_uint32 -> len : pub_uint32 -> Stack unit (requires fun h0 -> B.live h0 okm /\ B.live h0 prk /\ B.live h0 info /\ B.disjoint okm prk /\ v prklen == B.length prk /\ v infolen == B.length info /\ v len == B.length okm /\ hash_length a <= v prklen /\ Spec.Agile.HMAC.keysized a (v prklen) /\ hash_length a + v infolen + 1 + block_length a < pow2 32 /\ v len <= FStar.Mul.(255 * hash_length a)) (ensures fun h0 _ h1 -> hash_block_length_fits a; B.modifies (B.loc_buffer okm) h0 h1 /\ B.as_seq h1 okm == expand a (B.as_seq h0 prk) (B.as_seq h0 info) (v len))
let expand_st (a: fixed_len_alg) =
false
null
false
okm: B.buffer uint8 -> prk: B.buffer uint8 -> prklen: pub_uint32 -> info: B.buffer uint8 -> infolen: pub_uint32 -> len: pub_uint32 -> Stack unit (requires fun h0 -> B.live h0 okm /\ B.live h0 prk /\ B.live h0 info /\ B.disjoint okm prk /\ v prklen == B.length prk /\ v infolen == B.length info /\ v len == B.length okm /\ hash_length a <= v prklen /\ Spec.Agile.HMAC.keysized a (v prklen) /\ hash_length a + v infolen + 1 + block_length a < pow2 32 /\ v len <= FStar.Mul.(255 * hash_length a)) (ensures fun h0 _ h1 -> hash_block_length_fits a; B.modifies (B.loc_buffer okm) h0 h1 /\ B.as_seq h1 okm == expand a (B.as_seq h0 prk) (B.as_seq h0 info) (v len))
{ "checked_file": "EverCrypt.HKDF.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "Spec.Agile.HKDF.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "EverCrypt.HMAC.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.HKDF.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.fixed_len_alg", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.pub_uint32", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.disjoint", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "LowStar.Monotonic.Buffer.length", "Prims.op_LessThanOrEqual", "Spec.Hash.Definitions.hash_length", "Spec.Agile.HMAC.keysized", "Prims.op_LessThan", "Prims.op_Addition", "Spec.Hash.Definitions.block_length", "Prims.pow2", "FStar.Mul.op_Star", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq", "Spec.Agile.HKDF.expand", "EverCrypt.HKDF.hash_block_length_fits" ]
[]
(** Agile HKDF *) module EverCrypt.HKDF module B = LowStar.Buffer open Spec.Agile.HKDF open Spec.Hash.Definitions open FStar.HyperStack.ST open Lib.IntTypes #set-options "--max_ifuel 0 --max_fuel 0 --z3rlimit 20" /// Auxiliary lemmas let key_and_data_fits (a:hash_alg) : Lemma ((block_length a + pow2 32) `less_than_max_input_length` a) = let open FStar.Mul in assert_norm (8 * 16 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125) let hash_block_length_fits (a:hash_alg) : Lemma (if is_keccak a then True else hash_length a + pow2 32 + block_length a < Some?.v(max_input_length a)) = let open FStar.Mul in assert_norm (8 * 16 + 8 * 8 + pow2 32 < pow2 61); assert_norm (pow2 61 < pow2 125) /// Types for expand and extract /// Duplicated from Hacl.HKDF because we don't want clients to depend on Hacl.HKDF inline_for_extraction noextract let extract_st (a:fixed_len_alg) = prk : B.buffer uint8 -> salt : B.buffer uint8 -> saltlen : pub_uint32 -> ikm : B.buffer uint8 -> ikmlen : pub_uint32 -> Stack unit (requires fun h0 -> B.live h0 prk /\ B.live h0 salt /\ B.live h0 ikm /\ B.disjoint salt prk /\ B.disjoint ikm prk /\ B.length prk == hash_length a /\ v saltlen == B.length salt /\ v ikmlen == B.length ikm /\ Spec.Agile.HMAC.keysized a (v saltlen) /\ B.length ikm + block_length a < pow2 32) (ensures fun h0 _ h1 -> key_and_data_fits a; B.modifies (B.loc_buffer prk) h0 h1 /\ B.as_seq h1 prk == extract a (B.as_seq h0 salt) (B.as_seq h0 ikm)) inline_for_extraction noextract
false
true
EverCrypt.HKDF.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val expand_st : a: Spec.Hash.Definitions.fixed_len_alg -> Type0
[]
EverCrypt.HKDF.expand_st
{ "file_name": "providers/evercrypt/EverCrypt.HKDF.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> Type0
{ "end_col": 77, "end_line": 76, "start_col": 2, "start_line": 56 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fixed_i f (i:nat) = f
let fixed_i f (i: nat) =
false
null
false
f
{ "checked_file": "Lib.LoopCombinators.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Lib.LoopCombinators.fsti" }
[ "total" ]
[ "Prims.nat" ]
[]
module Lib.LoopCombinators (** * fold_left-like loop combinator: * [ repeat_left lo hi a f acc == f (hi - 1) .. ... (f (lo + 1) (f lo acc)) ] * * e.g. [ repeat_left 0 3 (fun _ -> list int) Cons [] == [2;1;0] ] * * It satisfies * [ repeat_left lo hi (fun _ -> a) f acc == fold_left (flip f) acc [lo..hi-1] ] * * A simpler variant with a non-dependent accumuator used to be called [repeat_range] *) val repeat_left: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Tot (a hi) (decreases (hi - lo)) val repeat_left_all_ml: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> FStar.All.ML (a (i + 1))) -> acc:a lo -> FStar.All.ML (a hi) (** * fold_right-like loop combinator: * [ repeat_right lo hi a f acc == f (hi - 1) .. ... (f (lo + 1) (f lo acc)) ] * * e.g. [ repeat_right 0 3 (fun _ -> list int) Cons [] == [2;1;0] ] * * It satisfies * [ repeat_right lo hi (fun _ -> a) f acc == fold_right f acc [hi-1..lo] ] *) val repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Tot (a hi) (decreases (hi - lo)) val repeat_right_all_ml: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> FStar.All.ML (a (i + 1))) -> acc:a lo -> FStar.All.ML (a hi) (decreases (hi - lo)) (** Splitting a repetition *) val repeat_right_plus: lo:nat -> mi:nat{lo <= mi} -> hi:nat{mi <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Lemma (ensures repeat_right lo hi a f acc == repeat_right mi hi a f (repeat_right lo mi a f acc)) (decreases hi) (** Unfolding one iteration *) val unfold_repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc0:a lo -> i:nat{lo <= i /\ i < hi} -> Lemma ( repeat_right lo (i + 1) a f acc0 == f i (repeat_right lo i a f acc0)) val eq_repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc0:a lo -> Lemma (repeat_right lo lo a f acc0 == acc0) (** * [repeat_left] and [repeat_right] are equivalent. * * This follows from the third duality theorem * [ fold_right f acc xs = fold_left (flip f) acc (reverse xs) ] *) val repeat_left_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Lemma (ensures repeat_right lo hi a f acc == repeat_left lo hi a f acc) (decreases (hi - lo)) (** * Repetition starting from 0 * * Defined as [repeat_right] for convenience, but [repeat_left] may be more * efficient when extracted to OCaml. *) val repeat_gen: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> a n val repeat_gen_all_ml: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> FStar.All.ML (a (i + 1))) -> acc0:a 0 -> FStar.All.ML (a n) (** Unfolding one iteration *) val unfold_repeat_gen: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> i:nat{i < n} -> Lemma (repeat_gen (i + 1) a f acc0 == f i (repeat_gen i a f acc0)) val eq_repeat_gen0: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> Lemma (repeat_gen 0 a f acc0 == acc0) val repeat_gen_def: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> Lemma (repeat_gen n a f acc0 == repeat_right 0 n a f acc0) (** * Repetition with a fixed accumulator type *) let fixed_a (a:Type) (i:nat) = a
false
false
Lib.LoopCombinators.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fixed_i : f: _ -> i: Prims.nat -> _
[]
Lib.LoopCombinators.fixed_i
{ "file_name": "lib/Lib.LoopCombinators.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: _ -> i: Prims.nat -> _
{ "end_col": 25, "end_line": 156, "start_col": 24, "start_line": 156 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fixed_a (a:Type) (i:nat) = a
let fixed_a (a: Type) (i: nat) =
false
null
false
a
{ "checked_file": "Lib.LoopCombinators.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Lib.LoopCombinators.fsti" }
[ "total" ]
[ "Prims.nat" ]
[]
module Lib.LoopCombinators (** * fold_left-like loop combinator: * [ repeat_left lo hi a f acc == f (hi - 1) .. ... (f (lo + 1) (f lo acc)) ] * * e.g. [ repeat_left 0 3 (fun _ -> list int) Cons [] == [2;1;0] ] * * It satisfies * [ repeat_left lo hi (fun _ -> a) f acc == fold_left (flip f) acc [lo..hi-1] ] * * A simpler variant with a non-dependent accumuator used to be called [repeat_range] *) val repeat_left: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Tot (a hi) (decreases (hi - lo)) val repeat_left_all_ml: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> FStar.All.ML (a (i + 1))) -> acc:a lo -> FStar.All.ML (a hi) (** * fold_right-like loop combinator: * [ repeat_right lo hi a f acc == f (hi - 1) .. ... (f (lo + 1) (f lo acc)) ] * * e.g. [ repeat_right 0 3 (fun _ -> list int) Cons [] == [2;1;0] ] * * It satisfies * [ repeat_right lo hi (fun _ -> a) f acc == fold_right f acc [hi-1..lo] ] *) val repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Tot (a hi) (decreases (hi - lo)) val repeat_right_all_ml: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> FStar.All.ML (a (i + 1))) -> acc:a lo -> FStar.All.ML (a hi) (decreases (hi - lo)) (** Splitting a repetition *) val repeat_right_plus: lo:nat -> mi:nat{lo <= mi} -> hi:nat{mi <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Lemma (ensures repeat_right lo hi a f acc == repeat_right mi hi a f (repeat_right lo mi a f acc)) (decreases hi) (** Unfolding one iteration *) val unfold_repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc0:a lo -> i:nat{lo <= i /\ i < hi} -> Lemma ( repeat_right lo (i + 1) a f acc0 == f i (repeat_right lo i a f acc0)) val eq_repeat_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc0:a lo -> Lemma (repeat_right lo lo a f acc0 == acc0) (** * [repeat_left] and [repeat_right] are equivalent. * * This follows from the third duality theorem * [ fold_right f acc xs = fold_left (flip f) acc (reverse xs) ] *) val repeat_left_right: lo:nat -> hi:nat{lo <= hi} -> a:(i:nat{lo <= i /\ i <= hi} -> Type) -> f:(i:nat{lo <= i /\ i < hi} -> a i -> a (i + 1)) -> acc:a lo -> Lemma (ensures repeat_right lo hi a f acc == repeat_left lo hi a f acc) (decreases (hi - lo)) (** * Repetition starting from 0 * * Defined as [repeat_right] for convenience, but [repeat_left] may be more * efficient when extracted to OCaml. *) val repeat_gen: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> a n val repeat_gen_all_ml: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> FStar.All.ML (a (i + 1))) -> acc0:a 0 -> FStar.All.ML (a n) (** Unfolding one iteration *) val unfold_repeat_gen: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> i:nat{i < n} -> Lemma (repeat_gen (i + 1) a f acc0 == f i (repeat_gen i a f acc0)) val eq_repeat_gen0: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> Lemma (repeat_gen 0 a f acc0 == acc0) val repeat_gen_def: n:nat -> a:(i:nat{i <= n} -> Type) -> f:(i:nat{i < n} -> a i -> a (i + 1)) -> acc0:a 0 -> Lemma (repeat_gen n a f acc0 == repeat_right 0 n a f acc0) (** * Repetition with a fixed accumulator type *)
false
true
Lib.LoopCombinators.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fixed_a : a: Type -> i: Prims.nat -> Type
[]
Lib.LoopCombinators.fixed_a
{ "file_name": "lib/Lib.LoopCombinators.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Type -> i: Prims.nat -> Type
{ "end_col": 32, "end_line": 154, "start_col": 31, "start_line": 154 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_t = UInt64.t
let uint64_t =
false
null
false
UInt64.t
{ "checked_file": "EverCrypt.Helpers.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "C.String.fsti.checked" ], "interface_file": false, "source_file": "EverCrypt.Helpers.fsti" }
[ "total" ]
[ "FStar.UInt64.t" ]
[]
module EverCrypt.Helpers module B = LowStar.Buffer open FStar.HyperStack.ST /// Small helpers inline_for_extraction noextract let (!$) = C.String.((!$)) /// For the time being, we do not write any specifications and just try to reach /// agreement on calling conventions. A series of convenient type abbreviations /// follows. effect Stack_ (a: Type) = Stack a (fun _ -> True) (fun _ _ _ -> True) inline_for_extraction noextract let uint8_t = UInt8.t inline_for_extraction noextract let uint16_t = UInt16.t inline_for_extraction noextract let uint32_t = UInt32.t
false
true
EverCrypt.Helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_t : Prims.eqtype
[]
EverCrypt.Helpers.uint64_t
{ "file_name": "providers/evercrypt/EverCrypt.Helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.eqtype
{ "end_col": 23, "end_line": 24, "start_col": 15, "start_line": 24 }