effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.GTot
val loc_disjoint (s1 s2: loc) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint = MG.loc_disjoint
val loc_disjoint (s1 s2: loc) : GTot Type0 let loc_disjoint =
false
null
false
MG.loc_disjoint
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.loc_disjoint", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint (s1 s2: loc) : GTot Type0
[]
LowStar.Monotonic.Buffer.loc_disjoint
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> Prims.GTot Type0
{ "end_col": 34, "end_line": 898, "start_col": 19, "start_line": 898 }
Prims.Tot
val cls:MG.cls ubuffer
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f)
val cls:MG.cls ubuffer let cls:MG.cls ubuffer =
false
null
false
MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "FStar.ModifiesGen.Cls", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.ubuffer_includes", "FStar.Monotonic.HyperHeap.rid", "Prims.nat", "LowStar.Monotonic.Buffer.ubuffer_includes_refl", "Prims.unit", "LowStar.Monotonic.Buffer.ubuffer_includes_trans", "LowStar.Monotonic.Buffer.ubuffer_disjoint", "LowStar.Monotonic.Buffer.ubuffer_disjoint_sym", "LowStar.Monotonic.Buffer.ubuffer_disjoint_includes", "LowStar.Monotonic.Buffer.ubuffer_preserved", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.ubuffer_preserved_refl", "LowStar.Monotonic.Buffer.ubuffer_preserved_trans", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "Prims.eq2", "FStar.Monotonic.HyperStack.frameOf", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "FStar.Monotonic.HyperStack.as_addr", "Prims.squash", "FStar.Monotonic.HyperStack.sel", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.Monotonic.Buffer.same_mreference_ubuffer_preserved" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen
false
true
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cls:MG.cls ubuffer
[]
LowStar.Monotonic.Buffer.cls
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.ModifiesGen.cls LowStar.Monotonic.Buffer.ubuffer
{ "end_col": 70, "end_line": 777, "start_col": 27, "start_line": 767 }
FStar.Pervasives.Lemma
val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_union_assoc = MG.loc_union_assoc
val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) let loc_union_assoc =
false
null
true
MG.loc_union_assoc
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_union_assoc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3)
[]
LowStar.Monotonic.Buffer.loc_union_assoc
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> s3: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_union s1 (LowStar.Monotonic.Buffer.loc_union s2 s3) == LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_union s1 s2) s3)
{ "end_col": 40, "end_line": 792, "start_col": 22, "start_line": 792 }
FStar.Pervasives.Lemma
val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_union_idem = MG.loc_union_idem
val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] let loc_union_idem =
false
null
true
MG.loc_union_idem
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_union_idem", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)]
[]
LowStar.Monotonic.Buffer.loc_union_idem
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_union s s == s) [SMTPat (LowStar.Monotonic.Buffer.loc_union s s)]
{ "end_col": 38, "end_line": 788, "start_col": 21, "start_line": 788 }
FStar.Pervasives.Lemma
val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_union_comm = MG.loc_union_comm
val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] let loc_union_comm =
false
null
true
MG.loc_union_comm
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_union_comm", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)]
[]
LowStar.Monotonic.Buffer.loc_union_comm
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_union s1 s2 == LowStar.Monotonic.Buffer.loc_union s2 s1) [SMTPat (LowStar.Monotonic.Buffer.loc_union s1 s2)]
{ "end_col": 38, "end_line": 790, "start_col": 21, "start_line": 790 }
FStar.Pervasives.Lemma
val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_union_loc_none_l = MG.loc_union_loc_none_l
val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] let loc_union_loc_none_l =
false
null
true
MG.loc_union_loc_none_l
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_union_loc_none_l", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)]
[]
LowStar.Monotonic.Buffer.loc_union_loc_none_l
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_union LowStar.Monotonic.Buffer.loc_none s == s) [SMTPat (LowStar.Monotonic.Buffer.loc_union LowStar.Monotonic.Buffer.loc_none s)]
{ "end_col": 50, "end_line": 794, "start_col": 27, "start_line": 794 }
Prims.GTot
val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies = MG.modifies
val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 let modifies =
false
null
false
MG.modifies
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.modifies", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0
[]
LowStar.Monotonic.Buffer.modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
{ "end_col": 26, "end_line": 928, "start_col": 15, "start_line": 928 }
Prims.GTot
val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_addresses = MG.loc_addresses
val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc let loc_addresses =
false
null
false
MG.loc_addresses
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.loc_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = ()
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc
[]
LowStar.Monotonic.Buffer.loc_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> n: FStar.Set.set Prims.nat -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 36, "end_line": 824, "start_col": 20, "start_line": 824 }
FStar.Pervasives.Lemma
val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_union_l = MG.loc_includes_union_l
val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) let loc_includes_union_l =
false
null
true
MG.loc_includes_union_l
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_union_l", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s))
[]
LowStar.Monotonic.Buffer.loc_includes_union_l
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes s1 s \/ LowStar.Monotonic.Buffer.loc_includes s2 s) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union s1 s2) s)
{ "end_col": 50, "end_line": 836, "start_col": 27, "start_line": 836 }
FStar.Pervasives.Lemma
val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_refl = MG.loc_includes_refl
val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] let loc_includes_refl =
false
null
true
MG.loc_includes_refl
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_refl", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)]
[]
LowStar.Monotonic.Buffer.loc_includes_refl
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes s s) [SMTPat (LowStar.Monotonic.Buffer.loc_includes s s)]
{ "end_col": 44, "end_line": 830, "start_col": 24, "start_line": 830 }
FStar.Pervasives.Lemma
val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_union_r = MG.loc_includes_union_r
val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) let loc_includes_union_r =
false
null
true
MG.loc_includes_union_r
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_union_r", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2)))
[]
LowStar.Monotonic.Buffer.loc_includes_union_r
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes s s1 /\ LowStar.Monotonic.Buffer.loc_includes s s2) (ensures LowStar.Monotonic.Buffer.loc_includes s (LowStar.Monotonic.Buffer.loc_union s1 s2))
{ "end_col": 50, "end_line": 834, "start_col": 27, "start_line": 834 }
FStar.Pervasives.Lemma
val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_trans = MG.loc_includes_trans
val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) let loc_includes_trans =
false
null
true
MG.loc_includes_trans
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_trans", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3))
[]
LowStar.Monotonic.Buffer.loc_includes_trans
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> s3: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes s1 s2 /\ LowStar.Monotonic.Buffer.loc_includes s2 s3) (ensures LowStar.Monotonic.Buffer.loc_includes s1 s3)
{ "end_col": 46, "end_line": 832, "start_col": 25, "start_line": 832 }
FStar.Pervasives.Lemma
val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_none = MG.loc_includes_none
val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] let loc_includes_none =
false
null
true
MG.loc_includes_none
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_none", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)]
[]
LowStar.Monotonic.Buffer.loc_includes_none
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes s LowStar.Monotonic.Buffer.loc_none) [SMTPat (LowStar.Monotonic.Buffer.loc_includes s LowStar.Monotonic.Buffer.loc_none)]
{ "end_col": 44, "end_line": 838, "start_col": 24, "start_line": 838 }
FStar.Pervasives.Lemma
val g_upd_seq_as_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) : Lemma (let h' = g_upd_seq b s h in (Seq.length s > 0 ==> not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ HST.equal_domains h h' /\ as_seq h' b == s)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end
val g_upd_seq_as_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) : Lemma (let h' = g_upd_seq b s h in (Seq.length s > 0 ==> not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ HST.equal_domains h h' /\ as_seq h' b == s) let g_upd_seq_as_seq #a #_ #_ b s h =
false
null
true
let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else (assert (Seq.equal (as_seq h' b) s); Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h')
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Seq.Properties.lseq", "LowStar.Monotonic.Buffer.length", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.g_is_null", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.empty", "Prims.bool", "LowStar.Monotonic.Buffer.modifies_1_modifies", "Prims.unit", "LowStar.Monotonic.Buffer.s_lemma_equal_instances_implies_equal_types", "FStar.Monotonic.Heap.lemma_distinct_addrs_distinct_mm", "FStar.Monotonic.Heap.lemma_distinct_addrs_distinct_preorders", "LowStar.Monotonic.Buffer.as_seq", "LowStar.Monotonic.Buffer.g_upd_seq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 48, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_upd_seq_as_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) : Lemma (let h' = g_upd_seq b s h in (Seq.length s > 0 ==> not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ HST.equal_domains h h' /\ as_seq h' b == s)
[]
LowStar.Monotonic.Buffer.g_upd_seq_as_seq
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> s: FStar.Seq.Properties.lseq a (LowStar.Monotonic.Buffer.length b) -> h: FStar.Monotonic.HyperStack.mem{LowStar.Monotonic.Buffer.live h b} -> FStar.Pervasives.Lemma (ensures (let h' = LowStar.Monotonic.Buffer.g_upd_seq b s h in (FStar.Seq.Base.length s > 0 ==> Prims.op_Negation (LowStar.Monotonic.Buffer.g_is_null b)) /\ LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer b) h h' /\ LowStar.Monotonic.Buffer.live h' b /\ FStar.HyperStack.ST.equal_domains h h' /\ LowStar.Monotonic.Buffer.as_seq h' b == s))
{ "end_col": 5, "end_line": 1337, "start_col": 37, "start_line": 1327 }
Prims.Tot
val region_liveness_insensitive_locs: loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _
val region_liveness_insensitive_locs: loc let region_liveness_insensitive_locs =
false
null
false
MG.region_liveness_insensitive_locs _
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "FStar.ModifiesGen.region_liveness_insensitive_locs", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _
false
true
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_liveness_insensitive_locs: loc
[]
LowStar.Monotonic.Buffer.region_liveness_insensitive_locs
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
LowStar.Monotonic.Buffer.loc
{ "end_col": 76, "end_line": 957, "start_col": 39, "start_line": 957 }
Prims.Tot
val address_liveness_insensitive_locs: loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _
val address_liveness_insensitive_locs: loc let address_liveness_insensitive_locs =
false
null
false
MG.address_liveness_insensitive_locs _
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "FStar.ModifiesGen.address_liveness_insensitive_locs", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes
false
true
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val address_liveness_insensitive_locs: loc
[]
LowStar.Monotonic.Buffer.address_liveness_insensitive_locs
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
LowStar.Monotonic.Buffer.loc
{ "end_col": 78, "end_line": 955, "start_col": 40, "start_line": 955 }
FStar.Pervasives.Lemma
val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 =
false
null
true
let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_includes_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2)))
[]
LowStar.Monotonic.Buffer.loc_includes_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mbuffer a rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a rrel2 rel2 -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.frameOf b1 == LowStar.Monotonic.Buffer.frameOf b2 /\ LowStar.Monotonic.Buffer.as_addr b1 == LowStar.Monotonic.Buffer.as_addr b2 /\ LowStar.Monotonic.Buffer.ubuffer_includes0 (LowStar.Monotonic.Buffer.ubuffer_of_buffer b1) (LowStar.Monotonic.Buffer.ubuffer_of_buffer b2)) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_buffer b1) (LowStar.Monotonic.Buffer.loc_buffer b2))
{ "end_col": 104, "end_line": 847, "start_col": 46, "start_line": 845 }
FStar.Pervasives.Lemma
val loc_includes_gsub_buffer_r (l:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) : Lemma (requires (UInt32.v i + UInt32.v len <= (length b) /\ loc_includes l (loc_buffer b))) (ensures (loc_includes l (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (loc_includes l (loc_buffer (mgsub sub_rel b i len)))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b')
val loc_includes_gsub_buffer_r (l:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) : Lemma (requires (UInt32.v i + UInt32.v len <= (length b) /\ loc_includes l (loc_buffer b))) (ensures (loc_includes l (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (loc_includes l (loc_buffer (mgsub sub_rel b i len)))] let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel =
false
null
true
let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b')
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.loc", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.loc_includes_trans", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.unit", "LowStar.Monotonic.Buffer.loc_includes_buffer", "LowStar.Monotonic.Buffer.mgsub" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_gsub_buffer_r (l:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) : Lemma (requires (UInt32.v i + UInt32.v len <= (length b) /\ loc_includes l (loc_buffer b))) (ensures (loc_includes l (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (loc_includes l (loc_buffer (mgsub sub_rel b i len)))]
[]
LowStar.Monotonic.Buffer.loc_includes_gsub_buffer_r
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: LowStar.Monotonic.Buffer.loc -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> sub_rel: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b /\ LowStar.Monotonic.Buffer.loc_includes l (LowStar.Monotonic.Buffer.loc_buffer b)) (ensures LowStar.Monotonic.Buffer.loc_includes l (LowStar.Monotonic.Buffer.loc_buffer (LowStar.Monotonic.Buffer.mgsub sub_rel b i len))) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes l (LowStar.Monotonic.Buffer.loc_buffer (LowStar.Monotonic.Buffer.mgsub sub_rel b i len)) ) ]
{ "end_col": 53, "end_line": 852, "start_col": 59, "start_line": 849 }
FStar.Pervasives.Lemma
val loc_includes_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v from1 <= U32.v from2 /\ U32.v to2 <= U32.v to1)) (ensures (loc_includes (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2)
val loc_includes_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v from1 <= U32.v from2 /\ U32.v to2 <= U32.v to1)) (ensures (loc_includes (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2))) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 =
false
null
true
if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "Prims.op_BarBar", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to_none_cond", "Prims.bool", "FStar.ModifiesGen.loc_includes_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v from1 <= U32.v from2 /\ U32.v to2 <= U32.v to1)) (ensures (loc_includes (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2)))
[]
LowStar.Monotonic.Buffer.loc_includes_loc_buffer_from_to
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> from1: FStar.UInt32.t -> to1: FStar.UInt32.t -> from2: FStar.UInt32.t -> to2: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires FStar.UInt32.v from1 <= FStar.UInt32.v from2 /\ FStar.UInt32.v to2 <= FStar.UInt32.v to1) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_buffer_from_to b from1 to1) (LowStar.Monotonic.Buffer.loc_buffer_from_to b from2 to2))
{ "end_col": 141, "end_line": 867, "start_col": 2, "start_line": 865 }
FStar.Pervasives.Lemma
val loc_includes_region_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (s:Set.set HS.rid) (b:mbuffer a rrel rel) :Lemma (requires (Set.mem (frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
val loc_includes_region_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (s:Set.set HS.rid) (b:mbuffer a rrel rel) :Lemma (requires (Set.mem (frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b =
false
null
true
MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "Prims.bool", "FStar.Set.set", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_includes_region_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_region_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (s:Set.set HS.rid) (b:mbuffer a rrel rel) :Lemma (requires (Set.mem (frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))]
[]
LowStar.Monotonic.Buffer.loc_includes_region_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> s: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (requires FStar.Set.mem (LowStar.Monotonic.Buffer.frameOf b) s) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s) (LowStar.Monotonic.Buffer.loc_buffer b)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s) (LowStar.Monotonic.Buffer.loc_buffer b)) ]
{ "end_col": 105, "end_line": 888, "start_col": 2, "start_line": 888 }
FStar.Pervasives.Lemma
val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_region_region = MG.loc_includes_region_region #_ #cls
val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] let loc_includes_region_region =
false
null
true
MG.loc_includes_region_region #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_region_region", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))]
[]
LowStar.Monotonic.Buffer.loc_includes_region_region
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness1: Prims.bool -> preserve_liveness2: Prims.bool -> s1: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> s2: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires (preserve_liveness1 ==> preserve_liveness2) /\ FStar.Set.subset s2 s1) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness1 s1) (LowStar.Monotonic.Buffer.loc_regions preserve_liveness2 s2)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness1 s1) (LowStar.Monotonic.Buffer.loc_regions preserve_liveness2 s2)) ]
{ "end_col": 70, "end_line": 892, "start_col": 33, "start_line": 892 }
FStar.Pervasives.Lemma
val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_region_union_l = MG.loc_includes_region_union_l
val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] let loc_includes_region_union_l =
false
null
true
MG.loc_includes_region_union_l
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_region_union_l", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))]
[]
LowStar.Monotonic.Buffer.loc_includes_region_union_l
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> l: LowStar.Monotonic.Buffer.loc -> s1: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> s2: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes l (LowStar.Monotonic.Buffer.loc_regions preserve_liveness (FStar.Set.intersect s2 (FStar.Set.complement s1)))) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s1) l) (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s2)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s1) l) (LowStar.Monotonic.Buffer.loc_regions preserve_liveness s2)) ]
{ "end_col": 64, "end_line": 894, "start_col": 34, "start_line": 894 }
FStar.Pervasives.Lemma
val loc_includes_addresses_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (r:HS.rid) (s:Set.set nat) (p:mbuffer a rrel rel) :Lemma (requires (frameOf p == r /\ Set.mem (as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p)
val loc_includes_addresses_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (r:HS.rid) (s:Set.set nat) (p:mbuffer a rrel rel) :Lemma (requires (frameOf p == r /\ Set.mem (as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p =
false
null
true
MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "Prims.bool", "FStar.Monotonic.HyperHeap.rid", "FStar.Set.set", "Prims.nat", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_includes_addresses_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_addresses_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (r:HS.rid) (s:Set.set nat) (p:mbuffer a rrel rel) :Lemma (requires (frameOf p == r /\ Set.mem (as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))]
[]
LowStar.Monotonic.Buffer.loc_includes_addresses_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> s: FStar.Set.set Prims.nat -> p: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.frameOf p == r /\ FStar.Set.mem (LowStar.Monotonic.Buffer.as_addr p) s) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness r s) (LowStar.Monotonic.Buffer.loc_buffer p)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness r s) (LowStar.Monotonic.Buffer.loc_buffer p)) ]
{ "end_col": 97, "end_line": 885, "start_col": 2, "start_line": 885 }
FStar.Pervasives.Lemma
val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls
val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] let loc_includes_region_addresses =
false
null
true
MG.loc_includes_region_addresses #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_region_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))]
[]
LowStar.Monotonic.Buffer.loc_includes_region_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness1: Prims.bool -> preserve_liveness2: Prims.bool -> s: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> r: FStar.Monotonic.HyperHeap.rid -> a: FStar.Set.set Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Set.mem r s) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness1 s) (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness2 r a)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_regions preserve_liveness1 s) (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness2 r a)) ]
{ "end_col": 76, "end_line": 890, "start_col": 36, "start_line": 890 }
FStar.Pervasives.Lemma
val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls
val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) let loc_includes_addresses_addresses =
false
null
true
MG.loc_includes_addresses_addresses cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_addresses_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2)))
[]
LowStar.Monotonic.Buffer.loc_includes_addresses_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness1: Prims.bool -> preserve_liveness2: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> s1: FStar.Set.set Prims.nat -> s2: FStar.Set.set Prims.nat -> FStar.Pervasives.Lemma (requires (preserve_liveness1 ==> preserve_liveness2) /\ FStar.Set.subset s2 s1) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness1 r s1) (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness2 r s2))
{ "end_col": 78, "end_line": 896, "start_col": 39, "start_line": 896 }
FStar.Pervasives.Lemma
val loc_includes_gsub_buffer_l (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 )) (ensures (loc_includes (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2
val loc_includes_gsub_buffer_l (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 )) (ensures (loc_includes (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)] let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 =
false
null
true
let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.loc_includes_buffer", "LowStar.Monotonic.Buffer.mgsub", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b')
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_gsub_buffer_l (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 )) (ensures (loc_includes (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)]
[]
LowStar.Monotonic.Buffer.loc_includes_gsub_buffer_l
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i1: FStar.UInt32.t -> len1: FStar.UInt32.t -> sub_rel1: LowStar.Monotonic.Buffer.srel a -> i2: FStar.UInt32.t -> len2: FStar.UInt32.t -> sub_rel2: LowStar.Monotonic.Buffer.srel a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i1 + FStar.UInt32.v len1 <= LowStar.Monotonic.Buffer.length b /\ FStar.UInt32.v i1 <= FStar.UInt32.v i2 /\ FStar.UInt32.v i2 + FStar.UInt32.v len2 <= FStar.UInt32.v i1 + FStar.UInt32.v len1) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_buffer (LowStar.Monotonic.Buffer.mgsub sub_rel1 b i1 len1)) (LowStar.Monotonic.Buffer.loc_buffer (LowStar.Monotonic.Buffer.mgsub sub_rel2 b i2 len2))) [ SMTPat (LowStar.Monotonic.Buffer.mgsub sub_rel1 b i1 len1); SMTPat (LowStar.Monotonic.Buffer.mgsub sub_rel2 b i2 len2) ]
{ "end_col": 27, "end_line": 857, "start_col": 79, "start_line": 854 }
FStar.Pervasives.Lemma
val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_none_r = MG.loc_disjoint_none_r
val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] let loc_disjoint_none_r =
false
null
true
MG.loc_disjoint_none_r
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_disjoint_none_r", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)]
[]
LowStar.Monotonic.Buffer.loc_disjoint_none_r
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_disjoint s LowStar.Monotonic.Buffer.loc_none) [SMTPat (LowStar.Monotonic.Buffer.loc_disjoint s LowStar.Monotonic.Buffer.loc_none)]
{ "end_col": 48, "end_line": 902, "start_col": 26, "start_line": 902 }
FStar.Pervasives.Lemma
val loc_includes_as_seq (#a:Type0) (#rrel #rel1 #rel2:srel a) (h1 h2:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (loc_includes (loc_buffer larger) (loc_buffer smaller) /\ as_seq h1 larger == as_seq h2 larger /\ (live h1 larger \/ live h1 smaller) /\ (live h2 larger \/ live h2 smaller))) (ensures (as_seq h1 smaller == as_seq h2 smaller))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end
val loc_includes_as_seq (#a:Type0) (#rrel #rel1 #rel2:srel a) (h1 h2:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (loc_includes (loc_buffer larger) (loc_buffer smaller) /\ as_seq h1 larger == as_seq h2 larger /\ (live h1 larger \/ live h1 smaller) /\ (live h2 larger \/ live h2 smaller))) (ensures (as_seq h1 smaller == as_seq h2 smaller)) let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller =
false
null
true
if Null? smaller then () else if Null? larger then (MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller)) else (MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)))
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool", "FStar.ModifiesGen.loc_of_aloc_not_none", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit", "FStar.ModifiesGen.loc_includes_none_elim", "LowStar.Monotonic.Buffer.loc_buffer", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "LowStar.Monotonic.Buffer.__proj__Mkubuffer___item__b_offset", "Prims.op_Addition", "LowStar.Monotonic.Buffer.length", "LowStar.Monotonic.Buffer.ubuffer'", "FStar.Ghost.reveal", "FStar.ModifiesGen.loc_includes_aloc_elim" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20"
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_includes_as_seq (#a:Type0) (#rrel #rel1 #rel2:srel a) (h1 h2:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (loc_includes (loc_buffer larger) (loc_buffer smaller) /\ as_seq h1 larger == as_seq h2 larger /\ (live h1 larger \/ live h1 smaller) /\ (live h2 larger \/ live h2 smaller))) (ensures (as_seq h1 smaller == as_seq h2 smaller))
[]
LowStar.Monotonic.Buffer.loc_includes_as_seq
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> larger: LowStar.Monotonic.Buffer.mbuffer a rrel rel1 -> smaller: LowStar.Monotonic.Buffer.mbuffer a rrel rel2 -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_buffer larger) (LowStar.Monotonic.Buffer.loc_buffer smaller) /\ LowStar.Monotonic.Buffer.as_seq h1 larger == LowStar.Monotonic.Buffer.as_seq h2 larger /\ (LowStar.Monotonic.Buffer.live h1 larger \/ LowStar.Monotonic.Buffer.live h1 smaller) /\ (LowStar.Monotonic.Buffer.live h2 larger \/ LowStar.Monotonic.Buffer.live h2 smaller)) (ensures LowStar.Monotonic.Buffer.as_seq h1 smaller == LowStar.Monotonic.Buffer.as_seq h2 smaller)
{ "end_col": 5, "end_line": 881, "start_col": 2, "start_line": 871 }
FStar.Pervasives.Lemma
val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_sym = MG.loc_disjoint_sym
val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym =
false
null
true
MG.loc_disjoint_sym
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_disjoint_sym", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1))
[]
LowStar.Monotonic.Buffer.loc_disjoint_sym
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_disjoint s1 s2) (ensures LowStar.Monotonic.Buffer.loc_disjoint s2 s1)
{ "end_col": 42, "end_line": 900, "start_col": 23, "start_line": 900 }
FStar.Pervasives.Lemma
val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_includes = MG.loc_disjoint_includes
val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) let loc_disjoint_includes =
false
null
true
MG.loc_disjoint_includes
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_disjoint_includes", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2'))
[]
LowStar.Monotonic.Buffer.loc_disjoint_includes
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p1: LowStar.Monotonic.Buffer.loc -> p2: LowStar.Monotonic.Buffer.loc -> p1': LowStar.Monotonic.Buffer.loc -> p2': LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_includes p1 p1' /\ LowStar.Monotonic.Buffer.loc_includes p2 p2' /\ LowStar.Monotonic.Buffer.loc_disjoint p1 p2) (ensures LowStar.Monotonic.Buffer.loc_disjoint p1' p2')
{ "end_col": 52, "end_line": 906, "start_col": 28, "start_line": 906 }
FStar.Pervasives.Lemma
val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_union_r = MG.loc_disjoint_union_r
val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) let loc_disjoint_union_r =
false
null
true
MG.loc_disjoint_union_r
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_disjoint_union_r", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2)))
[]
LowStar.Monotonic.Buffer.loc_disjoint_union_r
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> s1: LowStar.Monotonic.Buffer.loc -> s2: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_disjoint s s1 /\ LowStar.Monotonic.Buffer.loc_disjoint s s2) (ensures LowStar.Monotonic.Buffer.loc_disjoint s (LowStar.Monotonic.Buffer.loc_union s1 s2))
{ "end_col": 50, "end_line": 904, "start_col": 27, "start_line": 904 }
FStar.Pervasives.Lemma
val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 =
false
null
true
MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_disjoint_aloc_intro", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2)))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2)))
[]
LowStar.Monotonic.Buffer.loc_disjoint_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mbuffer a1 rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a2 rrel2 rel2 -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.frameOf b1 == LowStar.Monotonic.Buffer.frameOf b2 /\ LowStar.Monotonic.Buffer.as_addr b1 == LowStar.Monotonic.Buffer.as_addr b2 ==> LowStar.Monotonic.Buffer.ubuffer_disjoint0 (LowStar.Monotonic.Buffer.ubuffer_of_buffer b1) (LowStar.Monotonic.Buffer.ubuffer_of_buffer b2)) (ensures LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer b1) (LowStar.Monotonic.Buffer.loc_buffer b2))
{ "end_col": 138, "end_line": 914, "start_col": 2, "start_line": 914 }
FStar.Pervasives.Lemma
val modifies_live_region (s: loc) (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies s h1 h2 /\ loc_disjoint s (loc_region_only false r) /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) [SMTPatOr [ [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h1 r)]; [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h2 r)]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_live_region = MG.modifies_live_region
val modifies_live_region (s: loc) (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies s h1 h2 /\ loc_disjoint s (loc_region_only false r) /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) [SMTPatOr [ [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h1 r)]; [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h2 r)]; ]] let modifies_live_region =
false
null
true
MG.modifies_live_region
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_live_region", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_live_region (s: loc) (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies s h1 h2 /\ loc_disjoint s (loc_region_only false r) /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) [SMTPatOr [ [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h1 r)]; [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h2 r)]; ]]
[]
LowStar.Monotonic.Buffer.modifies_live_region
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies s h1 h2 /\ LowStar.Monotonic.Buffer.loc_disjoint s (LowStar.Monotonic.Buffer.loc_region_only false r) /\ FStar.Monotonic.HyperStack.live_region h1 r) (ensures FStar.Monotonic.HyperStack.live_region h2 r) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.modifies s h1 h2); SMTPat (FStar.Monotonic.HyperStack.live_region h1 r) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies s h1 h2); SMTPat (FStar.Monotonic.HyperStack.live_region h2 r) ] ] ]
{ "end_col": 50, "end_line": 930, "start_col": 27, "start_line": 930 }
Prims.GTot
val does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let does_not_contain_addr = MG.does_not_contain_addr
val does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : GTot Type0 let does_not_contain_addr =
false
null
false
MG.does_not_contain_addr
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.does_not_contain_addr" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h'
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : GTot Type0
[]
LowStar.Monotonic.Buffer.does_not_contain_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> ra: (FStar.Monotonic.HyperHeap.rid * Prims.nat) -> Prims.GTot Type0
{ "end_col": 52, "end_line": 1197, "start_col": 28, "start_line": 1197 }
FStar.Pervasives.Lemma
val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_mreference_elim = MG.modifies_mreference_elim
val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] let modifies_mreference_elim =
false
null
true
MG.modifies_mreference_elim
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_mreference_elim", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ]
[]
LowStar.Monotonic.Buffer.modifies_mreference_elim
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Monotonic.HyperStack.mreference t pre -> p: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_mreference b) p /\ FStar.Monotonic.HyperStack.contains h b /\ LowStar.Monotonic.Buffer.modifies p h h') (ensures FStar.Monotonic.HyperStack.contains h' b /\ FStar.Monotonic.HyperStack.sel h b == FStar.Monotonic.HyperStack.sel h' b) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (FStar.Monotonic.HyperStack.sel h b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (FStar.Monotonic.HyperStack.contains h b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (FStar.Monotonic.HyperStack.sel h' b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (FStar.Monotonic.HyperStack.contains h' b) ] ] ]
{ "end_col": 58, "end_line": 932, "start_col": 31, "start_line": 932 }
FStar.Pervasives.Lemma
val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_refl = MG.modifies_refl
val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] let modifies_refl =
false
null
true
MG.modifies_refl
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_refl", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)]
[]
LowStar.Monotonic.Buffer.modifies_refl
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.modifies s h h) [SMTPat (LowStar.Monotonic.Buffer.modifies s h h)]
{ "end_col": 36, "end_line": 951, "start_col": 20, "start_line": 951 }
FStar.Pervasives.Lemma
val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_loc_includes = MG.modifies_loc_includes
val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')] let modifies_loc_includes =
false
null
true
MG.modifies_loc_includes
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_loc_includes", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')]
[]
LowStar.Monotonic.Buffer.modifies_loc_includes
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> s2: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies s2 h h' /\ LowStar.Monotonic.Buffer.loc_includes s1 s2) (ensures LowStar.Monotonic.Buffer.modifies s1 h h') [ SMTPat (LowStar.Monotonic.Buffer.modifies s1 h h'); SMTPat (LowStar.Monotonic.Buffer.modifies s2 h h') ]
{ "end_col": 52, "end_line": 953, "start_col": 28, "start_line": 953 }
FStar.Pervasives.Lemma
val modifies_buffer_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer b) p /\ live h b /\ modifies p h h')) (ensures (live h' b /\ (as_seq h b == as_seq h' b))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h b) ]; [ SMTPat (modifies p h h'); SMTPat (as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h' b) ] ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end
val modifies_buffer_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer b) p /\ live h b /\ modifies p h h')) (ensures (live h' b /\ (as_seq h b == as_seq h' b))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h b) ]; [ SMTPat (modifies p h h'); SMTPat (as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h' b) ] ]] let modifies_buffer_elim #_ #_ #_ b p h h' =
false
null
true
if g_is_null b then assert ((as_seq h b) `Seq.equal` (as_seq h' b)) else (MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h'; ubuffer_preserved_elim b h h')
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.g_is_null", "Prims._assert", "FStar.Seq.Base.equal", "LowStar.Monotonic.Buffer.as_seq", "Prims.bool", "LowStar.Monotonic.Buffer.ubuffer_preserved_elim", "Prims.unit", "FStar.ModifiesGen.modifies_aloc_elim", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_buffer_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer b) p /\ live h b /\ modifies p h h')) (ensures (live h' b /\ (as_seq h b == as_seq h' b))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h b) ]; [ SMTPat (modifies p h h'); SMTPat (as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h' b) ] ]]
[]
LowStar.Monotonic.Buffer.modifies_buffer_elim
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer b) p /\ LowStar.Monotonic.Buffer.live h b /\ LowStar.Monotonic.Buffer.modifies p h h') (ensures LowStar.Monotonic.Buffer.live h' b /\ LowStar.Monotonic.Buffer.as_seq h b == LowStar.Monotonic.Buffer.as_seq h' b) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (LowStar.Monotonic.Buffer.as_seq h b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (LowStar.Monotonic.Buffer.live h b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (LowStar.Monotonic.Buffer.as_seq h' b) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies p h h'); SMTPat (LowStar.Monotonic.Buffer.live h' b) ] ] ]
{ "end_col": 5, "end_line": 941, "start_col": 2, "start_line": 935 }
Prims.GTot
val loc_not_unused_in (h: HS.mem) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_not_unused_in = MG.loc_not_unused_in _
val loc_not_unused_in (h: HS.mem) : GTot loc let loc_not_unused_in =
false
null
false
MG.loc_not_unused_in _
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.loc_not_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_not_unused_in (h: HS.mem) : GTot loc
[]
LowStar.Monotonic.Buffer.loc_not_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 46, "end_line": 1211, "start_col": 24, "start_line": 1211 }
FStar.Pervasives.Lemma
val modifies_buffer_from_to_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer_from_to b from to) p /\ live h b /\ modifies p h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (live h' b /\ Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end
val modifies_buffer_from_to_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer_from_to b from to) p /\ live h b /\ modifies p h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (live h' b /\ Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to))) let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' =
false
null
true
if g_is_null b then () else (MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h'; ubuffer_preserved_from_to_elim b from to h h')
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.g_is_null", "Prims.bool", "LowStar.Monotonic.Buffer.ubuffer_preserved_from_to_elim", "Prims.unit", "FStar.ModifiesGen.modifies_aloc_elim", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_buffer_from_to_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer_from_to b from to) p /\ live h b /\ modifies p h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (live h' b /\ Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))
[]
LowStar.Monotonic.Buffer.modifies_buffer_from_to_elim
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> from: FStar.UInt32.t -> to: FStar.UInt32.t -> p: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer_from_to b from to ) p /\ LowStar.Monotonic.Buffer.live h b /\ LowStar.Monotonic.Buffer.modifies p h h' /\ FStar.UInt32.v from <= FStar.UInt32.v to /\ FStar.UInt32.v to <= LowStar.Monotonic.Buffer.length b) (ensures LowStar.Monotonic.Buffer.live h' b /\ FStar.Seq.Base.slice (LowStar.Monotonic.Buffer.as_seq h b) (FStar.UInt32.v from) (FStar.UInt32.v to) == FStar.Seq.Base.slice (LowStar.Monotonic.Buffer.as_seq h' b) (FStar.UInt32.v from) (FStar.UInt32.v to))
{ "end_col": 5, "end_line": 949, "start_col": 2, "start_line": 944 }
Prims.GTot
val loc_unused_in (h: HS.mem) : GTot loc
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_unused_in = MG.loc_unused_in _
val loc_unused_in (h: HS.mem) : GTot loc let loc_unused_in =
false
null
false
MG.loc_unused_in _
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.ModifiesGen.loc_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_unused_in (h: HS.mem) : GTot loc
[]
LowStar.Monotonic.Buffer.loc_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 38, "end_line": 1213, "start_col": 20, "start_line": 1213 }
FStar.Pervasives.Lemma
val address_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
val address_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] let address_liveness_insensitive_buffer #_ #_ #_ b =
false
null
true
MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_includes_address_liveness_insensitive_locs_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val address_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))]
[]
LowStar.Monotonic.Buffer.address_liveness_insensitive_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_buffer b)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_buffer b)) ]
{ "end_col": 112, "end_line": 960, "start_col": 2, "start_line": 960 }
FStar.Pervasives.Lemma
val region_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
val region_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] let region_liveness_insensitive_buffer #_ #_ #_ b =
false
null
true
MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.ModifiesGen.loc_includes_region_liveness_insensitive_locs_loc_of_aloc", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))]
[]
LowStar.Monotonic.Buffer.region_liveness_insensitive_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_buffer b)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_buffer b)) ]
{ "end_col": 117, "end_line": 966, "start_col": 2, "start_line": 966 }
FStar.Pervasives.Lemma
val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls
val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] let address_liveness_insensitive_addresses =
false
null
true
MG.loc_includes_address_liveness_insensitive_locs_addresses cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_address_liveness_insensitive_locs_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))]
[]
LowStar.Monotonic.Buffer.address_liveness_insensitive_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperHeap.rid -> a: FStar.Set.set Prims.nat -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_addresses true r a)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_addresses true r a)) ]
{ "end_col": 65, "end_line": 963, "start_col": 2, "start_line": 963 }
Prims.Tot
val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls
val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) let region_liveness_insensitive_address_liveness_insensitive =
false
null
true
MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "FStar.ModifiesGen.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls
false
true
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs)
[]
LowStar.Monotonic.Buffer.region_liveness_insensitive_address_liveness_insensitive
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.squash (LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs LowStar.Monotonic.Buffer.address_liveness_insensitive_locs)
{ "end_col": 88, "end_line": 975, "start_col": 2, "start_line": 975 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness
val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] let modifies_liveness_insensitive_mreference =
false
null
true
MG.modifies_preserves_liveness
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_preserves_liveness", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; ]]
[]
LowStar.Monotonic.Buffer.modifies_liveness_insensitive_mreference
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l1: LowStar.Monotonic.Buffer.loc -> l2: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Monotonic.HyperStack.mreference t pre -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h' /\ LowStar.Monotonic.Buffer.loc_disjoint l1 (LowStar.Monotonic.Buffer.loc_mreference x) /\ LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs l2 /\ FStar.Monotonic.HyperStack.contains h x) (ensures FStar.Monotonic.HyperStack.contains h' x) [ SMTPatOr [ [ SMTPat (FStar.Monotonic.HyperStack.contains h x); SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h') ]; [ SMTPat (FStar.Monotonic.HyperStack.contains h' x); SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h') ] ] ]
{ "end_col": 77, "end_line": 977, "start_col": 47, "start_line": 977 }
FStar.Pervasives.Lemma
val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls
val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] let region_liveness_insensitive_addresses =
false
null
true
MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_includes_region_liveness_insensitive_locs_loc_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))]
[]
LowStar.Monotonic.Buffer.region_liveness_insensitive_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
preserve_liveness: Prims.bool -> r: FStar.Monotonic.HyperHeap.rid -> a: FStar.Set.set Prims.nat -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness r a)) [ SMTPat (LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs (LowStar.Monotonic.Buffer.loc_addresses preserve_liveness r a)) ]
{ "end_col": 68, "end_line": 969, "start_col": 2, "start_line": 969 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (live h' x); SMTPat (modifies (loc_union l1 l2) h h');]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x))
val modifies_liveness_insensitive_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (live h' x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x =
false
null
true
if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x))
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.g_is_null", "Prims.bool", "LowStar.Monotonic.Buffer.liveness_preservation_intro", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "FStar.ModifiesGen.modifies_preserves_liveness_strong", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (live h' x); SMTPat (modifies (loc_union l1 l2) h h');]; ]]
[]
LowStar.Monotonic.Buffer.modifies_liveness_insensitive_buffer
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l1: LowStar.Monotonic.Buffer.loc -> l2: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h' /\ LowStar.Monotonic.Buffer.loc_disjoint l1 (LowStar.Monotonic.Buffer.loc_buffer x) /\ LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs l2 /\ LowStar.Monotonic.Buffer.live h x) (ensures LowStar.Monotonic.Buffer.live h' x) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.live h x); SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h') ]; [ SMTPat (LowStar.Monotonic.Buffer.live h' x); SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h') ] ] ]
{ "end_col": 79, "end_line": 983, "start_col": 2, "start_line": 980 }
FStar.Pervasives.Lemma
val modifies_trans (s12: loc) (h1 h2: HS.mem) (s23: loc) (h3: HS.mem) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_trans = MG.modifies_trans
val modifies_trans (s12: loc) (h1 h2: HS.mem) (s23: loc) (h3: HS.mem) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) let modifies_trans =
false
null
true
MG.modifies_trans
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_trans", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_trans (s12: loc) (h1 h2: HS.mem) (s23: loc) (h3: HS.mem) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3))
[]
LowStar.Monotonic.Buffer.modifies_trans
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s12: LowStar.Monotonic.Buffer.loc -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> s23: LowStar.Monotonic.Buffer.loc -> h3: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies s12 h1 h2 /\ LowStar.Monotonic.Buffer.modifies s23 h2 h3) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union s12 s23) h1 h3)
{ "end_col": 38, "end_line": 993, "start_col": 21, "start_line": 993 }
FStar.Pervasives.Lemma
val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' x)]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness
val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' x)]; ]] let modifies_liveness_insensitive_region =
false
null
true
MG.modifies_preserves_region_liveness
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_preserves_region_liveness", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' x)]; ]]
[]
LowStar.Monotonic.Buffer.modifies_liveness_insensitive_region
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l1: LowStar.Monotonic.Buffer.loc -> l2: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> x: FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h' /\ LowStar.Monotonic.Buffer.loc_disjoint l1 (LowStar.Monotonic.Buffer.loc_region_only false x) /\ LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.region_liveness_insensitive_locs l2 /\ FStar.Monotonic.HyperStack.live_region h x) (ensures FStar.Monotonic.HyperStack.live_region h' x) [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h x) ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l1 l2) h h'); SMTPat (FStar.Monotonic.HyperStack.live_region h' x) ] ] ]
{ "end_col": 80, "end_line": 985, "start_col": 43, "start_line": 985 }
FStar.Pervasives.Lemma
val modifies_only_live_regions (rs: Set.set HS.rid) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_regions false rs) l) h h' /\ (forall r . Set.mem r rs ==> (~ (HS.live_region h r))) )) (ensures (modifies l h h'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_only_live_regions = MG.modifies_only_live_regions
val modifies_only_live_regions (rs: Set.set HS.rid) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_regions false rs) l) h h' /\ (forall r . Set.mem r rs ==> (~ (HS.live_region h r))) )) (ensures (modifies l h h')) let modifies_only_live_regions =
false
null
true
MG.modifies_only_live_regions
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_only_live_regions", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_only_live_regions (rs: Set.set HS.rid) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_regions false rs) l) h h' /\ (forall r . Set.mem r rs ==> (~ (HS.live_region h r))) )) (ensures (modifies l h h'))
[]
LowStar.Monotonic.Buffer.modifies_only_live_regions
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rs: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> l: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_regions false rs) l) h h' /\ (forall (r: FStar.Monotonic.HyperHeap.rid). FStar.Set.mem r rs ==> ~(FStar.Monotonic.HyperStack.live_region h r))) (ensures LowStar.Monotonic.Buffer.modifies l h h')
{ "end_col": 62, "end_line": 995, "start_col": 33, "start_line": 995 }
FStar.Pervasives.Lemma
val modifies_loc_regions_intro (rs: Set.set HS.rid) (h1 h2: HS.mem) : Lemma (requires (HS.modifies rs h1 h2)) (ensures (modifies (loc_regions true rs) h1 h2))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls
val modifies_loc_regions_intro (rs: Set.set HS.rid) (h1 h2: HS.mem) : Lemma (requires (HS.modifies rs h1 h2)) (ensures (modifies (loc_regions true rs) h1 h2)) let modifies_loc_regions_intro =
false
null
true
MG.modifies_loc_regions_intro #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_loc_regions_intro", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_loc_regions_intro (rs: Set.set HS.rid) (h1 h2: HS.mem) : Lemma (requires (HS.modifies rs h1 h2)) (ensures (modifies (loc_regions true rs) h1 h2))
[]
LowStar.Monotonic.Buffer.modifies_loc_regions_intro
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rs: FStar.Set.set FStar.Monotonic.HyperHeap.rid -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.modifies rs h1 h2) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_regions true rs) h1 h2)
{ "end_col": 70, "end_line": 1003, "start_col": 33, "start_line": 1003 }
FStar.Pervasives.Lemma
val no_upd_fresh_region: r:HS.rid -> l:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (HS.fresh_region r h0 h1 /\ modifies (loc_union (loc_all_regions_from false r) l) h0 h1)) (ensures (modifies l h0 h1)) [SMTPat (HS.fresh_region r h0 h1); SMTPat (modifies l h0 h1)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let no_upd_fresh_region = MG.no_upd_fresh_region
val no_upd_fresh_region: r:HS.rid -> l:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (HS.fresh_region r h0 h1 /\ modifies (loc_union (loc_all_regions_from false r) l) h0 h1)) (ensures (modifies l h0 h1)) [SMTPat (HS.fresh_region r h0 h1); SMTPat (modifies l h0 h1)] let no_upd_fresh_region =
false
null
true
MG.no_upd_fresh_region
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.no_upd_fresh_region", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val no_upd_fresh_region: r:HS.rid -> l:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (HS.fresh_region r h0 h1 /\ modifies (loc_union (loc_all_regions_from false r) l) h0 h1)) (ensures (modifies l h0 h1)) [SMTPat (HS.fresh_region r h0 h1); SMTPat (modifies l h0 h1)]
[]
LowStar.Monotonic.Buffer.no_upd_fresh_region
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperHeap.rid -> l: LowStar.Monotonic.Buffer.loc -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.fresh_region r h0 h1 /\ LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_all_regions_from false r) l) h0 h1) (ensures LowStar.Monotonic.Buffer.modifies l h0 h1) [ SMTPat (FStar.Monotonic.HyperStack.fresh_region r h0 h1); SMTPat (LowStar.Monotonic.Buffer.modifies l h0 h1) ]
{ "end_col": 48, "end_line": 997, "start_col": 26, "start_line": 997 }
FStar.Pervasives.Lemma
val modifies_none_modifies (h1 h2: HS.mem) : Lemma (requires (HST.modifies_none h1 h2)) (ensures (modifies loc_none h1 h2)) [SMTPat (HST.modifies_none h1 h2)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_none_modifies = MG.modifies_none_modifies #_ #cls
val modifies_none_modifies (h1 h2: HS.mem) : Lemma (requires (HST.modifies_none h1 h2)) (ensures (modifies loc_none h1 h2)) [SMTPat (HST.modifies_none h1 h2)] let modifies_none_modifies =
false
null
true
MG.modifies_none_modifies #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_none_modifies", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_none_modifies (h1 h2: HS.mem) : Lemma (requires (HST.modifies_none h1 h2)) (ensures (modifies loc_none h1 h2)) [SMTPat (HST.modifies_none h1 h2)]
[]
LowStar.Monotonic.Buffer.modifies_none_modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.HyperStack.ST.modifies_none h1 h2) (ensures LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.loc_none h1 h2) [SMTPat (FStar.HyperStack.ST.modifies_none h1 h2)]
{ "end_col": 62, "end_line": 1013, "start_col": 29, "start_line": 1013 }
FStar.Pervasives.Lemma
val modifies_free (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel { HS.is_mm r } ) (m: HS.mem { m `HS.contains` r } ) : Lemma (modifies (loc_freed_mreference r) m (HS.free r m)) [SMTPat (HS.free r m)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_free = MG.modifies_free #_ #cls
val modifies_free (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel { HS.is_mm r } ) (m: HS.mem { m `HS.contains` r } ) : Lemma (modifies (loc_freed_mreference r) m (HS.free r m)) [SMTPat (HS.free r m)] let modifies_free =
false
null
true
MG.modifies_free #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_free", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_free (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel { HS.is_mm r } ) (m: HS.mem { m `HS.contains` r } ) : Lemma (modifies (loc_freed_mreference r) m (HS.free r m)) [SMTPat (HS.free r m)]
[]
LowStar.Monotonic.Buffer.modifies_free
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperStack.mreference a rel {FStar.Monotonic.HyperStack.is_mm r} -> m: FStar.Monotonic.HyperStack.mem{FStar.Monotonic.HyperStack.contains m r} -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_freed_mreference r) m (FStar.Monotonic.HyperStack.free r m)) [SMTPat (FStar.Monotonic.HyperStack.free r m)]
{ "end_col": 44, "end_line": 1011, "start_col": 20, "start_line": 1011 }
FStar.Pervasives.Lemma
val new_region_modifies (m0: HS.mem) (r0: HS.rid) (col: option int) : Lemma (requires (HST.is_eternal_region r0 /\ HS.live_region m0 r0 /\ (None? col \/ HS.is_heap_color (Some?.v col)))) (ensures ( let (_, m1) = HS.new_eternal_region m0 r0 col in modifies loc_none m0 m1 )) [SMTPat (HS.new_eternal_region m0 r0 col)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let new_region_modifies = MG.new_region_modifies #_ cls
val new_region_modifies (m0: HS.mem) (r0: HS.rid) (col: option int) : Lemma (requires (HST.is_eternal_region r0 /\ HS.live_region m0 r0 /\ (None? col \/ HS.is_heap_color (Some?.v col)))) (ensures ( let (_, m1) = HS.new_eternal_region m0 r0 col in modifies loc_none m0 m1 )) [SMTPat (HS.new_eternal_region m0 r0 col)] let new_region_modifies =
false
null
true
MG.new_region_modifies #_ cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.new_region_modifies", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val new_region_modifies (m0: HS.mem) (r0: HS.rid) (col: option int) : Lemma (requires (HST.is_eternal_region r0 /\ HS.live_region m0 r0 /\ (None? col \/ HS.is_heap_color (Some?.v col)))) (ensures ( let (_, m1) = HS.new_eternal_region m0 r0 col in modifies loc_none m0 m1 )) [SMTPat (HS.new_eternal_region m0 r0 col)]
[]
LowStar.Monotonic.Buffer.new_region_modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m0: FStar.Monotonic.HyperStack.mem -> r0: FStar.Monotonic.HyperHeap.rid -> col: FStar.Pervasives.Native.option Prims.int -> FStar.Pervasives.Lemma (requires FStar.HyperStack.ST.is_eternal_region r0 /\ FStar.Monotonic.HyperStack.live_region m0 r0 /\ (None? col \/ FStar.Monotonic.HyperStack.is_heap_color (Some?.v col))) (ensures (let _ = FStar.Monotonic.HyperStack.new_eternal_region m0 r0 col in (let FStar.Pervasives.Native.Mktuple2 #_ #_ _ m1 = _ in LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.loc_none m0 m1) <: Type0)) [SMTPat (FStar.Monotonic.HyperStack.new_eternal_region m0 r0 col)]
{ "end_col": 55, "end_line": 999, "start_col": 26, "start_line": 999 }
FStar.Pervasives.Lemma
val modifies_ralloc_post (#a: Type) (#rel: Preorder.preorder a) (i: HS.rid) (init: a) (h: HS.mem) (x: HST.mreference a rel) (h' : HS.mem) : Lemma (requires (HST.ralloc_post i init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.ralloc_post i init h x h')]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls
val modifies_ralloc_post (#a: Type) (#rel: Preorder.preorder a) (i: HS.rid) (init: a) (h: HS.mem) (x: HST.mreference a rel) (h' : HS.mem) : Lemma (requires (HST.ralloc_post i init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.ralloc_post i init h x h')] let modifies_ralloc_post =
false
null
true
MG.modifies_ralloc_post #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_ralloc_post", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_ralloc_post (#a: Type) (#rel: Preorder.preorder a) (i: HS.rid) (init: a) (h: HS.mem) (x: HST.mreference a rel) (h' : HS.mem) : Lemma (requires (HST.ralloc_post i init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.ralloc_post i init h x h')]
[]
LowStar.Monotonic.Buffer.modifies_ralloc_post
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: FStar.Monotonic.HyperHeap.rid -> init: a -> h: FStar.Monotonic.HyperStack.mem -> x: FStar.HyperStack.ST.mreference a rel -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.HyperStack.ST.ralloc_post i init h x h') (ensures LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.loc_none h h') [SMTPat (FStar.HyperStack.ST.ralloc_post i init h x h')]
{ "end_col": 58, "end_line": 1007, "start_col": 27, "start_line": 1007 }
FStar.Pervasives.Lemma
val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n)
val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 =
false
null
true
MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.Monotonic.HyperStack.mem", "FStar.ModifiesGen.modifies_none_intro", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.modifies_0_live_region", "Prims.unit", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "LowStar.Monotonic.Buffer.modifies_0_mreference", "Prims.nat", "LowStar.Monotonic.Buffer.modifies_0_unused_in" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2))
[]
LowStar.Monotonic.Buffer.modifies_0_modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies_0 h1 h2) (ensures LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.loc_none h1 h2)
{ "end_col": 47, "end_line": 1026, "start_col": 2, "start_line": 1023 }
FStar.Pervasives.Lemma
val not_live_region_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (~ (HS.live_region h (fst ra)))) (ensures (h `does_not_contain_addr` ra))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr
val not_live_region_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (~ (HS.live_region h (fst ra)))) (ensures (h `does_not_contain_addr` ra)) let not_live_region_does_not_contain_addr =
false
null
true
MG.not_live_region_does_not_contain_addr
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.not_live_region_does_not_contain_addr" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val not_live_region_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (~ (HS.live_region h (fst ra)))) (ensures (h `does_not_contain_addr` ra))
[]
LowStar.Monotonic.Buffer.not_live_region_does_not_contain_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> ra: (FStar.Monotonic.HyperHeap.rid * Prims.nat) -> FStar.Pervasives.Lemma (requires ~(FStar.Monotonic.HyperStack.live_region h (FStar.Pervasives.Native.fst ra))) (ensures LowStar.Monotonic.Buffer.does_not_contain_addr h ra)
{ "end_col": 84, "end_line": 1199, "start_col": 44, "start_line": 1199 }
FStar.Pervasives.Lemma
val modifies_upd (#t: Type) (#pre: Preorder.preorder t) (r: HS.mreference t pre) (v: t) (h: HS.mem) : Lemma (requires (HS.contains h r)) (ensures (modifies (loc_mreference r) h (HS.upd h r v))) [SMTPat (HS.upd h r v)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_upd = MG.modifies_upd #_ #cls
val modifies_upd (#t: Type) (#pre: Preorder.preorder t) (r: HS.mreference t pre) (v: t) (h: HS.mem) : Lemma (requires (HS.contains h r)) (ensures (modifies (loc_mreference r) h (HS.upd h r v))) [SMTPat (HS.upd h r v)] let modifies_upd =
false
null
true
MG.modifies_upd #_ #cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_upd", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_upd (#t: Type) (#pre: Preorder.preorder t) (r: HS.mreference t pre) (v: t) (h: HS.mem) : Lemma (requires (HS.contains h r)) (ensures (modifies (loc_mreference r) h (HS.upd h r v))) [SMTPat (HS.upd h r v)]
[]
LowStar.Monotonic.Buffer.modifies_upd
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperStack.mreference t pre -> v: t -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.contains h r) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_mreference r) h (FStar.Monotonic.HyperStack.upd h r v)) [SMTPat (FStar.Monotonic.HyperStack.upd h r v)]
{ "end_col": 42, "end_line": 1015, "start_col": 19, "start_line": 1015 }
FStar.Pervasives.Lemma
val unused_in_does_not_contain_addr (h: HS.mem) (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel) : Lemma (requires (r `HS.unused_in` h)) (ensures (h `does_not_contain_addr` (HS.frameOf r, HS.as_addr r)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr
val unused_in_does_not_contain_addr (h: HS.mem) (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel) : Lemma (requires (r `HS.unused_in` h)) (ensures (h `does_not_contain_addr` (HS.frameOf r, HS.as_addr r))) let unused_in_does_not_contain_addr =
false
null
true
MG.unused_in_does_not_contain_addr
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.unused_in_does_not_contain_addr" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unused_in_does_not_contain_addr (h: HS.mem) (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel) : Lemma (requires (r `HS.unused_in` h)) (ensures (h `does_not_contain_addr` (HS.frameOf r, HS.as_addr r)))
[]
LowStar.Monotonic.Buffer.unused_in_does_not_contain_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperStack.mreference a rel -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.unused_in r h) (ensures LowStar.Monotonic.Buffer.does_not_contain_addr h (FStar.Monotonic.HyperStack.frameOf r, FStar.Monotonic.HyperStack.as_addr r))
{ "end_col": 72, "end_line": 1201, "start_col": 38, "start_line": 1201 }
FStar.Pervasives.Lemma
val addr_unused_in_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (HS.live_region h (fst ra) ==> snd ra `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (fst ra)))) (ensures (h `does_not_contain_addr` ra))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr
val addr_unused_in_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (HS.live_region h (fst ra) ==> snd ra `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (fst ra)))) (ensures (h `does_not_contain_addr` ra)) let addr_unused_in_does_not_contain_addr =
false
null
true
MG.addr_unused_in_does_not_contain_addr
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.addr_unused_in_does_not_contain_addr" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addr_unused_in_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (HS.live_region h (fst ra) ==> snd ra `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (fst ra)))) (ensures (h `does_not_contain_addr` ra))
[]
LowStar.Monotonic.Buffer.addr_unused_in_does_not_contain_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> ra: (FStar.Monotonic.HyperHeap.rid * Prims.nat) -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.live_region h (FStar.Pervasives.Native.fst ra) ==> FStar.Monotonic.Heap.addr_unused_in (FStar.Pervasives.Native.snd ra) (FStar.Map.sel (FStar.Monotonic.HyperStack.get_hmap h) (FStar.Pervasives.Native.fst ra))) (ensures LowStar.Monotonic.Buffer.does_not_contain_addr h ra)
{ "end_col": 82, "end_line": 1203, "start_col": 43, "start_line": 1203 }
FStar.Pervasives.Lemma
val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) )
val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 =
false
null
true
if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0_modifies h1 h2 else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_))
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to_none_cond", "LowStar.Monotonic.Buffer.modifies_0_modifies", "Prims.bool", "FStar.ModifiesGen.modifies_intro", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.loc_buffer_from_to", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.modifies_1_from_to_live_region", "Prims.unit", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mreference", "LowStar.Monotonic.Buffer.modifies_1_from_to_mreference", "FStar.ModifiesGen.loc_disjoint_aloc_addresses_elim", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer_from_to", "FStar.Monotonic.HyperStack.frameOf", "FStar.Set.singleton", "Prims.nat", "FStar.Monotonic.HyperStack.as_addr", "LowStar.Monotonic.Buffer.loc_disjoint_sym", "LowStar.Monotonic.Buffer.loc_mreference", "LowStar.Monotonic.Buffer.modifies_1_from_to_liveness", "LowStar.Monotonic.Buffer.modifies_1_from_to_unused_in", "Prims.op_AmpAmp", "Prims.op_Equality", "LowStar.Monotonic.Buffer.modifies_1_from_to_ubuffer", "LowStar.Monotonic.Buffer.same_mreference_ubuffer_preserved", "FStar.ModifiesGen.loc_disjoint_aloc_elim", "FStar.ModifiesGen.loc_of_aloc" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2))
[]
LowStar.Monotonic.Buffer.modifies_1_from_to_modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> from: FStar.UInt32.t -> to: FStar.UInt32.t -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies_1_from_to b from to h1 h2) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_buffer_from_to b from to) h1 h2)
{ "end_col": 5, "end_line": 1095, "start_col": 2, "start_line": 1069 }
FStar.Pervasives.Lemma
val does_not_contain_addr_elim (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( m `does_not_contain_addr` x /\ HS.frameOf r == fst x /\ HS.as_addr r == snd x )) (ensures (~ (m `HS.contains` r)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let does_not_contain_addr_elim = MG.does_not_contain_addr_elim
val does_not_contain_addr_elim (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( m `does_not_contain_addr` x /\ HS.frameOf r == fst x /\ HS.as_addr r == snd x )) (ensures (~ (m `HS.contains` r))) let does_not_contain_addr_elim =
false
null
true
MG.does_not_contain_addr_elim
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.does_not_contain_addr_elim" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val does_not_contain_addr_elim (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( m `does_not_contain_addr` x /\ HS.frameOf r == fst x /\ HS.as_addr r == snd x )) (ensures (~ (m `HS.contains` r)))
[]
LowStar.Monotonic.Buffer.does_not_contain_addr_elim
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperStack.mreference a rel -> m: FStar.Monotonic.HyperStack.mem -> x: (FStar.Monotonic.HyperHeap.rid * Prims.nat) -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.does_not_contain_addr m x /\ FStar.Monotonic.HyperStack.frameOf r == FStar.Pervasives.Native.fst x /\ FStar.Monotonic.HyperStack.as_addr r == FStar.Pervasives.Native.snd x) (ensures ~(FStar.Monotonic.HyperStack.contains m r))
{ "end_col": 62, "end_line": 1207, "start_col": 33, "start_line": 1207 }
FStar.Pervasives.Lemma
val free_does_not_contain_addr (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( HS.is_mm r /\ m `HS.contains` r /\ fst x == HS.frameOf r /\ snd x == HS.as_addr r )) (ensures ( HS.free r m `does_not_contain_addr` x )) [SMTPat (HS.free r m `does_not_contain_addr` x)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_does_not_contain_addr = MG.free_does_not_contain_addr
val free_does_not_contain_addr (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( HS.is_mm r /\ m `HS.contains` r /\ fst x == HS.frameOf r /\ snd x == HS.as_addr r )) (ensures ( HS.free r m `does_not_contain_addr` x )) [SMTPat (HS.free r m `does_not_contain_addr` x)] let free_does_not_contain_addr =
false
null
true
MG.free_does_not_contain_addr
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.free_does_not_contain_addr" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_does_not_contain_addr (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( HS.is_mm r /\ m `HS.contains` r /\ fst x == HS.frameOf r /\ snd x == HS.as_addr r )) (ensures ( HS.free r m `does_not_contain_addr` x )) [SMTPat (HS.free r m `does_not_contain_addr` x)]
[]
LowStar.Monotonic.Buffer.free_does_not_contain_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperStack.mreference a rel -> m: FStar.Monotonic.HyperStack.mem -> x: (FStar.Monotonic.HyperHeap.rid * Prims.nat) -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.is_mm r /\ FStar.Monotonic.HyperStack.contains m r /\ FStar.Pervasives.Native.fst x == FStar.Monotonic.HyperStack.frameOf r /\ FStar.Pervasives.Native.snd x == FStar.Monotonic.HyperStack.as_addr r) (ensures LowStar.Monotonic.Buffer.does_not_contain_addr (FStar.Monotonic.HyperStack.free r m) x) [ SMTPat (LowStar.Monotonic.Buffer.does_not_contain_addr (FStar.Monotonic.HyperStack.free r m) x) ]
{ "end_col": 62, "end_line": 1205, "start_col": 33, "start_line": 1205 }
FStar.Pervasives.Lemma
val loc_unused_in_not_unused_in_disjoint (h: HS.mem) : Lemma (loc_disjoint (loc_unused_in h) (loc_not_unused_in h))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls
val loc_unused_in_not_unused_in_disjoint (h: HS.mem) : Lemma (loc_disjoint (loc_unused_in h) (loc_not_unused_in h)) let loc_unused_in_not_unused_in_disjoint =
false
null
true
MG.loc_unused_in_not_unused_in_disjoint cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.loc_unused_in_not_unused_in_disjoint", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val loc_unused_in_not_unused_in_disjoint (h: HS.mem) : Lemma (loc_disjoint (loc_unused_in h) (loc_not_unused_in h))
[]
LowStar.Monotonic.Buffer.loc_unused_in_not_unused_in_disjoint
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (ensures LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_unused_in h) (LowStar.Monotonic.Buffer.loc_not_unused_in h))
{ "end_col": 45, "end_line": 1218, "start_col": 2, "start_line": 1218 }
FStar.Pervasives.Lemma
val modifies_only_live_addresses (r: HS.rid) (a: Set.set nat) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_addresses false r a) l) h h' /\ (forall x . Set.mem x a ==> h `does_not_contain_addr` (r, x)) )) (ensures (modifies l h h'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_only_live_addresses = MG.modifies_only_live_addresses
val modifies_only_live_addresses (r: HS.rid) (a: Set.set nat) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_addresses false r a) l) h h' /\ (forall x . Set.mem x a ==> h `does_not_contain_addr` (r, x)) )) (ensures (modifies l h h')) let modifies_only_live_addresses =
false
null
true
MG.modifies_only_live_addresses
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_only_live_addresses", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_only_live_addresses (r: HS.rid) (a: Set.set nat) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_addresses false r a) l) h h' /\ (forall x . Set.mem x a ==> h `does_not_contain_addr` (r, x)) )) (ensures (modifies l h h'))
[]
LowStar.Monotonic.Buffer.modifies_only_live_addresses
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperHeap.rid -> a: FStar.Set.set Prims.nat -> l: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_addresses false r a) l) h h' /\ (forall (x: Prims.nat). FStar.Set.mem x a ==> LowStar.Monotonic.Buffer.does_not_contain_addr h (r, x))) (ensures LowStar.Monotonic.Buffer.modifies l h h')
{ "end_col": 66, "end_line": 1209, "start_col": 35, "start_line": 1209 }
FStar.Pervasives.Lemma
val modifies_loc_buffer_from_to_intro (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h'
val modifies_loc_buffer_from_to_intro (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' =
false
null
true
if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h'
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.g_is_null", "Prims.bool", "LowStar.Monotonic.Buffer.modifies_loc_buffer_from_to_intro'", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_loc_buffer_from_to_intro (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h'))
[]
LowStar.Monotonic.Buffer.modifies_loc_buffer_from_to_intro
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> from: FStar.UInt32.t -> to: FStar.UInt32.t -> l: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires (let s = LowStar.Monotonic.Buffer.as_seq h b in let s' = LowStar.Monotonic.Buffer.as_seq h' b in LowStar.Monotonic.Buffer.live h b /\ LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l (LowStar.Monotonic.Buffer.loc_buffer b)) h h' /\ FStar.UInt32.v from <= FStar.UInt32.v to /\ FStar.UInt32.v to <= LowStar.Monotonic.Buffer.length b /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 (FStar.UInt32.v from)) (FStar.Seq.Base.slice s' 0 (FStar.UInt32.v from)) /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice s (FStar.UInt32.v to) (LowStar.Monotonic.Buffer.length b)) (FStar.Seq.Base.slice s' (FStar.UInt32.v to) (LowStar.Monotonic.Buffer.length b)))) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l (LowStar.Monotonic.Buffer.loc_buffer_from_to b from to)) h h')
{ "end_col": 58, "end_line": 1195, "start_col": 2, "start_line": 1193 }
FStar.Pervasives.Lemma
val not_live_region_loc_not_unused_in_disjoint (h0: HS.mem) (r: HS.rid) : Lemma (requires (~ (HS.live_region h0 r))) (ensures (loc_disjoint (loc_region_only false r) (loc_not_unused_in h0)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls
val not_live_region_loc_not_unused_in_disjoint (h0: HS.mem) (r: HS.rid) : Lemma (requires (~ (HS.live_region h0 r))) (ensures (loc_disjoint (loc_region_only false r) (loc_not_unused_in h0))) let not_live_region_loc_not_unused_in_disjoint =
false
null
true
MG.not_live_region_loc_not_unused_in_disjoint cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.not_live_region_loc_not_unused_in_disjoint", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val not_live_region_loc_not_unused_in_disjoint (h0: HS.mem) (r: HS.rid) : Lemma (requires (~ (HS.live_region h0 r))) (ensures (loc_disjoint (loc_region_only false r) (loc_not_unused_in h0)))
[]
LowStar.Monotonic.Buffer.not_live_region_loc_not_unused_in_disjoint
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h0: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> FStar.Pervasives.Lemma (requires ~(FStar.Monotonic.HyperStack.live_region h0 r)) (ensures LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_region_only false r) (LowStar.Monotonic.Buffer.loc_not_unused_in h0))
{ "end_col": 98, "end_line": 1220, "start_col": 49, "start_line": 1220 }
FStar.Pervasives.Lemma
val unused_in_loc_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (unused_in b h)) (ensures (loc_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (unused_in b h)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; ()
val unused_in_loc_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (unused_in b h)) (ensures (loc_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (unused_in b h)] let unused_in_loc_unused_in #_ #_ #_ b h =
false
null
true
unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; ()
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "Prims.unit", "FStar.ModifiesGen.loc_addresses_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "FStar.Set.singleton", "Prims.nat", "LowStar.Monotonic.Buffer.as_addr", "FStar.Classical.move_requires", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.HyperHeap.rid", "Prims.l_imp", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "FStar.Pervasives.Native.fst", "FStar.Monotonic.Heap.addr_unused_in", "FStar.Pervasives.Native.snd", "FStar.Map.sel", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "FStar.ModifiesGen.does_not_contain_addr", "FStar.ModifiesGen.addr_unused_in_does_not_contain_addr", "FStar.Pervasives.Native.Mktuple2", "LowStar.Monotonic.Buffer.unused_in_equiv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; ()
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unused_in_loc_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (unused_in b h)) (ensures (loc_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (unused_in b h)]
[]
LowStar.Monotonic.Buffer.unused_in_loc_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.unused_in b h) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h) (LowStar.Monotonic.Buffer.loc_addr_of_buffer b)) [SMTPat (LowStar.Monotonic.Buffer.unused_in b h)]
{ "end_col": 4, "end_line": 1232, "start_col": 2, "start_line": 1229 }
Prims.Tot
val spred_as_mempred (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : HST.mem_predicate
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b)
val spred_as_mempred (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : HST.mem_predicate let spred_as_mempred (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : HST.mem_predicate =
false
null
false
fun h -> buffer_compatible b ==> p (as_seq h b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.spred", "FStar.Monotonic.HyperStack.mem", "Prims.l_imp", "LowStar.Monotonic.Buffer.buffer_compatible", "LowStar.Monotonic.Buffer.as_seq", "FStar.HyperStack.ST.mem_predicate" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val spred_as_mempred (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : HST.mem_predicate
[]
LowStar.Monotonic.Buffer.spred_as_mempred
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.spred a -> FStar.HyperStack.ST.mem_predicate
{ "end_col": 18, "end_line": 1403, "start_col": 4, "start_line": 1401 }
FStar.Pervasives.Lemma
val modifies_address_liveness_insensitive_unused_in (h h' : HS.mem) : Lemma (requires (modifies (address_liveness_insensitive_locs) h h')) (ensures (loc_not_unused_in h' `loc_includes` loc_not_unused_in h /\ loc_unused_in h `loc_includes` loc_unused_in h'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls
val modifies_address_liveness_insensitive_unused_in (h h' : HS.mem) : Lemma (requires (modifies (address_liveness_insensitive_locs) h h')) (ensures (loc_not_unused_in h' `loc_includes` loc_not_unused_in h /\ loc_unused_in h `loc_includes` loc_unused_in h')) let modifies_address_liveness_insensitive_unused_in =
false
null
true
MG.modifies_address_liveness_insensitive_unused_in cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_address_liveness_insensitive_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; ()
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_address_liveness_insensitive_unused_in (h h' : HS.mem) : Lemma (requires (modifies (address_liveness_insensitive_locs) h h')) (ensures (loc_not_unused_in h' `loc_includes` loc_not_unused_in h /\ loc_unused_in h `loc_includes` loc_unused_in h'))
[]
LowStar.Monotonic.Buffer.modifies_address_liveness_insensitive_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies LowStar.Monotonic.Buffer.address_liveness_insensitive_locs h h') (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_not_unused_in h') (LowStar.Monotonic.Buffer.loc_not_unused_in h) /\ LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h) (LowStar.Monotonic.Buffer.loc_unused_in h'))
{ "end_col": 56, "end_line": 1235, "start_col": 2, "start_line": 1235 }
FStar.Pervasives.Lemma
val mreference_unused_in_loc_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (r `HS.unused_in` h)) (ensures (loc_unused_in h `loc_includes` loc_freed_mreference r /\ loc_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.unused_in r h)]; [SMTPat (loc_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_unused_in h `loc_includes` loc_freed_mreference r)]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls
val mreference_unused_in_loc_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (r `HS.unused_in` h)) (ensures (loc_unused_in h `loc_includes` loc_freed_mreference r /\ loc_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.unused_in r h)]; [SMTPat (loc_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_unused_in h `loc_includes` loc_freed_mreference r)]; ]] let mreference_unused_in_loc_unused_in =
false
null
true
MG.mreference_unused_in_loc_unused_in cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.mreference_unused_in_loc_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mreference_unused_in_loc_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (r `HS.unused_in` h)) (ensures (loc_unused_in h `loc_includes` loc_freed_mreference r /\ loc_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.unused_in r h)]; [SMTPat (loc_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_unused_in h `loc_includes` loc_freed_mreference r)]; ]]
[]
LowStar.Monotonic.Buffer.mreference_unused_in_loc_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperStack.mreference t pre -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.unused_in r h) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h) (LowStar.Monotonic.Buffer.loc_freed_mreference r) /\ LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h) (LowStar.Monotonic.Buffer.loc_mreference r)) [ SMTPatOr [ [SMTPat (FStar.Monotonic.HyperStack.unused_in r h)]; [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h ) (LowStar.Monotonic.Buffer.loc_mreference r)) ]; [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h ) (LowStar.Monotonic.Buffer.loc_freed_mreference r)) ] ] ]
{ "end_col": 43, "end_line": 1243, "start_col": 2, "start_line": 1243 }
FStar.Pervasives.Lemma
val modifies_only_not_unused_in (l: loc) (h h' : HS.mem) : Lemma (requires (modifies (loc_union (loc_unused_in h) l) h h')) (ensures (modifies l h h'))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_only_not_unused_in = MG.modifies_only_not_unused_in
val modifies_only_not_unused_in (l: loc) (h h' : HS.mem) : Lemma (requires (modifies (loc_union (loc_unused_in h) l) h h')) (ensures (modifies l h h')) let modifies_only_not_unused_in =
false
null
true
MG.modifies_only_not_unused_in
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.modifies_only_not_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_only_not_unused_in (l: loc) (h h' : HS.mem) : Lemma (requires (modifies (loc_union (loc_unused_in h) l) h h')) (ensures (modifies l h h'))
[]
LowStar.Monotonic.Buffer.modifies_only_not_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_unused_in h) l) h h') (ensures LowStar.Monotonic.Buffer.modifies l h h')
{ "end_col": 64, "end_line": 1237, "start_col": 34, "start_line": 1237 }
FStar.Pervasives.Lemma
val mreference_live_loc_not_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (h `HS.contains` r)) (ensures (loc_not_unused_in h `loc_includes` loc_freed_mreference r /\ loc_not_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.contains h r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_freed_mreference r)]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls
val mreference_live_loc_not_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (h `HS.contains` r)) (ensures (loc_not_unused_in h `loc_includes` loc_freed_mreference r /\ loc_not_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.contains h r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_freed_mreference r)]; ]] let mreference_live_loc_not_unused_in =
false
null
true
MG.mreference_live_loc_not_unused_in cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.mreference_live_loc_not_unused_in", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mreference_live_loc_not_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (h `HS.contains` r)) (ensures (loc_not_unused_in h `loc_includes` loc_freed_mreference r /\ loc_not_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.contains h r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_freed_mreference r)]; ]]
[]
LowStar.Monotonic.Buffer.mreference_live_loc_not_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperStack.mreference t pre -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.contains h r) (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_not_unused_in h) (LowStar.Monotonic.Buffer.loc_freed_mreference r) /\ LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_not_unused_in h) (LowStar.Monotonic.Buffer.loc_mreference r)) [ SMTPatOr [ [SMTPat (FStar.Monotonic.HyperStack.contains h r)]; [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_not_unused_in h) (LowStar.Monotonic.Buffer.loc_mreference r)) ]; [ SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_not_unused_in h) (LowStar.Monotonic.Buffer.loc_freed_mreference r)) ] ] ]
{ "end_col": 42, "end_line": 1240, "start_col": 2, "start_line": 1240 }
FStar.Pervasives.Lemma
val popped_modifies (h0 h1: HS.mem) : Lemma (requires (HS.popped h0 h1)) (ensures (modifies (loc_region_only false (HS.get_tip h0)) h0 h1)) [SMTPat (HS.popped h0 h1)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let popped_modifies = MG.popped_modifies #_ cls
val popped_modifies (h0 h1: HS.mem) : Lemma (requires (HS.popped h0 h1)) (ensures (modifies (loc_region_only false (HS.get_tip h0)) h0 h1)) [SMTPat (HS.popped h0 h1)] let popped_modifies =
false
null
true
MG.popped_modifies #_ cls
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "FStar.ModifiesGen.popped_modifies", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val popped_modifies (h0 h1: HS.mem) : Lemma (requires (HS.popped h0 h1)) (ensures (modifies (loc_region_only false (HS.get_tip h0)) h0 h1)) [SMTPat (HS.popped h0 h1)]
[]
LowStar.Monotonic.Buffer.popped_modifies
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.popped h0 h1) (ensures LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_region_only false (FStar.Monotonic.HyperStack.get_tip h0)) h0 h1) [SMTPat (FStar.Monotonic.HyperStack.popped h0 h1)]
{ "end_col": 47, "end_line": 1252, "start_col": 22, "start_line": 1252 }
FStar.Pervasives.Lemma
val modifies_loc_unused_in (l: loc) (h1 h2: HS.mem) (l' : loc) : Lemma (requires ( modifies l h1 h2 /\ address_liveness_insensitive_locs `loc_includes` l /\ loc_unused_in h2 `loc_includes` l' )) (ensures (loc_unused_in h1 `loc_includes` l')) [SMTPatOr [ [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h2 `loc_includes` l')]; [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h1 `loc_includes` l')]; ]]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l'
val modifies_loc_unused_in (l: loc) (h1 h2: HS.mem) (l' : loc) : Lemma (requires ( modifies l h1 h2 /\ address_liveness_insensitive_locs `loc_includes` l /\ loc_unused_in h2 `loc_includes` l' )) (ensures (loc_unused_in h1 `loc_includes` l')) [SMTPatOr [ [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h2 `loc_includes` l')]; [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h1 `loc_includes` l')]; ]] let modifies_loc_unused_in l h1 h2 l' =
false
null
true
modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l'
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.loc_includes_trans", "LowStar.Monotonic.Buffer.loc_unused_in", "Prims.unit", "LowStar.Monotonic.Buffer.modifies_address_liveness_insensitive_unused_in", "LowStar.Monotonic.Buffer.modifies_loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_loc_unused_in (l: loc) (h1 h2: HS.mem) (l' : loc) : Lemma (requires ( modifies l h1 h2 /\ address_liveness_insensitive_locs `loc_includes` l /\ loc_unused_in h2 `loc_includes` l' )) (ensures (loc_unused_in h1 `loc_includes` l')) [SMTPatOr [ [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h2 `loc_includes` l')]; [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h1 `loc_includes` l')]; ]]
[]
LowStar.Monotonic.Buffer.modifies_loc_unused_in
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: LowStar.Monotonic.Buffer.loc -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> l': LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.modifies l h1 h2 /\ LowStar.Monotonic.Buffer.loc_includes LowStar.Monotonic.Buffer.address_liveness_insensitive_locs l /\ LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h2) l') (ensures LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h1) l') [ SMTPatOr [ [ SMTPat (LowStar.Monotonic.Buffer.modifies l h1 h2); SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h2 ) l') ]; [ SMTPat (LowStar.Monotonic.Buffer.modifies l h1 h2); SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_unused_in h1 ) l') ] ] ]
{ "end_col": 61, "end_line": 1248, "start_col": 2, "start_line": 1246 }
FStar.Pervasives.Lemma
val modifies_remove_new_locs (l_fresh l_aux l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (fresh_loc l_fresh h1 h2 /\ modifies l_aux h1 h2 /\ l_goal `loc_includes` l_aux /\ modifies (loc_union l_fresh l_goal) h2 h3)) (ensures (modifies l_goal h1 h3)) [SMTPat (fresh_loc l_fresh h1 h2); SMTPat (modifies l_aux h1 h2); SMTPat (modifies l_goal h1 h3)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3
val modifies_remove_new_locs (l_fresh l_aux l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (fresh_loc l_fresh h1 h2 /\ modifies l_aux h1 h2 /\ l_goal `loc_includes` l_aux /\ modifies (loc_union l_fresh l_goal) h2 h3)) (ensures (modifies l_goal h1 h3)) [SMTPat (fresh_loc l_fresh h1 h2); SMTPat (modifies l_aux h1 h2); SMTPat (modifies l_goal h1 h3)] let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 =
false
null
true
modifies_only_not_unused_in l_goal h1 h3
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.modifies_only_not_unused_in", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_remove_new_locs (l_fresh l_aux l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (fresh_loc l_fresh h1 h2 /\ modifies l_aux h1 h2 /\ l_goal `loc_includes` l_aux /\ modifies (loc_union l_fresh l_goal) h2 h3)) (ensures (modifies l_goal h1 h3)) [SMTPat (fresh_loc l_fresh h1 h2); SMTPat (modifies l_aux h1 h2); SMTPat (modifies l_goal h1 h3)]
[]
LowStar.Monotonic.Buffer.modifies_remove_new_locs
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l_fresh: LowStar.Monotonic.Buffer.loc -> l_aux: LowStar.Monotonic.Buffer.loc -> l_goal: LowStar.Monotonic.Buffer.loc -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> h3: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.fresh_loc l_fresh h1 h2 /\ LowStar.Monotonic.Buffer.modifies l_aux h1 h2 /\ LowStar.Monotonic.Buffer.loc_includes l_goal l_aux /\ LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union l_fresh l_goal) h2 h3) (ensures LowStar.Monotonic.Buffer.modifies l_goal h1 h3) [ SMTPat (LowStar.Monotonic.Buffer.fresh_loc l_fresh h1 h2); SMTPat (LowStar.Monotonic.Buffer.modifies l_aux h1 h2); SMTPat (LowStar.Monotonic.Buffer.modifies l_goal h1 h3) ]
{ "end_col": 42, "end_line": 1255, "start_col": 2, "start_line": 1255 }
FStar.Pervasives.Lemma
val includes_frameOf_as_addr (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (larger:mbuffer a1 rrel1 rel1) (smaller:mbuffer a2 rrel2 rel2) :Lemma (requires (larger `includes` smaller)) (ensures (g_is_null larger == g_is_null smaller /\ frameOf larger == frameOf smaller /\ as_addr larger == as_addr smaller)) [SMTPat (larger `includes` smaller)]
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller)
val includes_frameOf_as_addr (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (larger:mbuffer a1 rrel1 rel1) (smaller:mbuffer a2 rrel2 rel2) :Lemma (requires (larger `includes` smaller)) (ensures (g_is_null larger == g_is_null smaller /\ frameOf larger == frameOf smaller /\ as_addr larger == as_addr smaller)) [SMTPat (larger `includes` smaller)] let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller =
false
null
true
if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.op_BarBar", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool", "FStar.ModifiesGen.loc_includes_aloc_elim", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val includes_frameOf_as_addr (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (larger:mbuffer a1 rrel1 rel1) (smaller:mbuffer a2 rrel2 rel2) :Lemma (requires (larger `includes` smaller)) (ensures (g_is_null larger == g_is_null smaller /\ frameOf larger == frameOf smaller /\ as_addr larger == as_addr smaller)) [SMTPat (larger `includes` smaller)]
[]
LowStar.Monotonic.Buffer.includes_frameOf_as_addr
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
larger: LowStar.Monotonic.Buffer.mbuffer a1 rrel1 rel1 -> smaller: LowStar.Monotonic.Buffer.mbuffer a2 rrel2 rel2 -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.includes larger smaller) (ensures LowStar.Monotonic.Buffer.g_is_null larger == LowStar.Monotonic.Buffer.g_is_null smaller /\ LowStar.Monotonic.Buffer.frameOf larger == LowStar.Monotonic.Buffer.frameOf smaller /\ LowStar.Monotonic.Buffer.as_addr larger == LowStar.Monotonic.Buffer.as_addr smaller) [SMTPat (LowStar.Monotonic.Buffer.includes larger smaller)]
{ "end_col": 166, "end_line": 1280, "start_col": 2, "start_line": 1278 }
FStar.HyperStack.ST.Stack
val is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.Stack bool (requires (fun h -> live h b)) (ensures (fun h y h' -> h == h' /\ y == g_is_null b))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_null #_ #_ #_ b = Null? b
val is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.Stack bool (requires (fun h -> live h b)) (ensures (fun h y h' -> h == h' /\ y == g_is_null b)) let is_null #_ #_ #_ b =
true
null
false
Null? b
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.Stack bool (requires (fun h -> live h b)) (ensures (fun h y h' -> h == h' /\ y == g_is_null b))
[]
LowStar.Monotonic.Buffer.is_null
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 32, "end_line": 1291, "start_col": 25, "start_line": 1291 }
FStar.Pervasives.Lemma
val pointer_distinct_sel_disjoint (#a:Type0) (#rrel1 #rrel2 #rel1 #rel2:srel a) (b1:mpointer a rrel1 rel1) (b2:mpointer a rrel2 rel2) (h:HS.mem) :Lemma (requires (live h b1 /\ live h b2 /\ get h b1 0 =!= get h b2 0)) (ensures (disjoint b1 b2))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2
val pointer_distinct_sel_disjoint (#a:Type0) (#rrel1 #rrel2 #rel1 #rel2:srel a) (b1:mpointer a rrel1 rel1) (b2:mpointer a rrel2 rel2) (h:HS.mem) :Lemma (requires (live h b1 /\ live h b2 /\ get h b1 0 =!= get h b2 0)) (ensures (disjoint b1 b2)) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h =
false
null
true
if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then (HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2) else loc_disjoint_buffer b1 b2
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mpointer", "FStar.Monotonic.HyperStack.mem", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "Prims.nat", "LowStar.Monotonic.Buffer.as_addr", "LowStar.Monotonic.Buffer.loc_disjoint_buffer", "Prims.unit", "FStar.Monotonic.HyperStack.mreference_distinct_sel_disjoint", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pointer_distinct_sel_disjoint (#a:Type0) (#rrel1 #rrel2 #rel1 #rel2:srel a) (b1:mpointer a rrel1 rel1) (b2:mpointer a rrel2 rel2) (h:HS.mem) :Lemma (requires (live h b1 /\ live h b2 /\ get h b1 0 =!= get h b2 0)) (ensures (disjoint b1 b2))
[]
LowStar.Monotonic.Buffer.pointer_distinct_sel_disjoint
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mpointer a rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mpointer a rrel2 rel2 -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.live h b1 /\ LowStar.Monotonic.Buffer.live h b2 /\ ~(LowStar.Monotonic.Buffer.get h b1 0 == LowStar.Monotonic.Buffer.get h b2 0)) (ensures LowStar.Monotonic.Buffer.disjoint b1 b2)
{ "end_col": 29, "end_line": 1289, "start_col": 2, "start_line": 1283 }
FStar.HyperStack.ST.Stack
val index (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack a (requires (fun h -> live h b /\ U32.v i < length b)) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i)
val index (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack a (requires (fun h -> live h b /\ U32.v i < length b)) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) let index #_ #_ #_ b i =
true
null
false
let open HST in let s = !(Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Seq.Base.index", "Prims.op_Addition", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__idx", "FStar.Seq.Properties.lseq", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "FStar.HyperStack.ST.op_Bang", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i)))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val index (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack a (requires (fun h -> live h b /\ U32.v i < length b)) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i)))
[]
LowStar.Monotonic.Buffer.index
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack a
{ "end_col": 47, "end_line": 1308, "start_col": 2, "start_line": 1306 }
FStar.HyperStack.ST.Stack
val msub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:Ghost.erased U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i + U32.v (Ghost.reveal len) <= length b /\ compatible_sub b i (Ghost.reveal len) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (Ghost.reveal len)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len
val msub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:Ghost.erased U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i + U32.v (Ghost.reveal len) <= length b /\ compatible_sub b i (Ghost.reveal len) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (Ghost.reveal len))) let msub #a #rrel #rel sub_rel b i len =
true
null
false
match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Ghost.erased", "LowStar.Monotonic.Buffer.Null", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.Buffer", "FStar.UInt32.add" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val msub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:Ghost.erased U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i + U32.v (Ghost.reveal len) <= length b /\ compatible_sub b i (Ghost.reveal len) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (Ghost.reveal len)))
[]
LowStar.Monotonic.Buffer.msub
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
sub_rel: LowStar.Monotonic.Buffer.srel a -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> len: FStar.Ghost.erased FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a rrel sub_rel)
{ "end_col": 45, "end_line": 1297, "start_col": 2, "start_line": 1294 }
FStar.HyperStack.ST.Stack
val moffset (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i <= length b /\ compatible_sub b i (U32.sub (len b) i) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (U32.sub (len b) i)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i)))
val moffset (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i <= length b /\ compatible_sub b i (U32.sub (len b) i) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (U32.sub (len b) i))) let moffset #a #rrel #rel sub_rel b i =
true
null
false
match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i)))
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.Null", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.Buffer", "FStar.UInt32.add", "FStar.Ghost.hide", "FStar.UInt32.sub" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val moffset (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i <= length b /\ compatible_sub b i (U32.sub (len b) i) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (U32.sub (len b) i)))
[]
LowStar.Monotonic.Buffer.moffset
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
sub_rel: LowStar.Monotonic.Buffer.srel a -> b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a rrel sub_rel)
{ "end_col": 87, "end_line": 1303, "start_col": 2, "start_line": 1300 }
Prims.GTot
val g_upd_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) :GTot HS.mem
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s)
val g_upd_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) :GTot HS.mem let g_upd_seq #_ #_ #_ b s h =
false
null
false
if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Seq.Properties.lseq", "LowStar.Monotonic.Buffer.length", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.live", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Monotonic.HyperStack.upd", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "FStar.Seq.Properties.replace_subseq", "FStar.Monotonic.HyperStack.sel" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_upd_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) :GTot HS.mem
[]
LowStar.Monotonic.Buffer.g_upd_seq
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> s: FStar.Seq.Properties.lseq a (LowStar.Monotonic.Buffer.length b) -> h: FStar.Monotonic.HyperStack.mem{LowStar.Monotonic.Buffer.live h b} -> Prims.GTot FStar.Monotonic.HyperStack.mem
{ "end_col": 97, "end_line": 1315, "start_col": 2, "start_line": 1311 }
Prims.GTot
val recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b )
val recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 let recallable (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) : GTot Type0 =
false
null
false
(not (g_is_null b)) ==> (HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "sometrivial" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "Prims.l_and", "FStar.HyperStack.ST.is_eternal_region", "LowStar.Monotonic.Buffer.frameOf", "FStar.Monotonic.HyperStack.is_mm", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "LowStar.Monotonic.Buffer.buffer_compatible" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0
[]
LowStar.Monotonic.Buffer.recallable
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Prims.GTot Type0
{ "end_col": 3, "end_line": 1365, "start_col": 2, "start_line": 1361 }
Prims.Tot
val abuffer' (region: HS.rid) (addr: nat) : Tot Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let abuffer' = ubuffer'
val abuffer' (region: HS.rid) (addr: nat) : Tot Type0 let abuffer' =
false
null
false
ubuffer'
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "LowStar.Monotonic.Buffer.ubuffer'" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let freeable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) = (not (g_is_null b)) /\ HS.is_mm (Buffer?.content b) /\ HS.is_heap_color (HS.color (frameOf b)) /\ U32.v (Buffer?.max_length b) > 0 /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b let free #_ #_ #_ b = HST.rfree (Buffer?.content b) let freeable_length #_ #_ #_ b = () let freeable_disjoint #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) private let alloc_heap_common (#a:Type0) (#rrel:srel a) (r:HST.erid) (len:U32.t{U32.v len > 0}) (s:Seq.seq a{Seq.length s == U32.v len}) (mm:bool) :HST.ST (lmbuffer a rrel rrel (U32.v len)) (requires (fun _ -> True)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ HS.is_mm (Buffer?.content b) == mm /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b)) = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = if mm then HST.ralloc_mm r s else HST.ralloc r s in let b = Buffer len content 0ul (Ghost.hide len) in b let mgcmalloc #_ #_ r init len = alloc_heap_common r len (Seq.create (U32.v len) init) false private let read_sub_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (idx len:U32.t) : HST.ST (Seq.seq a) (requires fun h0 -> live h0 b /\ U32.v len > 0 /\ U32.v idx + U32.v len <= length b) (ensures fun h0 s h1 -> h0 == h1 /\ s == Seq.slice (as_seq h0 b) (U32.v idx) (U32.v idx + U32.v len)) = let open HST in let s = ! (Buffer?.content b) in //the whole allocation unit let s = Seq.slice s (U32.v (Buffer?.idx b)) (U32.v (Buffer?.max_length b)) in //b buffer Seq.slice s (U32.v idx) (U32.v idx + U32.v len) //slice of b let mgcmalloc_and_blit #_ #_ r #_ #_ src id_src len = alloc_heap_common r len (read_sub_buffer src id_src len) false let mmalloc #_ #_ r init len = alloc_heap_common r len (Seq.create (U32.v len) init) true let mmalloc_and_blit #_ #_ r #_ #_ src id_src len = alloc_heap_common r len (read_sub_buffer src id_src len) true let malloca #a #rrel init len = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.salloc (Seq.create (U32.v len) init) in Buffer len content 0ul (Ghost.hide len) let malloca_and_blit #a #rrel #_ #_ src id_src len = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.salloc (read_sub_buffer src id_src len) in Buffer len content 0ul (Ghost.hide len) let malloca_of_list #a #rrel init = let len = U32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.salloc s in Buffer len content 0ul (Ghost.hide len) let mgcmalloc_of_list #a #rrel r init = let len = U32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.ralloc r s in Buffer len content 0ul (Ghost.hide len) let mmalloc_drgn #a #rrel d init len = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content : HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.ralloc_drgn d (Seq.create (U32.v len) init) in Buffer len content 0ul len let mmalloc_drgn_mm #a #rrel d init len = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content : HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.ralloc_drgn_mm d (Seq.create (U32.v len) init) in Buffer len content 0ul len let mmalloc_drgn_and_blit #a #rrel #_ #_ d src id_src len = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = HST.ralloc_drgn d (read_sub_buffer src id_src len) in Buffer len content 0ul len #push-options "--max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --z3rlimit 64" let blit #a #rrel1 #rrel2 #rel1 #rel2 src idx_src dst idx_dst len = let open HST in match src, dst with | Buffer _ _ _ _, Buffer _ _ _ _ -> if len = 0ul then () else let h = get () in let Buffer max_length1 content1 idx1 length1 = src in let Buffer max_length2 content2 idx2 length2 = dst in let s_full1 = !content1 in let s_full2 = !content2 in let s1 = Seq.slice s_full1 (U32.v idx1) (U32.v max_length1) in let s2 = Seq.slice s_full2 (U32.v idx2) (U32.v max_length2) in let s_sub_src = Seq.slice s1 (U32.v idx_src) (U32.v idx_src + U32.v len) in let s2' = Seq.replace_subseq s2 (U32.v idx_dst) (U32.v idx_dst + U32.v len) s_sub_src in let s_full2' = Seq.replace_subseq s_full2 (U32.v idx2) (U32.v max_length2) s2' in assert (Seq.equal (Seq.slice s2' (U32.v idx_dst) (U32.v idx_dst + U32.v len)) s_sub_src); assert (Seq.equal (Seq.slice s2' 0 (U32.v idx_dst)) (Seq.slice s2 0 (U32.v idx_dst))); assert (Seq.equal (Seq.slice s2' (U32.v idx_dst + U32.v len) (length dst)) (Seq.slice s2 (U32.v idx_dst + U32.v len) (length dst))); // AF: Needed to trigger the preorder relation. A bit verbose because the second sequence // has a ghost computation (U32.v (Ghost.reveal length)) assert (s_full2' `Seq.equal` Seq.replace_subseq s_full2 (U32.v idx2) (U32.v idx2 + U32.v length2) (Seq.replace_subseq (as_seq h dst) (U32.v idx_dst) (U32.v idx_dst + U32.v len) (Seq.slice (as_seq h src) (U32.v idx_src) (U32.v idx_src + U32.v len) ) ) ); content2 := s_full2'; let h1 = get () in assert (s_full2' `Seq.equal` Seq.replace_subseq s_full2 (U32.v idx2) (U32.v idx2 + U32.v length2) (Seq.slice s2' 0 (U32.v length2))); assert (h1 == g_upd_seq dst (Seq.slice s2' 0 (U32.v length2)) h); g_upd_seq_as_seq dst (Seq.slice s2' 0 (U32.v length2)) h //for modifies clause | _, _ -> () #push-options "--z3rlimit 128 --max_fuel 0 --max_ifuel 1 --initial_ifuel 1 --z3cliopt smt.qi.EAGER_THRESHOLD=4" let fill' (#t:Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) (z:t) (len:U32.t) : HST.Stack unit (requires (fun h -> live h b /\ U32.v len <= length b /\ rel (as_seq h b) (Seq.replace_subseq (as_seq h b) 0 (U32.v len) (Seq.create (U32.v len) z)) )) (ensures (fun h0 _ h1 -> modifies (loc_buffer b) h0 h1 /\ live h1 b /\ Seq.slice (as_seq h1 b) 0 (U32.v len) `Seq.equal` Seq.create (U32.v len) z /\ Seq.slice (as_seq h1 b) (U32.v len) (length b) `Seq.equal` Seq.slice (as_seq h0 b) (U32.v len) (length b) )) = let open HST in if len = 0ul then () else begin let h = get () in let Buffer max_length content idx length = b in let s_full = !content in let s = Seq.slice s_full (U32.v idx) (U32.v max_length) in let s_src = Seq.create (U32.v len) z in let s' = Seq.replace_subseq s 0 (U32.v len) s_src in let s_full' = Seq.replace_subseq s_full (U32.v idx) (U32.v idx + U32.v len) s_src in // AF: Needed to trigger the preorder relation. A bit verbose because the second sequence // has a ghost computation (U32.v (Ghost.reveal length)) assert (s_full' `Seq.equal` Seq.replace_subseq s_full (U32.v idx) (U32.v idx + U32.v length) (Seq.replace_subseq (Seq.slice s_full (U32.v idx) (U32.v idx + U32.v length)) 0 (U32.v len) s_src)); content := s_full'; let h' = HST.get () in assert (s_full' `Seq.equal` Seq.replace_subseq s_full (U32.v idx) (U32.v idx + U32.v length) (Seq.slice s' 0 (U32.v length))); assert (h' == g_upd_seq b (Seq.slice s' 0 (U32.v length)) h); g_upd_seq_as_seq b (Seq.slice s' 0 (U32.v length)) h //for modifies clause end #pop-options let fill #t #rrel #rel b z len = fill' b z len
false
true
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val abuffer' (region: HS.rid) (addr: nat) : Tot Type0
[]
LowStar.Monotonic.Buffer.abuffer'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
region: FStar.Monotonic.HyperHeap.rid -> addr: Prims.nat -> Type0
{ "end_col": 23, "end_line": 1650, "start_col": 15, "start_line": 1650 }
Prims.Tot
val region_lifetime_buf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b )
val region_lifetime_buf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : Type0 let region_lifetime_buf #_ #_ #_ b =
false
null
false
(not (g_is_null b)) ==> (HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "Prims.l_and", "FStar.Monotonic.HyperStack.is_heap_color", "FStar.Monotonic.HyperHeap.color", "LowStar.Monotonic.Buffer.frameOf", "FStar.Monotonic.HyperStack.is_mm", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "LowStar.Monotonic.Buffer.buffer_compatible" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b )
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_lifetime_buf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : Type0
[]
LowStar.Monotonic.Buffer.region_lifetime_buf
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> Type0
{ "end_col": 3, "end_line": 1372, "start_col": 2, "start_line": 1368 }
FStar.Pervasives.Lemma
val lemma_g_upd_with_same_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (g_upd_seq b (as_seq h b) h == h))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b)
val lemma_g_upd_with_same_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (g_upd_seq b (as_seq h b) h == h)) let lemma_g_upd_with_same_seq #_ #_ #_ b h =
false
null
true
if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.uu___is_Null", "Prims.bool", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Monotonic.HyperStack.lemma_heap_equality_upd_with_sel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.replace_subseq", "FStar.Seq.Base.slice", "FStar.Monotonic.HyperStack.sel" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_g_upd_with_same_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (g_upd_seq b (as_seq h b) h == h))
[]
LowStar.Monotonic.Buffer.lemma_g_upd_with_same_seq
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.live h b) (ensures LowStar.Monotonic.Buffer.g_upd_seq b (LowStar.Monotonic.Buffer.as_seq h b) h == h)
{ "end_col": 61, "end_line": 1324, "start_col": 2, "start_line": 1318 }
FStar.Pervasives.Lemma
val region_lifetime_sub (#a:Type0) (#rrel #rel #subrel:srel a) (b0:mbuffer a rrel rel) (b1:mbuffer a rrel subrel) : Lemma (requires rrel_rel_always_compatible rrel subrel) (ensures (region_lifetime_buf b0 /\ (exists i len. U32.v i + U32.v len <= length b0 /\ b1 == mgsub subrel b0 i len)) ==> region_lifetime_buf b1)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel)
val region_lifetime_sub (#a:Type0) (#rrel #rel #subrel:srel a) (b0:mbuffer a rrel rel) (b1:mbuffer a rrel subrel) : Lemma (requires rrel_rel_always_compatible rrel subrel) (ensures (region_lifetime_buf b0 /\ (exists i len. U32.v i + U32.v len <= length b0 /\ b1 == mgsub subrel b0 i len)) ==> region_lifetime_buf b1) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 =
false
null
true
match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len: nat) (i: nat) (j: nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "Prims._assert", "Prims.l_Forall", "Prims.nat", "Prims.l_and", "LowStar.Monotonic.Buffer.compatible_sub_preorder", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b )
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val region_lifetime_sub (#a:Type0) (#rrel #rel #subrel:srel a) (b0:mbuffer a rrel rel) (b1:mbuffer a rrel subrel) : Lemma (requires rrel_rel_always_compatible rrel subrel) (ensures (region_lifetime_buf b0 /\ (exists i len. U32.v i + U32.v len <= length b0 /\ b1 == mgsub subrel b0 i len)) ==> region_lifetime_buf b1)
[]
LowStar.Monotonic.Buffer.region_lifetime_sub
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b0: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> b1: LowStar.Monotonic.Buffer.mbuffer a rrel subrel -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.rrel_rel_always_compatible rrel subrel) (ensures LowStar.Monotonic.Buffer.region_lifetime_buf b0 /\ (exists (i: FStar.UInt32.t) (len: FStar.UInt32.t). FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b0 /\ b1 == LowStar.Monotonic.Buffer.mgsub subrel b0 i len) ==> LowStar.Monotonic.Buffer.region_lifetime_buf b1)
{ "end_col": 110, "end_line": 1378, "start_col": 2, "start_line": 1375 }
Prims.Tot
val witnessed (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Type0
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p)
val witnessed (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Type0 let witnessed #_ #rrel #rel b p =
false
null
false
match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "total" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.spred", "FStar.Seq.Base.empty", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.token_p", "LowStar.Monotonic.Buffer.spred_as_mempred" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val witnessed (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Type0
[]
LowStar.Monotonic.Buffer.witnessed
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.spred a -> Type0
{ "end_col": 46, "end_line": 1409, "start_col": 2, "start_line": 1406 }
FStar.HyperStack.ST.Stack
val upd' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) :HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> h' == g_upd b (U32.v i) v h))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf
val upd' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) :HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> h' == g_upd b (U32.v i) v h)) let upd' #_ #_ #_ b i v =
true
null
false
let open HST in let h = get () in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v))); content := sf
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.op_Colon_Equals", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.replace_subseq", "FStar.Seq.Base.upd", "LowStar.Monotonic.Buffer.as_seq", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "FStar.HyperStack.ST.op_Bang", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val upd' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) :HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> h' == g_upd b (U32.v i) v h))
[]
LowStar.Monotonic.Buffer.upd'
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> v: a -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 15, "end_line": 1358, "start_col": 2, "start_line": 1349 }
FStar.HyperStack.ST.ST
val witness_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> p (as_seq h0 b) /\ p `stable_on` rel)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `witnessed` p))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p)
val witness_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> p (as_seq h0 b) /\ p `stable_on` rel)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `witnessed` p)) let witness_p #a #rrel #rel b p =
true
null
false
match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.spred", "Prims.unit", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.witness_p", "LowStar.Monotonic.Buffer.spred_as_mempred", "Prims._assert", "FStar.HyperStack.ST.stable_on", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "LowStar.Monotonic.Buffer.lemma_stable_on_rel_is_stable_on_rrel" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val witness_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> p (as_seq h0 b) /\ p `stable_on` rel)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `witnessed` p))
[]
LowStar.Monotonic.Buffer.witness_p
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.spred a -> FStar.HyperStack.ST.ST Prims.unit
{ "end_col": 48, "end_line": 1430, "start_col": 2, "start_line": 1424 }
FStar.HyperStack.ST.ST
val recall_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `witnessed` p)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ p (as_seq h0 b)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p)
val recall_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `witnessed` p)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ p (as_seq h0 b))) let recall_p #_ #_ #_ b p =
true
null
false
match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.spred", "Prims.unit", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.recall_p", "LowStar.Monotonic.Buffer.spred_as_mempred" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val recall_p (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `witnessed` p)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ p (as_seq h0 b)))
[]
LowStar.Monotonic.Buffer.recall_p
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.spred a -> FStar.HyperStack.ST.ST Prims.unit
{ "end_col": 71, "end_line": 1435, "start_col": 2, "start_line": 1433 }
FStar.HyperStack.ST.ST
val free (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> (not (g_is_null b)) /\ Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free #_ #_ #_ b = HST.rfree (Buffer?.content b)
val free (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> (not (g_is_null b)) /\ Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b))) let free #_ #_ #_ b =
true
null
false
HST.rfree (Buffer?.content b)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.HyperStack.ST.rfree", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.srel_to_lsrel", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let freeable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) = (not (g_is_null b)) /\ HS.is_mm (Buffer?.content b) /\ HS.is_heap_color (HS.color (frameOf b)) /\ U32.v (Buffer?.max_length b) > 0 /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> (not (g_is_null b)) /\ Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b)))
[]
LowStar.Monotonic.Buffer.free
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> FStar.HyperStack.ST.ST Prims.unit
{ "end_col": 51, "end_line": 1458, "start_col": 22, "start_line": 1458 }
FStar.HyperStack.ST.Stack
val witnessed_functorial_st (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : HST.Stack unit (requires fun h -> live h b1 /\ U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures fun h0 _ h1 -> h0 == h1 /\ witnessed b2 s2)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2)
val witnessed_functorial_st (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : HST.Stack unit (requires fun h -> live h b1 /\ U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures fun h0 _ h1 -> h0 == h1 /\ witnessed b2 s2) let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 =
true
null
false
match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.spred", "FStar.Pervasives.Native.Mktuple2", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.token_functoriality", "LowStar.Monotonic.Buffer.spred_as_mempred", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val witnessed_functorial_st (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : HST.Stack unit (requires fun h -> live h b1 /\ U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures fun h0 _ h1 -> h0 == h1 /\ witnessed b2 s2)
[]
LowStar.Monotonic.Buffer.witnessed_functorial_st
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mbuffer a rrel rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a rrel rel2 -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> s1: LowStar.Monotonic.Buffer.spred a -> s2: LowStar.Monotonic.Buffer.spred a -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 85, "end_line": 1448, "start_col": 2, "start_line": 1445 }
FStar.Pervasives.Lemma
val witnessed_functorial (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : Lemma (requires rrel_rel_always_compatible rrel rel1 /\ //e.g. trivial_preorder, immutable preorder etc. U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ //the underlying allocation unit for b1 and b2 must be the same witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures witnessed b2 s2)
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2)
val witnessed_functorial (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : Lemma (requires rrel_rel_always_compatible rrel rel1 /\ //e.g. trivial_preorder, immutable preorder etc. U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ //the underlying allocation unit for b1 and b2 must be the same witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures witnessed b2 s2) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 =
false
null
true
match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len: nat) (i: nat) (j: nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.spred", "FStar.Pervasives.Native.Mktuple2", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq", "FStar.Monotonic.HyperStack.empty_mem", "FStar.Seq.Base.empty", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.HyperStack.ST.token_functoriality", "LowStar.Monotonic.Buffer.spred_as_mempred", "Prims.unit", "Prims.l_Forall", "Prims.nat", "Prims.l_and", "LowStar.Monotonic.Buffer.compatible_sub_preorder" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p)
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val witnessed_functorial (#a:Type0) (#rrel #rel1 #rel2:srel a) (b1:mbuffer a rrel rel1) (b2:mbuffer a rrel rel2) (i len:U32.t) (s1 s2:spred a) : Lemma (requires rrel_rel_always_compatible rrel rel1 /\ //e.g. trivial_preorder, immutable preorder etc. U32.v i + U32.v len <= length b1 /\ b2 == mgsub rel2 b1 i len /\ //the underlying allocation unit for b1 and b2 must be the same witnessed b1 s1 /\ (forall h. s1 (as_seq h b1) ==> s2 (as_seq h b2))) (ensures witnessed b2 s2)
[]
LowStar.Monotonic.Buffer.witnessed_functorial
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mbuffer a rrel rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a rrel rel2 -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> s1: LowStar.Monotonic.Buffer.spred a -> s2: LowStar.Monotonic.Buffer.spred a -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.rrel_rel_always_compatible rrel rel1 /\ FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b1 /\ b2 == LowStar.Monotonic.Buffer.mgsub rel2 b1 i len /\ LowStar.Monotonic.Buffer.witnessed b1 s1 /\ (forall (h: FStar.Monotonic.HyperStack.mem). s1 (LowStar.Monotonic.Buffer.as_seq h b1) ==> s2 (LowStar.Monotonic.Buffer.as_seq h b2)) ) (ensures LowStar.Monotonic.Buffer.witnessed b2 s2)
{ "end_col": 85, "end_line": 1442, "start_col": 2, "start_line": 1438 }
FStar.Pervasives.Lemma
val lemma_stable_on_rel_is_stable_on_rrel (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux
val lemma_stable_on_rel_is_stable_on_rrel (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) let lemma_stable_on_rel_is_stable_on_rrel (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) =
false
null
true
let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1: HS.mem) : Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.spred", "FStar.UInt32.t", "FStar.HyperStack.ST.mreference", "FStar.Seq.Properties.lseq", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.srel_to_lsrel", "FStar.Ghost.erased", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Ghost.reveal", "FStar.Classical.forall_intro_2", "FStar.Monotonic.HyperStack.mem", "Prims.l_imp", "Prims.l_and", "FStar.Monotonic.HyperStack.sel", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Classical.arrow_to_impl", "LowStar.Monotonic.Buffer.buffer_compatible", "Prims._assert", "LowStar.Monotonic.Buffer.as_seq", "FStar.HyperStack.ST.mem_predicate", "LowStar.Monotonic.Buffer.spred_as_mempred", "LowStar.Monotonic.Buffer.uu___is_Buffer", "LowStar.Monotonic.Buffer.stable_on", "FStar.HyperStack.ST.stable_on", "LowStar.Monotonic.Buffer.__proj__Buffer__item__max_length", "LowStar.Monotonic.Buffer.__proj__Buffer__item__content" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel))
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_stable_on_rel_is_stable_on_rrel (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (p: spred a) : Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b)))
[]
LowStar.Monotonic.Buffer.lemma_stable_on_rel_is_stable_on_rrel
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> p: LowStar.Monotonic.Buffer.spred a -> FStar.Pervasives.Lemma (requires Buffer? b /\ LowStar.Monotonic.Buffer.stable_on p rel) (ensures FStar.HyperStack.ST.stable_on (LowStar.Monotonic.Buffer.spred_as_mempred b p) (Buffer?.content b))
{ "end_col": 32, "end_line": 1421, "start_col": 3, "start_line": 1415 }
FStar.Pervasives.Lemma
val freeable_disjoint (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires (freeable b1 /\ length b2 > 0 /\ disjoint b1 b2)) (ensures (frameOf b1 <> frameOf b2 \/ as_addr b1 <> as_addr b2))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freeable_disjoint #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
val freeable_disjoint (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires (freeable b1 /\ length b2 > 0 /\ disjoint b1 b2)) (ensures (frameOf b1 <> frameOf b2 \/ as_addr b1 <> as_addr b2)) let freeable_disjoint #_ #_ #_ #_ #_ #_ b1 b2 =
false
null
true
if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2)
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "Prims.nat", "LowStar.Monotonic.Buffer.as_addr", "FStar.ModifiesGen.loc_disjoint_aloc_elim", "LowStar.Monotonic.Buffer.ubuffer", "LowStar.Monotonic.Buffer.cls", "LowStar.Monotonic.Buffer.ubuffer_of_buffer", "Prims.bool", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let freeable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) = (not (g_is_null b)) /\ HS.is_mm (Buffer?.content b) /\ HS.is_heap_color (HS.color (frameOf b)) /\ U32.v (Buffer?.max_length b) > 0 /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b let free #_ #_ #_ b = HST.rfree (Buffer?.content b) let freeable_length #_ #_ #_ b = ()
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freeable_disjoint (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires (freeable b1 /\ length b2 > 0 /\ disjoint b1 b2)) (ensures (frameOf b1 <> frameOf b2 \/ as_addr b1 <> as_addr b2))
[]
LowStar.Monotonic.Buffer.freeable_disjoint
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b1: LowStar.Monotonic.Buffer.mbuffer a1 rrel1 rel1 -> b2: LowStar.Monotonic.Buffer.mbuffer a2 rrel2 rel2 -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.freeable b1 /\ LowStar.Monotonic.Buffer.length b2 > 0 /\ LowStar.Monotonic.Buffer.disjoint b1 b2) (ensures LowStar.Monotonic.Buffer.frameOf b1 <> LowStar.Monotonic.Buffer.frameOf b2 \/ LowStar.Monotonic.Buffer.as_addr b1 <> LowStar.Monotonic.Buffer.as_addr b2)
{ "end_col": 139, "end_line": 1464, "start_col": 2, "start_line": 1463 }
FStar.HyperStack.ST.ST
val mmalloc (#a:Type0) (#rrel:srel a) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:lmbuffer a rrel rrel (U32.v len){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
[ { "abbrev": true, "full_module": "FStar.ModifiesGen", "short_module": "MG" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mmalloc #_ #_ r init len = alloc_heap_common r len (Seq.create (U32.v len) init) true
val mmalloc (#a:Type0) (#rrel:srel a) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:lmbuffer a rrel rrel (U32.v len){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) let mmalloc #_ #_ r init len =
true
null
false
alloc_heap_common r len (Seq.create (U32.v len) init) true
{ "checked_file": "LowStar.Monotonic.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowStar.Monotonic.Buffer.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.alloc_heap_common", "FStar.Seq.Base.create", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.lmbuffer", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST private let srel_to_lsrel (#a:Type0) (len:nat) (pre:srel a) :P.preorder (Seq.lseq a len) = pre (* * Counterpart of compatible_sub from the fsti but using sequences * * The patterns are guarded tightly, the proof of transitivity gets quite flaky otherwise * The cost is that we have to additional asserts as triggers *) let compatible_sub_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = compatible_subseq_preorder len rel i j sub_rel (* * Reflexivity of the compatibility relation *) let lemma_seq_sub_compatilibity_is_reflexive (#a:Type0) (len:nat) (rel:srel a) :Lemma (compatible_sub_preorder len rel 0 len rel) = assert (forall (s1 s2:Seq.seq a). Seq.length s1 == Seq.length s2 ==> Seq.equal (Seq.replace_subseq s1 0 (Seq.length s1) s2) s2) (* * Transitivity of the compatibility relation * * i2 and j2 are relative offsets within [i1, j1) (i.e. assuming i1 = 0) *) let lemma_seq_sub_compatibility_is_transitive (#a:Type0) (len:nat) (rel:srel a) (i1 j1:nat) (rel1:srel a) (i2 j2:nat) (rel2:srel a) :Lemma (requires (i1 <= j1 /\ j1 <= len /\ i2 <= j2 /\ j2 <= j1 - i1 /\ compatible_sub_preorder len rel i1 j1 rel1 /\ compatible_sub_preorder (j1 - i1) rel1 i2 j2 rel2)) (ensures (compatible_sub_preorder len rel (i1 + i2) (i1 + j2) rel2)) = let t1 (s1 s2:Seq.seq a) = Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2 in let t2 (s1 s2:Seq.seq a) = t1 s1 s2 /\ rel2 (Seq.slice s1 (i1 + i2) (i1 + j2)) (Seq.slice s2 (i1 + i2) (i1 + j2)) in let aux0 (s1 s2:Seq.seq a) :Lemma (t1 s1 s2 ==> t2 s1 s2) = Classical.arrow_to_impl #(t1 s1 s2) #(t2 s1 s2) (fun _ -> assert (rel1 (Seq.slice s1 i1 j1) (Seq.slice s2 i1 j1)); assert (rel2 (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice (Seq.slice s2 i1 j1) i2 j2)); assert (Seq.equal (Seq.slice (Seq.slice s1 i1 j1) i2 j2) (Seq.slice s1 (i1 + i2) (i1 + j2))); assert (Seq.equal (Seq.slice (Seq.slice s2 i1 j1) i2 j2) (Seq.slice s2 (i1 + i2) (i1 + j2)))) in let t1 (s s2:Seq.seq a) = Seq.length s == len /\ Seq.length s2 == j2 - i2 /\ rel2 (Seq.slice s (i1 + i2) (i1 + j2)) s2 in let t2 (s s2:Seq.seq a) = t1 s s2 /\ rel s (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2) in let aux1 (s s2:Seq.seq a) :Lemma (t1 s s2 ==> t2 s s2) = Classical.arrow_to_impl #(t1 s s2) #(t2 s s2) (fun _ -> assert (Seq.equal (Seq.slice s (i1 + i2) (i1 + j2)) (Seq.slice (Seq.slice s i1 j1) i2 j2)); assert (rel1 (Seq.slice s i1 j1) (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)); assert (rel s (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2))); assert (Seq.equal (Seq.replace_subseq s i1 j1 (Seq.replace_subseq (Seq.slice s i1 j1) i2 j2 s2)) (Seq.replace_subseq s (i1 + i2) (i1 + j2) s2))) in Classical.forall_intro_2 aux0; Classical.forall_intro_2 aux1 noeq type mbuffer (a:Type0) (rrel:srel a) (rel:srel a) :Type0 = | Null | Buffer: max_length:U32.t -> content:HST.mreference (Seq.lseq a (U32.v max_length)) (srel_to_lsrel (U32.v max_length) rrel) -> idx:U32.t -> length:Ghost.erased U32.t{U32.v idx + U32.v (Ghost.reveal length) <= U32.v max_length} -> mbuffer a rrel rel let g_is_null #_ #_ #_ b = Null? b let mnull #_ #_ #_ = Null let null_unique #_ #_ #_ _ = () let unused_in #_ #_ #_ b h = match b with | Null -> False | Buffer _ content _ _ -> content `HS.unused_in` h let buffer_compatible (#t: Type) (#rrel #rel: srel t) (b: mbuffer t rrel rel) : GTot Type0 = match b with | Null -> True | Buffer max_length content idx length -> compatible_sub_preorder (U32.v max_length) rrel (U32.v idx) (U32.v idx + U32.v length) rel //proof of compatibility let live #_ #rrel #rel h b = match b with | Null -> True | Buffer max_length content idx length -> h `HS.contains` content /\ buffer_compatible b let live_null _ _ _ _ = () let live_not_unused_in #_ #_ #_ _ _ = () let lemma_live_equal_mem_domains #_ #_ #_ _ _ _ = () let frameOf #_ #_ #_ b = if Null? b then HS.root else HS.frameOf (Buffer?.content b) let as_addr #_ #_ #_ b = if g_is_null b then 0 else HS.as_addr (Buffer?.content b) let unused_in_equiv #_ #_ #_ b h = if g_is_null b then Heap.not_addr_unused_in_nullptr (Map.sel (HS.get_hmap h) HS.root) else () let live_region_frameOf #_ #_ #_ _ _ = () let len #_ #_ #_ b = match b with | Null -> 0ul | Buffer _ _ _ len -> len let len_null a _ _ = () let as_seq #_ #_ #_ h b = match b with | Null -> Seq.empty | Buffer max_len content idx len -> Seq.slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len) let length_as_seq #_ #_ #_ _ _ = () let mbuffer_injectivity_in_first_preorder () = () let mgsub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content idx length -> Buffer max_len content (U32.add idx i) (Ghost.hide len) let live_gsub #_ #rrel #rel _ b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> let prf () : Lemma (requires (buffer_compatible b)) (ensures (buffer_compatible (mgsub sub_rel b i len))) = lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel in Classical.move_requires prf () let gsub_is_null #_ #_ #_ _ _ _ _ = () let len_gsub #_ #_ #_ _ _ _ _ = () let frameOf_gsub #_ #_ #_ _ _ _ _ = () let as_addr_gsub #_ #_ #_ _ _ _ _ = () let mgsub_inj #_ #_ #_ _ _ _ _ _ _ _ _ = () #push-options "--z3rlimit 20" let gsub_gsub #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let prf () : Lemma (requires (compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2)) (ensures (compatible_sub b (U32.add i1 i2) len2 sub_rel2)) = lemma_seq_sub_compatibility_is_transitive (length b) rel (U32.v i1) (U32.v i1 + U32.v len1) sub_rel1 (U32.v i2) (U32.v i2 + U32.v len2) sub_rel2 in Classical.move_requires prf () #pop-options /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. let gsub_zero_length #_ #_ #rel b = lemma_seq_sub_compatilibity_is_reflexive (length b) rel let as_seq_gsub #_ #_ #_ h b i len _ = match b with | Null -> () | Buffer _ content idx len0 -> Seq.slice_slice (HS.sel h content) (U32.v idx) (U32.v idx + U32.v len0) (U32.v i) (U32.v i + U32.v len) let lemma_equal_instances_implies_equal_types (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b) : Lemma (requires s1 === s2) (ensures a == b) = Seq.lemma_equal_instances_implies_equal_types () let s_lemma_equal_instances_implies_equal_types (_:unit) : Lemma (forall (a:Type) (b:Type) (s1:Seq.seq a) (s2:Seq.seq b). {:pattern (has_type s1 (Seq.seq a)); (has_type s2 (Seq.seq b)) } s1 === s2 ==> a == b) = Seq.lemma_equal_instances_implies_equal_types() let live_same_addresses_equal_types_and_preorders' (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma (requires frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) (ensures a1 == a2 /\ rrel1 == rrel2) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); let s1 : Seq.seq a1 = as_seq h b1 in assert (Seq.seq a1 == Seq.seq a2); let s1' : Seq.seq a2 = coerce_eq _ s1 in assert (s1 === s1'); lemma_equal_instances_implies_equal_types a1 a2 s1 s1' let live_same_addresses_equal_types_and_preorders #_ #_ #_ #_ #_ #_ b1 b2 h = Classical.move_requires (live_same_addresses_equal_types_and_preorders' b1 b2) h (* Untyped view of buffers, used only to implement the generic modifies clause. DO NOT USE in client code. *) noeq type ubuffer_ : Type0 = { b_max_length: nat; b_offset: nat; b_length: nat; b_is_mm: bool; } val ubuffer' (region: HS.rid) (addr: nat) : Tot Type0 let ubuffer' region addr = (x: ubuffer_ { x.b_offset + x.b_length <= x.b_max_length } ) let ubuffer (region: HS.rid) (addr: nat) : Tot Type0 = G.erased (ubuffer' region addr) let ubuffer_of_buffer' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) = if Null? b then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else Ghost.hide ({ b_max_length = U32.v (Buffer?.max_length b); b_offset = U32.v (Buffer?.idx b); b_length = U32.v (Buffer?.length b); b_is_mm = HS.is_mm (Buffer?.content b); }) let ubuffer_preserved' (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 = forall (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) . ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) val ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h h' : HS.mem) : GTot Type0 let ubuffer_preserved = ubuffer_preserved' let ubuffer_preserved_intro (#r:HS.rid) (#a:nat) (b:ubuffer r a) (h h' :HS.mem) (f0: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires (frameOf b' == r /\ as_addr b' == a /\ live h b')) (ensures (live h' b')) )) (f: ( (t':Type0) -> (rrel:srel t') -> (rel:srel t') -> (b':mbuffer t' rrel rel) -> Lemma (requires ( frameOf b' == r /\ as_addr b' == a /\ live h b' /\ live h' b' /\ Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len )))) (ensures ( Buffer? b' /\ ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len /\ Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))) )) : Lemma (ubuffer_preserved b h h') = let g' (t':Type0) (rrel rel:srel t') (b':mbuffer t' rrel rel) : Lemma ((frameOf b' == r /\ as_addr b' == a) ==> ( (live h b' ==> live h' b') /\ ( ((live h b' /\ live h' b' /\ Buffer? b') ==> ( let ({ b_max_length = bmax; b_offset = boff; b_length = blen }) = Ghost.reveal b in let Buffer max _ idx len = b' in ( U32.v max == bmax /\ U32.v idx <= boff /\ boff + blen <= U32.v idx + U32.v len ) ==> Seq.equal (Seq.slice (as_seq h b') (boff - U32.v idx) (boff - U32.v idx + blen)) (Seq.slice (as_seq h' b') (boff - U32.v idx) (boff - U32.v idx + blen)) ))))) = Classical.move_requires (f0 t' rrel rel) b'; Classical.move_requires (f t' rrel rel) b' in Classical.forall_intro_4 g' val ubuffer_preserved_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h : HS.mem) : Lemma (ubuffer_preserved b h h) let ubuffer_preserved_refl #r #a b h = () val ubuffer_preserved_trans (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2 h3 : HS.mem) : Lemma (requires (ubuffer_preserved b h1 h2 /\ ubuffer_preserved b h2 h3)) (ensures (ubuffer_preserved b h1 h3)) let ubuffer_preserved_trans #r #a b h1 h2 h3 = () val same_mreference_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) (f: ( (a' : Type) -> (pre: Preorder.preorder a') -> (r': HS.mreference a' pre) -> Lemma (requires (h1 `HS.contains` r' /\ r == HS.frameOf r' /\ a == HS.as_addr r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) )) : Lemma (ubuffer_preserved b h1 h2) let same_mreference_ubuffer_preserved #r #a b h1 h2 f = ubuffer_preserved_intro b h1 h2 (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) (fun t' _ _ b' -> if Null? b' then () else f _ _ (Buffer?.content b') ) val addr_unused_in_ubuffer_preserved (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (HS.live_region h1 r ==> a `Heap.addr_unused_in` (Map.sel (HS.get_hmap h1) r))) (ensures (ubuffer_preserved b h1 h2)) let addr_unused_in_ubuffer_preserved #r #a b h1 h2 = () val ubuffer_of_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) :Tot (ubuffer (frameOf b) (as_addr b)) let ubuffer_of_buffer #_ #_ #_ b = ubuffer_of_buffer' b let ubuffer_of_buffer_from_to_none_cond #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot bool = g_is_null b || U32.v to < U32.v from || U32.v from > length b let ubuffer_of_buffer_from_to #a #rrel #rel (b: mbuffer a rrel rel) from to : GTot (ubuffer (frameOf b) (as_addr b)) = if ubuffer_of_buffer_from_to_none_cond b from to then Ghost.hide ({ b_max_length = 0; b_offset = 0; b_length = 0; b_is_mm = false; }) else let to' = if U32.v to > length b then length b else U32.v to in let b1 = ubuffer_of_buffer b in Ghost.hide ({ Ghost.reveal b1 with b_offset = (Ghost.reveal b1).b_offset + U32.v from; b_length = to' - U32.v from }) val ubuffer_preserved_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' /\ live h b)) (ensures (live h' b /\ as_seq h b == as_seq h' b)) let ubuffer_preserved_elim #_ #_ #_ _ _ _ = () val ubuffer_preserved_from_to_elim (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h h' : HS.mem) :Lemma (requires (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) h h' /\ live h b)) (ensures (live h' b /\ ((U32.v from <= U32.v to /\ U32.v to <= length b) ==> Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to)))) let ubuffer_preserved_from_to_elim #_ #_ #_ _ _ _ _ _ = () let unused_in_ubuffer_preserved (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h h':HS.mem) : Lemma (requires (b `unused_in` h)) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h')) = Classical.move_requires (fun b -> live_not_unused_in h b) b; live_null a rrel rel h; null_unique b; unused_in_equiv b h; addr_unused_in_ubuffer_preserved #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) h h' let ubuffer_includes' (larger smaller: ubuffer_) : GTot Type0 = larger.b_is_mm == smaller.b_is_mm /\ larger.b_max_length == smaller.b_max_length /\ larger.b_offset <= smaller.b_offset /\ smaller.b_offset + smaller.b_length <= larger.b_offset + larger.b_length (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_includes0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (larger:ubuffer r1 a1) (smaller:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_includes' (G.reveal larger) (G.reveal smaller) val ubuffer_includes (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) : GTot Type0 let ubuffer_includes #r #a larger smaller = ubuffer_includes0 larger smaller val ubuffer_includes_refl (#r: HS.rid) (#a: nat) (b: ubuffer r a) : Lemma (b `ubuffer_includes` b) let ubuffer_includes_refl #r #a b = () val ubuffer_includes_trans (#r: HS.rid) (#a: nat) (b1 b2 b3: ubuffer r a) : Lemma (requires (b1 `ubuffer_includes` b2 /\ b2 `ubuffer_includes` b3)) (ensures (b1 `ubuffer_includes` b3)) let ubuffer_includes_trans #r #a b1 b2 b3 = () (* * TODO: not sure how to make this lemma work with preorders * it creates a buffer larger' in the proof * we need a compatible preorder for that * may be take that as an argument? *) (*val ubuffer_includes_ubuffer_preserved (#r: HS.rid) (#a: nat) (larger smaller: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (larger `ubuffer_includes` smaller /\ ubuffer_preserved larger h1 h2)) (ensures (ubuffer_preserved smaller h1 h2)) let ubuffer_includes_ubuffer_preserved #r #a larger smaller h1 h2 = ubuffer_preserved_intro smaller h1 h2 (fun t' b' -> if Null? b' then () else let (Buffer max_len content idx' len') = b' in let idx = U32.uint_to_t (G.reveal larger).b_offset in let len = U32.uint_to_t (G.reveal larger).b_length in let larger' = Buffer max_len content idx len in assert (b' == gsub larger' (U32.sub idx' idx) len'); ubuffer_preserved_elim larger' h1 h2 )*) let ubuffer_disjoint' (x1 x2: ubuffer_) : GTot Type0 = if x1.b_length = 0 || x2.b_length = 0 then True else (x1.b_max_length == x2.b_max_length /\ (x1.b_offset + x1.b_length <= x2.b_offset \/ x2.b_offset + x2.b_length <= x1.b_offset)) (* TODO: added this because of #606, now that it is fixed, we may not need it anymore *) let ubuffer_disjoint0 (#r1 #r2:HS.rid) (#a1 #a2:nat) (b1:ubuffer r1 a1) (b2:ubuffer r2 a2) = r1 == r2 /\ a1 == a2 /\ ubuffer_disjoint' (G.reveal b1) (G.reveal b2) val ubuffer_disjoint (#r:HS.rid) (#a:nat) (b1 b2:ubuffer r a) :GTot Type0 let ubuffer_disjoint #r #a b1 b2 = ubuffer_disjoint0 b1 b2 val ubuffer_disjoint_sym (#r:HS.rid) (#a: nat) (b1 b2:ubuffer r a) :Lemma (ubuffer_disjoint b1 b2 <==> ubuffer_disjoint b2 b1) let ubuffer_disjoint_sym #_ #_ b1 b2 = () val ubuffer_disjoint_includes (#r: HS.rid) (#a: nat) (larger1 larger2: ubuffer r a) (smaller1 smaller2: ubuffer r a) : Lemma (requires (ubuffer_disjoint larger1 larger2 /\ larger1 `ubuffer_includes` smaller1 /\ larger2 `ubuffer_includes` smaller2)) (ensures (ubuffer_disjoint smaller1 smaller2)) let ubuffer_disjoint_includes #r #a larger1 larger2 smaller1 smaller2 = () val liveness_preservation_intro (#a:Type0) (#rrel:srel a) (#rel:srel a) (h h':HS.mem) (b:mbuffer a rrel rel) (f: ( (t':Type0) -> (pre: Preorder.preorder t') -> (r: HS.mreference t' pre) -> Lemma (requires (HS.frameOf r == frameOf b /\ HS.as_addr r == as_addr b /\ h `HS.contains` r)) (ensures (h' `HS.contains` r)) )) :Lemma (requires (live h b)) (ensures (live h' b)) let liveness_preservation_intro #_ #_ #_ _ _ b f = if Null? b then () else f _ _ (Buffer?.content b) (* Basic, non-compositional modifies clauses, used only to implement the generic modifies clause. DO NOT USE in client code *) let modifies_0_preserves_mreferences (h1 h2: HS.mem) : GTot Type0 = forall (a: Type) (pre: Preorder.preorder a) (r: HS.mreference a pre) . h1 `HS.contains` r ==> (h2 `HS.contains` r /\ HS.sel h1 r == HS.sel h2 r) let modifies_0_preserves_regions (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) . HS.live_region h1 r ==> HS.live_region h2 r let modifies_0_preserves_not_unused_in (h1 h2: HS.mem) : GTot Type0 = forall (r: HS.rid) (n: nat) . ( HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) ) ==> ( n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r) ) let modifies_0' (h1 h2: HS.mem) : GTot Type0 = modifies_0_preserves_mreferences h1 h2 /\ modifies_0_preserves_regions h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 val modifies_0 (h1 h2: HS.mem) : GTot Type0 let modifies_0 = modifies_0' val modifies_0_live_region (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies_0 h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_0_live_region h1 h2 r = () val modifies_0_mreference (#a: Type) (#pre: Preorder.preorder a) (h1 h2: HS.mem) (r: HS.mreference a pre) : Lemma (requires (modifies_0 h1 h2 /\ h1 `HS.contains` r)) (ensures (h2 `HS.contains` r /\ h1 `HS.sel` r == h2 `HS.sel` r)) let modifies_0_mreference #a #pre h1 h2 r = () let modifies_0_ubuffer (#r: HS.rid) (#a: nat) (b: ubuffer r a) (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (ubuffer_preserved b h1 h2)) = same_mreference_ubuffer_preserved b h1 h2 (fun a' pre r' -> modifies_0_mreference h1 h2 r') val modifies_0_unused_in (h1 h2: HS.mem) (r: HS.rid) (n: nat) : Lemma (requires ( modifies_0 h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r) )) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_0_unused_in h1 h2 r n = () let modifies_1_preserves_mreferences (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). ((frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r') ==> (h2 `HS.contains` r' /\ HS.sel h1 r' == HS.sel h2 r') let modifies_1_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_from_to_preserves_ubuffers (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = forall (b':ubuffer (frameOf b) (as_addr b)). (ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b') ==> ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2 let modifies_1_preserves_livenesses (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = forall (a':Type) (pre:Preorder.preorder a') (r':HS.mreference a' pre). h1 `HS.contains` r' ==> h2 `HS.contains` r' let modifies_1' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_preserves_ubuffers b h1 h2 val modifies_1 (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_1 = modifies_1' let modifies_1_from_to (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) : GTot Type0 = if ubuffer_of_buffer_from_to_none_cond b from to then modifies_0 h1 h2 else modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_1_preserves_livenesses b h1 h2 /\ modifies_0_preserves_not_unused_in h1 h2 /\ modifies_1_from_to_preserves_ubuffers b from to h1 h2 val modifies_1_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_1_live_region #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) = () val modifies_1_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1 b h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) let modifies_1_liveness #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_liveness (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r')) = () val modifies_1_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1 b h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_1_unused_in #_ #_ #_ _ _ _ _ _ = () let modifies_1_from_to_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (r:HS.rid) (n:nat) :Lemma (requires (modifies_1_from_to b from to h1 h2 /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) = () val modifies_1_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1 b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_1_mreference #_ #_ #_ _ _ _ #_ #_ _ = () let modifies_1_from_to_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r': HS.mreference a' pre) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) = () val modifies_1_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1 b h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) let modifies_1_ubuffer #_ #_ #_ _ _ _ _ = () let modifies_1_from_to_ubuffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) (b':ubuffer (frameOf b) (as_addr b)) : Lemma (requires (modifies_1_from_to b from to h1 h2 /\ ubuffer_disjoint #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) b')) (ensures (ubuffer_preserved #(frameOf b) #(as_addr b) b' h1 h2)) = () val modifies_1_null (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) : Lemma (requires (modifies_1 b h1 h2 /\ g_is_null b)) (ensures (modifies_0 h1 h2)) let modifies_1_null #_ #_ #_ _ _ _ = () let modifies_addr_of_preserves_not_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = forall (r: HS.rid) (n: nat) . ((r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r)) ==> (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r)) let modifies_addr_of' (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 = modifies_0_preserves_regions h1 h2 /\ modifies_1_preserves_mreferences b h1 h2 /\ modifies_addr_of_preserves_not_unused_in b h1 h2 val modifies_addr_of (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :GTot Type0 let modifies_addr_of = modifies_addr_of' val modifies_addr_of_live_region (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) :Lemma (requires (modifies_addr_of b h1 h2 /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) let modifies_addr_of_live_region #_ #_ #_ _ _ _ _ = () val modifies_addr_of_mreference (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (#a':Type0) (#pre:Preorder.preorder a') (r':HS.mreference a' pre) : Lemma (requires (modifies_addr_of b h1 h2 /\ (frameOf b <> HS.frameOf r' \/ as_addr b <> HS.as_addr r') /\ h1 `HS.contains` r')) (ensures (h2 `HS.contains` r' /\ h1 `HS.sel` r' == h2 `HS.sel` r')) let modifies_addr_of_mreference #_ #_ #_ _ _ _ #_ #_ _ = () val modifies_addr_of_unused_in (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) (r:HS.rid) (n:nat) : Lemma (requires (modifies_addr_of b h1 h2 /\ (r <> frameOf b \/ n <> as_addr b) /\ HS.live_region h1 r /\ HS.live_region h2 r /\ n `Heap.addr_unused_in` (HS.get_hmap h2 `Map.sel` r))) (ensures (n `Heap.addr_unused_in` (HS.get_hmap h1 `Map.sel` r))) let modifies_addr_of_unused_in #_ #_ #_ _ _ _ _ _ = () module MG = FStar.ModifiesGen let cls : MG.cls ubuffer = MG.Cls #ubuffer ubuffer_includes (fun #r #a x -> ubuffer_includes_refl x) (fun #r #a x1 x2 x3 -> ubuffer_includes_trans x1 x2 x3) ubuffer_disjoint (fun #r #a x1 x2 -> ubuffer_disjoint_sym x1 x2) (fun #r #a larger1 larger2 smaller1 smaller2 -> ubuffer_disjoint_includes larger1 larger2 smaller1 smaller2) ubuffer_preserved (fun #r #a x h -> ubuffer_preserved_refl x h) (fun #r #a x h1 h2 h3 -> ubuffer_preserved_trans x h1 h2 h3) (fun #r #a b h1 h2 f -> same_mreference_ubuffer_preserved b h1 h2 f) let loc = MG.loc cls let _ = intro_ambient loc let loc_none = MG.loc_none let _ = intro_ambient loc_none let loc_union = MG.loc_union let _ = intro_ambient loc_union let loc_union_idem = MG.loc_union_idem let loc_union_comm = MG.loc_union_comm let loc_union_assoc = MG.loc_union_assoc let loc_union_loc_none_l = MG.loc_union_loc_none_l let loc_union_loc_none_r = MG.loc_union_loc_none_r let loc_buffer_from_to #a #rrel #rel b from to = if ubuffer_of_buffer_from_to_none_cond b from to then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) let loc_buffer #_ #_ #_ b = if g_is_null b then MG.loc_none else MG.loc_of_aloc #_ #_ #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_buffer_eq #_ #_ #_ _ = () let loc_buffer_from_to_high #_ #_ #_ _ _ _ = () let loc_buffer_from_to_none #_ #_ #_ _ _ _ = () let loc_buffer_from_to_mgsub #_ #_ #_ _ _ _ _ _ _ = () let loc_buffer_mgsub_eq #_ #_ #_ _ _ _ _ = () let loc_buffer_null _ _ _ = () let loc_buffer_from_to_eq #_ #_ #_ _ _ _ = () let loc_buffer_mgsub_rel_eq #_ #_ #_ _ _ _ _ _ = () let loc_addresses = MG.loc_addresses let loc_regions = MG.loc_regions let loc_includes = MG.loc_includes let loc_includes_refl = MG.loc_includes_refl let loc_includes_trans = MG.loc_includes_trans let loc_includes_union_r = MG.loc_includes_union_r let loc_includes_union_l = MG.loc_includes_union_l let loc_includes_none = MG.loc_includes_none val loc_includes_buffer (#a:Type0) (#rrel1:srel a) (#rrel2:srel a) (#rel1:srel a) (#rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2) :Lemma (requires (frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ ubuffer_includes0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_includes (loc_buffer b1) (loc_buffer b2))) let loc_includes_buffer #t #_ #_ #_ #_ b1 b2 = let t1 = ubuffer (frameOf b1) (as_addr b1) in MG.loc_includes_aloc #_ #cls #(frameOf b1) #(as_addr b1) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_includes_gsub_buffer_r l #_ #_ #_ b i len sub_rel = let b' = mgsub sub_rel b i len in loc_includes_buffer b b'; loc_includes_trans l (loc_buffer b) (loc_buffer b') let loc_includes_gsub_buffer_l #_ #_ #rel b i1 len1 sub_rel1 i2 len2 sub_rel2 = let b1 = mgsub sub_rel1 b i1 len1 in let b2 = mgsub sub_rel2 b i2 len2 in loc_includes_buffer b1 b2 let loc_includes_loc_buffer_loc_buffer_from_to #_ #_ #_ b from to = if ubuffer_of_buffer_from_to_none_cond b from to then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) (ubuffer_of_buffer_from_to b from to) let loc_includes_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_includes_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) #push-options "--z3rlimit 20" let loc_includes_as_seq #_ #rrel #_ #_ h1 h2 larger smaller = if Null? smaller then () else if Null? larger then begin MG.loc_includes_none_elim (loc_buffer smaller); MG.loc_of_aloc_not_none #_ #cls #(frameOf smaller) #(as_addr smaller) (ubuffer_of_buffer smaller) end else begin MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller); let ul = Ghost.reveal (ubuffer_of_buffer larger) in let us = Ghost.reveal (ubuffer_of_buffer smaller) in assert (as_seq h1 smaller == Seq.slice (as_seq h1 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)); assert (as_seq h2 smaller == Seq.slice (as_seq h2 larger) (us.b_offset - ul.b_offset) (us.b_offset - ul.b_offset + length smaller)) end #pop-options let loc_includes_addresses_buffer #a #rrel #srel preserve_liveness r s p = MG.loc_includes_addresses_aloc #_ #cls preserve_liveness r s #(as_addr p) (ubuffer_of_buffer p) let loc_includes_region_buffer #_ #_ #_ preserve_liveness s b = MG.loc_includes_region_aloc #_ #cls preserve_liveness s #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let loc_includes_region_addresses = MG.loc_includes_region_addresses #_ #cls let loc_includes_region_region = MG.loc_includes_region_region #_ #cls let loc_includes_region_union_l = MG.loc_includes_region_union_l let loc_includes_addresses_addresses = MG.loc_includes_addresses_addresses cls let loc_disjoint = MG.loc_disjoint let loc_disjoint_sym = MG.loc_disjoint_sym let loc_disjoint_none_r = MG.loc_disjoint_none_r let loc_disjoint_union_r = MG.loc_disjoint_union_r let loc_disjoint_includes = MG.loc_disjoint_includes val loc_disjoint_buffer (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2) ==> ubuffer_disjoint0 #(frameOf b1) #(frameOf b2) #(as_addr b1) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2))) (ensures (loc_disjoint (loc_buffer b1) (loc_buffer b2))) let loc_disjoint_buffer #_ #_ #_ #_ #_ #_ b1 b2 = MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) let loc_disjoint_gsub_buffer #_ #_ #_ b i1 len1 sub_rel1 i2 len2 sub_rel2 = loc_disjoint_buffer (mgsub sub_rel1 b i1 len1) (mgsub sub_rel2 b i2 len2) let loc_disjoint_loc_buffer_from_to #_ #_ #_ b from1 to1 from2 to2 = if ubuffer_of_buffer_from_to_none_cond b from1 to1 || ubuffer_of_buffer_from_to_none_cond b from2 to2 then () else MG.loc_disjoint_aloc_intro #_ #cls #(frameOf b) #(as_addr b) #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from1 to1) (ubuffer_of_buffer_from_to b from2 to2) let loc_disjoint_addresses = MG.loc_disjoint_addresses_intro #_ #cls let loc_disjoint_regions = MG.loc_disjoint_regions #_ #cls let modifies = MG.modifies let modifies_live_region = MG.modifies_live_region let modifies_mreference_elim = MG.modifies_mreference_elim let modifies_buffer_elim #_ #_ #_ b p h h' = if g_is_null b then assert (as_seq h b `Seq.equal` as_seq h' b) else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) p h h' ; ubuffer_preserved_elim b h h' end let modifies_buffer_from_to_elim #_ #_ #_ b from to p h h' = if g_is_null b then () else begin MG.modifies_aloc_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) p h h' ; ubuffer_preserved_from_to_elim b from to h h' end let modifies_refl = MG.modifies_refl let modifies_loc_includes = MG.modifies_loc_includes let address_liveness_insensitive_locs = MG.address_liveness_insensitive_locs _ let region_liveness_insensitive_locs = MG.region_liveness_insensitive_locs _ let address_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_address_liveness_insensitive_locs_aloc #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let address_liveness_insensitive_addresses = MG.loc_includes_address_liveness_insensitive_locs_addresses cls let region_liveness_insensitive_buffer #_ #_ #_ b = MG.loc_includes_region_liveness_insensitive_locs_loc_of_aloc #_ cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) let region_liveness_insensitive_addresses = MG.loc_includes_region_liveness_insensitive_locs_loc_addresses cls let region_liveness_insensitive_regions = MG.loc_includes_region_liveness_insensitive_locs_loc_regions cls let region_liveness_insensitive_address_liveness_insensitive = MG.loc_includes_region_liveness_insensitive_locs_address_liveness_insensitive_locs cls let modifies_liveness_insensitive_mreference = MG.modifies_preserves_liveness let modifies_liveness_insensitive_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else liveness_preservation_intro h h' x (fun t' pre r -> MG.modifies_preserves_liveness_strong l1 l2 h h' r (ubuffer_of_buffer x)) let modifies_liveness_insensitive_region = MG.modifies_preserves_region_liveness let modifies_liveness_insensitive_region_mreference = MG.modifies_preserves_region_liveness_reference let modifies_liveness_insensitive_region_buffer l1 l2 h h' #_ #_ #_ x = if g_is_null x then () else MG.modifies_preserves_region_liveness_aloc l1 l2 h h' #(frameOf x) #(as_addr x) (ubuffer_of_buffer x) let modifies_trans = MG.modifies_trans let modifies_only_live_regions = MG.modifies_only_live_regions let no_upd_fresh_region = MG.no_upd_fresh_region let new_region_modifies = MG.new_region_modifies #_ cls let modifies_fresh_frame_popped = MG.modifies_fresh_frame_popped let modifies_loc_regions_intro = MG.modifies_loc_regions_intro #_ #cls let modifies_loc_addresses_intro = MG.modifies_loc_addresses_intro #_ #cls let modifies_ralloc_post = MG.modifies_ralloc_post #_ #cls let modifies_salloc_post = MG.modifies_salloc_post #_ #cls let modifies_free = MG.modifies_free #_ #cls let modifies_none_modifies = MG.modifies_none_modifies #_ #cls let modifies_upd = MG.modifies_upd #_ #cls val modifies_0_modifies (h1 h2: HS.mem) : Lemma (requires (modifies_0 h1 h2)) (ensures (modifies loc_none h1 h2)) let modifies_0_modifies h1 h2 = MG.modifies_none_intro #_ #cls h1 h2 (fun r -> modifies_0_live_region h1 h2 r) (fun t pre b -> modifies_0_mreference #t #pre h1 h2 b) (fun r n -> modifies_0_unused_in h1 h2 r n) val modifies_1_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_1 b h1 h2)) (ensures (modifies (loc_buffer b) h1 h2)) let modifies_1_modifies #t #_ #_ b h1 h2 = if g_is_null b then begin modifies_1_null b h1 h2; modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer b) h1 h2 (fun r -> modifies_1_live_region b h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer b); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer b) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_mreference b h1 h2 p ) (fun t pre p -> modifies_1_liveness b h1 h2 p ) (fun r n -> modifies_1_unused_in b h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer b); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer b) b'; if frameOf b = r' && as_addr b = a' then modifies_1_ubuffer #t b h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_mreference b h1 h2 r_) ) val modifies_1_from_to_modifies (#a:Type0)(#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (h1 h2:HS.mem) :Lemma (requires (modifies_1_from_to b from to h1 h2)) (ensures (modifies (loc_buffer_from_to b from to) h1 h2)) let modifies_1_from_to_modifies #t #_ #_ b from to h1 h2 = if ubuffer_of_buffer_from_to_none_cond b from to then begin modifies_0_modifies h1 h2 end else MG.modifies_intro (loc_buffer_from_to b from to) h1 h2 (fun r -> modifies_1_from_to_live_region b from to h1 h2 r) (fun t pre p -> loc_disjoint_sym (loc_mreference p) (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_addresses_elim #_ #cls #(frameOf b) #(as_addr b) (ubuffer_of_buffer_from_to b from to) true (HS.frameOf p) (Set.singleton (HS.as_addr p)); modifies_1_from_to_mreference b from to h1 h2 p ) (fun t pre p -> modifies_1_from_to_liveness b from to h1 h2 p ) (fun r n -> modifies_1_from_to_unused_in b from to h1 h2 r n ) (fun r' a' b' -> loc_disjoint_sym (MG.loc_of_aloc b') (loc_buffer_from_to b from to); MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b) #(as_addr b) #r' #a' (ubuffer_of_buffer_from_to b from to) b'; if frameOf b = r' && as_addr b = a' then modifies_1_from_to_ubuffer #t b from to h1 h2 b' else same_mreference_ubuffer_preserved #r' #a' b' h1 h2 (fun a_ pre_ r_ -> modifies_1_from_to_mreference b from to h1 h2 r_) ) val modifies_addr_of_modifies (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h1 h2:HS.mem) :Lemma (requires (modifies_addr_of b h1 h2)) (ensures (modifies (loc_addr_of_buffer b) h1 h2)) let modifies_addr_of_modifies #t #_ #_ b h1 h2 = MG.modifies_address_intro #_ #cls (frameOf b) (as_addr b) h1 h2 (fun r -> modifies_addr_of_live_region b h1 h2 r) (fun t pre p -> modifies_addr_of_mreference b h1 h2 p ) (fun r n -> modifies_addr_of_unused_in b h1 h2 r n ) val modifies_loc_buffer_from_to_intro' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in not (g_is_null b) /\ live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) #push-options "--z3rlimit 16" let modifies_loc_buffer_from_to_intro' #a #rrel #rel b from to l h h' = let r0 = frameOf b in let a0 = as_addr b in let bb : ubuffer r0 a0 = ubuffer_of_buffer b in modifies_loc_includes (loc_union l (loc_addresses true r0 (Set.singleton a0))) h h' (loc_union l (loc_buffer b)); MG.modifies_strengthen l #r0 #a0 (ubuffer_of_buffer_from_to b from to) h h' (fun f (x: ubuffer r0 a0) -> ubuffer_preserved_intro x h h' (fun t' rrel' rel' b' -> f _ _ (Buffer?.content b')) (fun t' rrel' rel' b' -> // prove that the types, rrels, rels are equal Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); assert (Seq.seq t' == Seq.seq a); let _s0 : Seq.seq a = as_seq h b in let _s1 : Seq.seq t' = coerce_eq _ _s0 in lemma_equal_instances_implies_equal_types a t' _s0 _s1; let boff = U32.v (Buffer?.idx b) in let from_ = boff + U32.v from in let to_ = boff + U32.v to in let ({ b_max_length = ml; b_offset = xoff; b_length = xlen; b_is_mm = is_mm }) = Ghost.reveal x in let ({ b_max_length = _; b_offset = b'off; b_length = b'len }) = Ghost.reveal (ubuffer_of_buffer b') in let bh = as_seq h b in let bh' = as_seq h' b in let xh = Seq.slice (as_seq h b') (xoff - b'off) (xoff - b'off + xlen) in let xh' = Seq.slice (as_seq h' b') (xoff - b'off) (xoff - b'off + xlen) in let prf (i: nat) : Lemma (requires (i < xlen)) (ensures (i < xlen /\ Seq.index xh i == Seq.index xh' i)) = let xi = xoff + i in let bi : ubuffer r0 a0 = Ghost.hide ({ b_max_length = ml; b_offset = xi; b_length = 1; b_is_mm = is_mm; }) in assert (Seq.index xh i == Seq.index (Seq.slice (as_seq h b') (xi - b'off) (xi - b'off + 1)) 0); assert (Seq.index xh' i == Seq.index (Seq.slice (as_seq h' b') (xi - b'off) (xi - b'off + 1)) 0); let li = MG.loc_of_aloc bi in MG.loc_includes_aloc #_ #cls x bi; loc_disjoint_includes l (MG.loc_of_aloc x) l li; if xi < boff || boff + length b <= xi then begin MG.loc_disjoint_aloc_intro #_ #cls bb bi; assert (loc_disjoint (loc_union l (loc_buffer b)) li); MG.modifies_aloc_elim bi (loc_union l (loc_buffer b)) h h' end else if xi < from_ then begin assert (Seq.index xh i == Seq.index (Seq.slice bh 0 (U32.v from)) (xi - boff)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' 0 (U32.v from)) (xi - boff)) end else begin assert (to_ <= xi); assert (Seq.index xh i == Seq.index (Seq.slice bh (U32.v to) (length b)) (xi - to_)); assert (Seq.index xh' i == Seq.index (Seq.slice bh' (U32.v to) (length b)) (xi - to_)) end in Classical.forall_intro (Classical.move_requires prf); assert (xh `Seq.equal` xh') ) ) #pop-options let modifies_loc_buffer_from_to_intro #a #rrel #rel b from to l h h' = if g_is_null b then () else modifies_loc_buffer_from_to_intro' b from to l h h' let does_not_contain_addr = MG.does_not_contain_addr let not_live_region_does_not_contain_addr = MG.not_live_region_does_not_contain_addr let unused_in_does_not_contain_addr = MG.unused_in_does_not_contain_addr let addr_unused_in_does_not_contain_addr = MG.addr_unused_in_does_not_contain_addr let free_does_not_contain_addr = MG.free_does_not_contain_addr let does_not_contain_addr_elim = MG.does_not_contain_addr_elim let modifies_only_live_addresses = MG.modifies_only_live_addresses let loc_not_unused_in = MG.loc_not_unused_in _ let loc_unused_in = MG.loc_unused_in _ let loc_regions_unused_in = MG.loc_regions_unused_in cls let loc_unused_in_not_unused_in_disjoint = MG.loc_unused_in_not_unused_in_disjoint cls let not_live_region_loc_not_unused_in_disjoint = MG.not_live_region_loc_not_unused_in_disjoint cls let live_loc_not_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.does_not_contain_addr_addr_unused_in h) (frameOf b, as_addr b); MG.loc_addresses_not_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let unused_in_loc_unused_in #_ #_ #_ b h = unused_in_equiv b h; Classical.move_requires (MG.addr_unused_in_does_not_contain_addr h) (frameOf b, as_addr b); MG.loc_addresses_unused_in cls (frameOf b) (Set.singleton (as_addr b)) h; () let modifies_address_liveness_insensitive_unused_in = MG.modifies_address_liveness_insensitive_unused_in cls let modifies_only_not_unused_in = MG.modifies_only_not_unused_in let mreference_live_loc_not_unused_in = MG.mreference_live_loc_not_unused_in cls let mreference_unused_in_loc_unused_in = MG.mreference_unused_in_loc_unused_in cls let modifies_loc_unused_in l h1 h2 l' = modifies_loc_includes address_liveness_insensitive_locs h1 h2 l; modifies_address_liveness_insensitive_unused_in h1 h2; loc_includes_trans (loc_unused_in h1) (loc_unused_in h2) l' let fresh_frame_modifies h0 h1 = MG.fresh_frame_modifies #_ cls h0 h1 let popped_modifies = MG.popped_modifies #_ cls let modifies_remove_new_locs l_fresh l_aux l_goal h1 h2 h3 = modifies_only_not_unused_in l_goal h1 h3 let disjoint_neq #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () let empty_disjoint #t1 #t2 #rrel1 #rel1 #rrel2 #rel2 b1 b2 = let r = frameOf b1 in let a = as_addr b1 in if r = frameOf b2 && a = as_addr b2 then MG.loc_disjoint_aloc_intro #_ #cls #r #a #r #a (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) else () (* let includes_live #a #rrel #rel1 #rel2 h larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let includes_frameOf_as_addr #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) let pointer_distinct_sel_disjoint #a #_ #_ #_ #_ b1 b2 h = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then begin HS.mreference_distinct_sel_disjoint h (Buffer?.content b1) (Buffer?.content b2); loc_disjoint_buffer b1 b2 end else loc_disjoint_buffer b1 b2 let is_null #_ #_ #_ b = Null? b let msub #a #rrel #rel sub_rel b i len = match b with | Null -> Null | Buffer max_len content i0 len0 -> Buffer max_len content (U32.add i0 i) len let moffset #a #rrel #rel sub_rel b i = match b with | Null -> Null | Buffer max_len content i0 len -> Buffer max_len content (U32.add i0 i) (Ghost.hide ((U32.sub (Ghost.reveal len) i))) let index #_ #_ #_ b i = let open HST in let s = ! (Buffer?.content b) in Seq.index s (U32.v (Buffer?.idx b) + U32.v i) let g_upd_seq #_ #_ #_ b s h = if Seq.length s = 0 then h else let s0 = HS.sel h (Buffer?.content b) in let Buffer _ content idx length = b in HS.upd h (Buffer?.content b) (Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v length) s) let lemma_g_upd_with_same_seq #_ #_ #_ b h = if Null? b then () else let open FStar.UInt32 in let Buffer _ content idx length = b in let s = HS.sel h content in assert (Seq.equal (Seq.replace_subseq s (v idx) (v idx + v length) (Seq.slice s (v idx) (v idx + v length))) s); HS.lemma_heap_equality_upd_with_sel h (Buffer?.content b) #push-options "--z3rlimit 48" let g_upd_seq_as_seq #a #_ #_ b s h = let h' = g_upd_seq b s h in if g_is_null b then assert (Seq.equal s Seq.empty) else begin assert (Seq.equal (as_seq h' b) s); // prove modifies_1_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_modifies b h h' end let g_upd_modifies_strong #_ #_ #_ b i v h = let h' = g_upd b i v h in // prove modifies_1_from_to_preserves_ubuffers Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm (); s_lemma_equal_instances_implies_equal_types (); modifies_1_from_to_modifies b (U32.uint_to_t i) (U32.uint_to_t (i + 1)) h h' #pop-options let upd' #_ #_ #_ b i v = let open HST in let h = get() in let Buffer max_length content idx len = b in let s0 = !content in let sb0 = Seq.slice s0 (U32.v idx) (U32.v max_length) in let s_upd = Seq.upd sb0 (U32.v i) v in let sf = Seq.replace_subseq s0 (U32.v idx) (U32.v max_length) s_upd in assert (sf `Seq.equal` Seq.replace_subseq s0 (U32.v idx) (U32.v idx + U32.v len) (Seq.upd (as_seq h b) (U32.v i) v)); content := sf let recallable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot Type0 = (not (g_is_null b)) ==> ( HST.is_eternal_region (frameOf b) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_buf #_ #_ #_ b = (not (g_is_null b)) ==> ( HS.is_heap_color (HS.color (frameOf b)) /\ not (HS.is_mm (Buffer?.content b)) /\ buffer_compatible b ) let region_lifetime_sub #a #rrel #rel #subrel b0 b1 = match b1 with | Null -> () | Buffer max_len content idx length -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j subrel) let recallable_null #_ #_ #_ = () let recallable_mgsub #_ #rrel #rel b i len sub_rel = match b with | Null -> () | Buffer max_len content idx length -> lemma_seq_sub_compatibility_is_transitive (U32.v max_len) rrel (U32.v idx) (U32.v idx + U32.v length) rel (U32.v i) (U32.v i + U32.v len) sub_rel (* let recallable_includes #_ #_ #_ #_ #_ #_ larger smaller = if Null? larger || Null? smaller then () else MG.loc_includes_aloc_elim #_ #cls #(frameOf larger) #(frameOf smaller) #(as_addr larger) #(as_addr smaller) (ubuffer_of_buffer larger) (ubuffer_of_buffer smaller) *) let recall #_ #_ #_ b = if Null? b then () else HST.recall (Buffer?.content b) private let spred_as_mempred (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :HST.mem_predicate = fun h -> buffer_compatible b ==> p (as_seq h b) let witnessed #_ #rrel #rel b p = match b with | Null -> p Seq.empty | Buffer max_length content idx length -> HST.token_p content (spred_as_mempred b p) private let lemma_stable_on_rel_is_stable_on_rrel (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:spred a) :Lemma (requires (Buffer? b /\ stable_on p rel)) (ensures (HST.stable_on (spred_as_mempred b p) (Buffer?.content b))) = let Buffer max_length content idx length = b in let mp = spred_as_mempred b p in let aux (h0 h1:HS.mem) :Lemma ((mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content)) ==> mp h1) = Classical.arrow_to_impl #(mp h0 /\ rrel (HS.sel h0 content) (HS.sel h1 content) /\ buffer_compatible b) #(mp h1) (fun _ -> assert (rel (as_seq h0 b) (as_seq h1 b))) in Classical.forall_intro_2 aux let witness_p #a #rrel #rel b p = match b with | Null -> () | Buffer _ content _ _ -> lemma_stable_on_rel_is_stable_on_rrel b p; //AR: TODO: the proof doesn't go through without this assertion, which should follow directly from the lemma call assert (HST.stable_on #(Seq.lseq a (U32.v (Buffer?.max_length b))) #(srel_to_lsrel (U32.v (Buffer?.max_length b)) rrel) (spred_as_mempred b p) (Buffer?.content b)); HST.witness_p content (spred_as_mempred b p) let recall_p #_ #_ #_ b p = match b with | Null -> () | Buffer _ content _ _ -> HST.recall_p content (spred_as_mempred b p) let witnessed_functorial #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> assert (as_seq HS.empty_mem b1 == Seq.empty) | Buffer _ content _ _, _ -> assert (forall (len:nat) (i:nat) (j:nat{i <= j /\ j <= len}). compatible_sub_preorder len rrel i j rel1); HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let witnessed_functorial_st #a #rrel #rel1 #rel2 b1 b2 i len s1 s2 = match b1, b2 with | Null, Null -> () | Buffer _ content _ _, _ -> HST.token_functoriality content (spred_as_mempred b1 s1) (spred_as_mempred b2 s2) let freeable (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) = (not (g_is_null b)) /\ HS.is_mm (Buffer?.content b) /\ HS.is_heap_color (HS.color (frameOf b)) /\ U32.v (Buffer?.max_length b) > 0 /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b let free #_ #_ #_ b = HST.rfree (Buffer?.content b) let freeable_length #_ #_ #_ b = () let freeable_disjoint #_ #_ #_ #_ #_ #_ b1 b2 = if frameOf b1 = frameOf b2 && as_addr b1 = as_addr b2 then MG.loc_disjoint_aloc_elim #_ #cls #(frameOf b1) #(as_addr b1) #(frameOf b2) #(as_addr b2) (ubuffer_of_buffer b1) (ubuffer_of_buffer b2) private let alloc_heap_common (#a:Type0) (#rrel:srel a) (r:HST.erid) (len:U32.t{U32.v len > 0}) (s:Seq.seq a{Seq.length s == U32.v len}) (mm:bool) :HST.ST (lmbuffer a rrel rrel (U32.v len)) (requires (fun _ -> True)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ HS.is_mm (Buffer?.content b) == mm /\ Buffer?.idx b == 0ul /\ Ghost.reveal (Buffer?.length b) == Buffer?.max_length b)) = lemma_seq_sub_compatilibity_is_reflexive (U32.v len) rrel; let content: HST.mreference (Seq.lseq a (U32.v len)) (srel_to_lsrel (U32.v len) rrel) = if mm then HST.ralloc_mm r s else HST.ralloc r s in let b = Buffer len content 0ul (Ghost.hide len) in b let mgcmalloc #_ #_ r init len = alloc_heap_common r len (Seq.create (U32.v len) init) false private let read_sub_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (idx len:U32.t) : HST.ST (Seq.seq a) (requires fun h0 -> live h0 b /\ U32.v len > 0 /\ U32.v idx + U32.v len <= length b) (ensures fun h0 s h1 -> h0 == h1 /\ s == Seq.slice (as_seq h0 b) (U32.v idx) (U32.v idx + U32.v len)) = let open HST in let s = ! (Buffer?.content b) in //the whole allocation unit let s = Seq.slice s (U32.v (Buffer?.idx b)) (U32.v (Buffer?.max_length b)) in //b buffer Seq.slice s (U32.v idx) (U32.v idx + U32.v len) //slice of b let mgcmalloc_and_blit #_ #_ r #_ #_ src id_src len = alloc_heap_common r len (read_sub_buffer src id_src len) false
false
false
LowStar.Monotonic.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mmalloc (#a:Type0) (#rrel:srel a) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:lmbuffer a rrel rrel (U32.v len){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
[]
LowStar.Monotonic.Buffer.mmalloc
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.Monotonic.Buffer.lmbuffer a rrel rrel (FStar.UInt32.v len) {LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.freeable b})
{ "end_col": 60, "end_line": 1505, "start_col": 2, "start_line": 1505 }