effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) : Tot (size32 (serialize_bounded_vlbytes min max))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (size32 (serialize_bounded_vlbytes min max)) = size32_bounded_vlbytes' min max (log256' max)
val size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) : Tot (size32 (serialize_bounded_vlbytes min max)) let size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) : Tot (size32 (serialize_bounded_vlbytes min max)) =
false
null
false
size32_bounded_vlbytes' min max (log256' max)
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "LowParse.SLow.Bytes.size32_bounded_vlbytes'", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.Base.size32", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes", "LowParse.Spec.Bytes.serialize_bounded_vlbytes" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l) inline_for_extraction let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l)) = size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let size32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) : Tot (size32 (serialize_bounded_vlbytes min max))
[]
LowParse.SLow.Bytes.size32_bounded_vlbytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} -> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes min max)
{ "end_col": 47, "end_line": 171, "start_col": 2, "start_line": 171 }
Prims.Tot
val parse32_bounded_vlbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) : Tot (parser32 (parse_bounded_vlbytes min max))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max)
val parse32_bounded_vlbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) : Tot (parser32 (parse_bounded_vlbytes min max)) let parse32_bounded_vlbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) : Tot (parser32 (parse_bounded_vlbytes min max)) =
false
null
false
parse32_bounded_vlbytes' min min32 max max32 (log256' max)
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "FStar.UInt32.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "LowParse.SLow.Bytes.parse32_bounded_vlbytes'", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.Base.parser32", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } )
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse32_bounded_vlbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) : Tot (parser32 (parse_bounded_vlbytes min max))
[]
LowParse.SLow.Bytes.parse32_bounded_vlbytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} -> max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} -> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlbytes min max)
{ "end_col": 60, "end_line": 80, "start_col": 2, "start_line": 80 }
Prims.Tot
val serialize32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_bounded_vlgenbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) = serialize32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (serialize_bounded_vlgen min max sk serialize_all_bytes) (serialize32_bounded_vlgen min max sk32 serialize32_all_bytes) (fun x -> x) (fun x -> x) ()
val serialize32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) let serialize32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) =
false
null
false
serialize32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (serialize_bounded_vlgen min max sk serialize_all_bytes) (serialize32_bounded_vlgen min max sk32 serialize32_all_bytes) (fun x -> x) (fun x -> x) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.serializer32", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "FStar.Pervasives.Native.uu___is_Some", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "Prims.op_Addition", "FStar.Pervasives.Native.__proj__Some__item__v", "LowParse.SLow.Combinators.serialize32_synth", "LowParse.Spec.VLGen.parse_bounded_vlgen_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.VLGen.parse_bounded_vlgen", "LowParse.Spec.VLGen.serialize_bounded_vlgen", "LowParse.SLow.VLGen.serialize32_bounded_vlgen", "LowParse.SLow.Bytes.serialize32_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlgenbytes", "LowParse.Spec.Bytes.serialize_bounded_vlgenbytes" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l) inline_for_extraction let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l)) = size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let size32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (size32 (serialize_bounded_vlbytes min max)) = size32_bounded_vlbytes' min max (log256' max) inline_for_extraction let parse32_bounded_vlgenbytes (min: nat) (min32: U32.t { U32.v min32 == min }) (max: nat{ min <= max /\ max > 0 }) (max32: U32.t { U32.v max32 == max }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk)) = parse32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes) () inline_for_extraction let serialize32_bounded_vlgenbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 })
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk))
[]
LowParse.SLow.Bytes.serialize32_bounded_vlgenbytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} -> sk32: LowParse.SLow.Base.serializer32 sk { Mkparser_kind'?.parser_kind_subkind kk == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ Some? (Mkparser_kind'?.parser_kind_high kk) /\ Some?.v (Mkparser_kind'?.parser_kind_high kk) + max < 4294967296 } -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlgenbytes min max sk)
{ "end_col": 6, "end_line": 206, "start_col": 2, "start_line": 199 }
Prims.Tot
val parse32_all_bytes:parser32 parse_all_bytes
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
val parse32_all_bytes:parser32 parse_all_bytes let parse32_all_bytes:parser32 parse_all_bytes =
false
null
false
fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) {parser32_correct parse_all_bytes input res}))
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "FStar.Bytes.bytes", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.SLow.Base.bytes32", "FStar.UInt32.t", "LowParse.SLow.Base.parser32_correct", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.Bytes.parse_all_bytes", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Bytes.len" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes
false
true
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse32_all_bytes:parser32 parse_all_bytes
[]
LowParse.SLow.Bytes.parse32_all_bytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
LowParse.SLow.Base.parser32 LowParse.Spec.Bytes.parse_all_bytes
{ "end_col": 92, "end_line": 50, "start_col": 2, "start_line": 48 }
Prims.Tot
val serialize32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes
val serialize32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) let serialize32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) =
false
null
false
serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.VLData.serialize32_bounded_vldata_strong'", "LowParse.Spec.Bytes.parse_all_bytes_kind", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.SLow.Bytes.serialize32_all_bytes", "LowParse.SLow.Base.serializer32", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes_aux", "LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
[]
LowParse.SLow.Bytes.serialize32_bounded_vlbytes_aux
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} -> l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux min max l)
{ "end_col": 25, "end_line": 97, "start_col": 2, "start_line": 89 }
Prims.Tot
val size32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (size32 (serialize_bounded_vlgenbytes min max sk))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size32_bounded_vlgenbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (size32 (serialize_bounded_vlgenbytes min max sk)) = size32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (serialize_bounded_vlgen min max sk serialize_all_bytes) (size32_bounded_vlgen min max sk32 size32_all_bytes) (fun x -> x) (fun x -> x) ()
val size32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (size32 (serialize_bounded_vlgenbytes min max sk)) let size32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (size32 (serialize_bounded_vlgenbytes min max sk)) =
false
null
false
size32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (serialize_bounded_vlgen min max sk serialize_all_bytes) (size32_bounded_vlgen min max sk32 size32_all_bytes) (fun x -> x) (fun x -> x) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.size32", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "FStar.Pervasives.Native.uu___is_Some", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "Prims.op_Addition", "FStar.Pervasives.Native.__proj__Some__item__v", "LowParse.SLow.Combinators.size32_synth", "LowParse.Spec.VLGen.parse_bounded_vlgen_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.VLGen.parse_bounded_vlgen", "LowParse.Spec.VLGen.serialize_bounded_vlgen", "LowParse.SLow.VLGen.size32_bounded_vlgen", "LowParse.SLow.Bytes.size32_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlgenbytes", "LowParse.Spec.Bytes.serialize_bounded_vlgenbytes" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l) inline_for_extraction let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l)) = size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let size32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (size32 (serialize_bounded_vlbytes min max)) = size32_bounded_vlbytes' min max (log256' max) inline_for_extraction let parse32_bounded_vlgenbytes (min: nat) (min32: U32.t { U32.v min32 == min }) (max: nat{ min <= max /\ max > 0 }) (max32: U32.t { U32.v max32 == max }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk)) = parse32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes) () inline_for_extraction let serialize32_bounded_vlgenbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: serializer32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) = serialize32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (serialize_bounded_vlgen min max sk serialize_all_bytes) (serialize32_bounded_vlgen min max sk32 serialize32_all_bytes) (fun x -> x) (fun x -> x) () inline_for_extraction let size32_bounded_vlgenbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 })
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size32_bounded_vlgenbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (#sk: serializer pk) (sk32: size32 sk { kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 }) : Tot (size32 (serialize_bounded_vlgenbytes min max sk))
[]
LowParse.SLow.Bytes.size32_bounded_vlgenbytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} -> sk32: LowParse.SLow.Base.size32 sk { Mkparser_kind'?.parser_kind_subkind kk == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ Some? (Mkparser_kind'?.parser_kind_high kk) /\ Some?.v (Mkparser_kind'?.parser_kind_high kk) + max < 4294967296 } -> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlgenbytes min max sk)
{ "end_col": 6, "end_line": 224, "start_col": 2, "start_line": 217 }
Prims.Tot
val serialize32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes' min max l))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) ()
val serialize32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) let serialize32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) =
false
null
false
serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)) (fun x -> x) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.Combinators.serialize32_synth", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes_aux", "LowParse.Spec.Bytes.synth_bounded_vlbytes", "LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux", "LowParse.SLow.Bytes.serialize32_bounded_vlbytes_aux", "Prims.eq2", "LowParse.SLow.Base.serializer32", "LowParse.Spec.Bytes.parse_bounded_vlbytes'", "LowParse.Spec.Bytes.serialize_bounded_vlbytes'" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } )
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (serializer32 (serialize_bounded_vlbytes' min max l))
[]
LowParse.SLow.Bytes.serialize32_bounded_vlbytes'
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} -> l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes' min max l)
{ "end_col": 6, "end_line": 114, "start_col": 2, "start_line": 105 }
Prims.Tot
val size32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes' min max l))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l)) = size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) ()
val size32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes' min max l)) let size32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes' min max l)) =
false
null
false
size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)) (fun x -> x) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.Combinators.size32_synth", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes_aux", "LowParse.Spec.Bytes.synth_bounded_vlbytes", "LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux", "LowParse.SLow.Bytes.size32_bounded_vlbytes_aux", "Prims.eq2", "LowParse.SLow.Base.size32", "LowParse.Spec.Bytes.parse_bounded_vlbytes'", "LowParse.Spec.Bytes.serialize_bounded_vlbytes'" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l) inline_for_extraction let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l))
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size32_bounded_vlbytes' (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes' min max l))
[]
LowParse.SLow.Bytes.size32_bounded_vlbytes'
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} -> l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} -> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes' min max l)
{ "end_col": 6, "end_line": 164, "start_col": 2, "start_line": 155 }
Prims.Tot
val parse32_bounded_vlgenbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0}) (max32: U32.t{U32.v max32 == max}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse32_bounded_vlgenbytes (min: nat) (min32: U32.t { U32.v min32 == min }) (max: nat{ min <= max /\ max > 0 }) (max32: U32.t { U32.v max32 == max }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk)) = parse32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes) ()
val parse32_bounded_vlgenbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0}) (max32: U32.t{U32.v max32 == max}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk)) let parse32_bounded_vlgenbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0}) (max32: U32.t{U32.v max32 == max}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk)) =
false
null
false
parse32_synth (parse_bounded_vlgen min max pk serialize_all_bytes) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (fun x -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "FStar.UInt32.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.SLow.Base.parser32", "LowParse.SLow.Combinators.parse32_synth", "LowParse.Spec.VLGen.parse_bounded_vlgen_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.VLGen.parse_bounded_vlgen", "LowParse.SLow.VLGen.parse32_bounded_vlgen", "LowParse.SLow.Bytes.parse32_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlgenbytes" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l) inline_for_extraction let size32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes' min max l)) = size32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (size32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let size32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (size32 (serialize_bounded_vlbytes min max)) = size32_bounded_vlbytes' min max (log256' max) inline_for_extraction let parse32_bounded_vlgenbytes (min: nat) (min32: U32.t { U32.v min32 == min }) (max: nat{ min <= max /\ max > 0 }) (max32: U32.t { U32.v max32 == max }) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk)
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse32_bounded_vlgenbytes (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0}) (max32: U32.t{U32.v max32 == max}) (#kk: parser_kind) (#pk: parser kk (bounded_int32 min max)) (pk32: parser32 pk) : Tot (parser32 (parse_bounded_vlgenbytes min max pk))
[]
LowParse.SLow.Bytes.parse32_bounded_vlgenbytes
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} -> max: Prims.nat{min <= max /\ max > 0} -> max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} -> pk32: LowParse.SLow.Base.parser32 pk -> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlgenbytes min max pk)
{ "end_col": 6, "end_line": 188, "start_col": 2, "start_line": 183 }
Prims.Tot
val parse32_bounded_vlbytes' (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (parser32 (parse_bounded_vlbytes' min max l))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) ()
val parse32_bounded_vlbytes' (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (parser32 (parse_bounded_vlbytes' min max l)) let parse32_bounded_vlbytes' (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (parser32 (parse_bounded_vlbytes' min max l)) =
false
null
false
parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) ()
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "FStar.UInt32.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.Combinators.parse32_synth", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.Bytes.parse_all_bytes_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.Spec.Bytes.parse_bounded_vlbytes_t", "LowParse.Spec.VLData.parse_bounded_vldata_strong'", "LowParse.Spec.Bytes.synth_bounded_vlbytes", "LowParse.SLow.VLData.parse32_bounded_vldata_strong'", "LowParse.SLow.Bytes.parse32_all_bytes", "LowParse.SLow.Base.parser32", "LowParse.Spec.Bytes.parse_bounded_vlbytes'" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } )
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse32_bounded_vlbytes' (min: nat) (min32: U32.t{U32.v min32 == min}) (max: nat{min <= max /\ max > 0 /\ max < 4294967296}) (max32: U32.t{U32.v max32 == max}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (parser32 (parse_bounded_vlbytes' min max l))
[]
LowParse.SLow.Bytes.parse32_bounded_vlbytes'
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} -> max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} -> l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} -> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlbytes' min max l)
{ "end_col": 6, "end_line": 71, "start_col": 2, "start_line": 66 }
Prims.Tot
val size32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes_aux min max l))
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": false, "full_module": "LowParse.SLow.VLGen", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow.VLData", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Bytes", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) = size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l)
val size32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) let size32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes_aux min max l)) =
false
null
false
size32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes size32_all_bytes (U32.uint_to_t l)
{ "checked_file": "LowParse.SLow.Bytes.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Bytes.fst.checked", "LowParse.SLow.VLGen.fst.checked", "LowParse.SLow.VLData.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Bytes.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Bytes.fst" }
[ "total" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.BoundedInt.log256'", "LowParse.SLow.VLData.size32_bounded_vldata_strong'", "LowParse.Spec.Bytes.parse_all_bytes_kind", "FStar.Bytes.bytes", "LowParse.Spec.Bytes.parse_all_bytes", "LowParse.Spec.Bytes.serialize_all_bytes", "LowParse.SLow.Bytes.size32_all_bytes", "FStar.UInt32.uint_to_t", "LowParse.SLow.Base.size32", "LowParse.Spec.VLData.parse_bounded_vldata_strong_kind", "LowParse.Spec.VLData.parse_bounded_vldata_strong_t", "LowParse.Spec.Bytes.parse_bounded_vlbytes_aux", "LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux" ]
[]
module LowParse.SLow.Bytes include LowParse.Spec.Bytes include LowParse.SLow.VLData include LowParse.SLow.VLGen module B32 = FStar.Bytes module Seq = FStar.Seq module U32 = FStar.UInt32 inline_for_extraction let parse32_flbytes_gen (sz: nat { sz < 4294967296 } ) (x: B32.lbytes sz) : Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } ) = B32.hide_reveal x; x #set-options "--z3rlimit 32" inline_for_extraction let parse32_flbytes (sz: nat) (sz' : U32.t { U32.v sz' == sz } ) : Tot ( lt_pow2_32 sz; parser32 (parse_flbytes sz) ) = lt_pow2_32 sz; make_total_constant_size_parser32 sz sz' #(B32.lbytes sz) (parse_flbytes_gen sz) () (parse32_flbytes_gen sz) inline_for_extraction let serialize32_flbytes (sz: nat { sz < 4294967296 } ) : Tot (serializer32 (serialize_flbytes sz)) = fun (input: B32.lbytes sz) -> B32.hide_reveal input; (input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) inline_for_extraction let parse32_all_bytes : parser32 parse_all_bytes = fun (input: B32.bytes) -> let res = Some (input, B32.len input) in (res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) inline_for_extraction let serialize32_all_bytes : serializer32 serialize_all_bytes = fun (input: B32.bytes) -> (input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) inline_for_extraction let parse32_bounded_vlbytes' (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (parser32 (parse_bounded_vlbytes' min max l)) = parse32_synth _ (synth_bounded_vlbytes min max) (fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max)) (parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes) () inline_for_extraction let parse32_bounded_vlbytes (min: nat) (min32: U32.t { U32.v min32 == min } ) (max: nat { min <= max /\ max > 0 /\ max < 4294967296 }) (max32: U32.t { U32.v max32 == max } ) : Tot (parser32 (parse_bounded_vlbytes min max)) = parse32_bounded_vlbytes' min min32 max max32 (log256' max) inline_for_extraction let serialize32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) = serialize32_bounded_vldata_strong' min max l #_ #_ #parse_all_bytes #serialize_all_bytes serialize32_all_bytes inline_for_extraction let serialize32_bounded_vlbytes' (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (serializer32 (serialize_bounded_vlbytes' min max l)) = serialize32_synth (parse_bounded_vlbytes_aux min max l) (synth_bounded_vlbytes min max) (serialize_bounded_vlbytes_aux min max l) (serialize32_bounded_vlbytes_aux min max l) (fun (x: parse_bounded_vlbytes_t min max) -> (x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ) (fun x -> x) () inline_for_extraction let serialize32_bounded_vlbytes (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 : Tot (serializer32 (serialize_bounded_vlbytes min max)) = serialize32_bounded_vlbytes' min max (log256' max) inline_for_extraction let size32_all_bytes : size32 serialize_all_bytes = fun (input: B32.bytes) -> let res = B32.len input in (res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) inline_for_extraction let size32_bounded_vlbytes_aux (min: nat) (max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4 (l: nat { l >= log256' max /\ l <= 4 } ) : Tot (size32 (serialize_bounded_vlbytes_aux min max l))
false
false
LowParse.SLow.Bytes.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size32_bounded_vlbytes_aux (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292}) (l: nat{l >= log256' max /\ l <= 4}) : Tot (size32 (serialize_bounded_vlbytes_aux min max l))
[]
LowParse.SLow.Bytes.size32_bounded_vlbytes_aux
{ "file_name": "src/lowparse/LowParse.SLow.Bytes.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} -> l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} -> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux min max l)
{ "end_col": 21, "end_line": 146, "start_col": 2, "start_line": 137 }
Prims.Tot
val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk)
val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k =
false
null
false
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk)
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Lib.IntTypes.uint64", "Hacl.Impl.Frodo.Encode.ec", "Lib.IntTypes.to_u16", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Prims.unit", "Spec.Frodo.Lemmas.modulo_pow2_u64", "Lib.IntTypes.uint16", "Prims.eq2", "Spec.Frodo.Encode.ec1" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
[]
Hacl.Impl.Frodo.Encode.ec1
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} -> x: Lib.IntTypes.uint64 -> k: Lib.IntTypes.size_t{Lib.IntTypes.v k < 8} -> res: Lib.IntTypes.uint16 {res == Spec.Frodo.Encode.ec1 (Lib.IntTypes.v logq) (Lib.IntTypes.v b) x (Lib.IntTypes.v k)}
{ "end_col": 23, "end_line": 56, "start_col": 2, "start_line": 54 }
Prims.Tot
val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k}
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ec logq b a = a <<. (logq -. b)
val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a =
false
null
false
a <<. (logq -. b)
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Lib.IntTypes.uint16", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Prims.pow2", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Subtraction_Dot", "Prims.eq2", "Spec.Frodo.Encode.ec" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k}
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k}
[]
Hacl.Impl.Frodo.Encode.ec
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} -> k: Lib.IntTypes.uint16{Lib.IntTypes.v k < Prims.pow2 (Lib.IntTypes.v b)} -> r: Lib.IntTypes.uint16{r == Spec.Frodo.Encode.ec (Lib.IntTypes.v logq) (Lib.IntTypes.v b) k}
{ "end_col": 19, "end_line": 30, "start_col": 2, "start_line": 30 }
Prims.Tot
val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c}
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1)
val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c =
false
null
false
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1)
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Lib.IntTypes.uint16", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u16", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.size", "Prims.eq2", "Spec.Frodo.Encode.dc" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c}
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c}
[]
Hacl.Impl.Frodo.Encode.dc
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} -> c: Lib.IntTypes.uint16 -> r: Lib.IntTypes.uint16{r == Spec.Frodo.Encode.dc (Lib.IntTypes.v logq) (Lib.IntTypes.v b) c}
{ "end_col": 34, "end_line": 42, "start_col": 17, "start_line": 40 }
FStar.HyperStack.ST.Stack
val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_encode2 logq b n a i x res = [@ inline_let] let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k) )
val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) let frodo_key_encode2 logq b n a i x res =
true
null
false
[@@ inline_let ]let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k))
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Lib.IntTypes.uint64", "Hacl.Impl.Matrix.matrix_t", "Lib.Buffer.loop1", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.mset", "Hacl.Impl.Frodo.Encode.ec1", "Prims.unit", "Lib.LoopCombinators.unfold_repeati", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Spec.Frodo.Encode.frodo_key_encode0", "Lib.IntTypes.uint8" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x inline_for_extraction noextract private val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
[]
Hacl.Impl.Frodo.Encode.frodo_key_encode2
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} -> x: Lib.IntTypes.uint64 -> res: Hacl.Impl.Matrix.matrix_t n n -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 3, "end_line": 108, "start_col": 2, "start_line": 101 }
FStar.HyperStack.ST.Stack
val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_encode logq b n a res = let h0 = ST.get () in [@ inline_let] let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let x = frodo_key_encode1 logq b n a i in frodo_key_encode2 logq b n a i x res )
val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) let frodo_key_encode logq b n a res =
true
null
false
let h0 = ST.get () in [@@ inline_let ]let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let x = frodo_key_encode1 logq b n a i in frodo_key_encode2 logq b n a i x res)
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Hacl.Impl.Matrix.matrix_t", "Lib.Buffer.loop1", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Frodo.Encode.frodo_key_encode2", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Impl.Frodo.Encode.frodo_key_encode1", "Lib.IntTypes.uint64", "Lib.LoopCombinators.unfold_repeati", "Lib.Sequence.lseq", "Lib.IntTypes.U16", "Prims.op_Multiply", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Spec.Frodo.Encode.frodo_key_encode2", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x inline_for_extraction noextract private val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) let frodo_key_encode2 logq b n a i x res = [@ inline_let] let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k) ) val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
[]
Hacl.Impl.Frodo.Encode.frodo_key_encode
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) -> res: Hacl.Impl.Matrix.matrix_t n n -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 3, "end_line": 134, "start_col": 37, "start_line": 125 }
FStar.HyperStack.ST.Stack
val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x
val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i =
true
null
false
let h0 = ST.get () in push_frame (); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get () in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame (); x
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Lib.IntTypes.uint64", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.ByteBuffer.uint_from_bytes_le", "Lib.IntTypes.uint_t", "Lib.Buffer.update_sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "Prims._assert", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "Lib.Sequence.sub", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.U8", "Lib.Buffer.sub", "Lib.IntTypes.mk_int", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
[]
Hacl.Impl.Frodo.Encode.frodo_key_encode1
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint64
{ "end_col": 3, "end_line": 81, "start_col": 36, "start_line": 71 }
FStar.HyperStack.ST.Stack
val frodo_key_decode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_decode logq b n a res = [@ inline_let] let spec h0 = S.frodo_key_decode2 (v logq) (v b) (v n) (as_seq h0 a) in let h0 = ST.get() in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let templong = frodo_key_decode2 logq b n a i in frodo_key_decode1 logq b n i templong res )
val frodo_key_decode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a)) let frodo_key_decode logq b n a res =
true
null
false
[@@ inline_let ]let spec h0 = S.frodo_key_decode2 (v logq) (v b) (v n) (as_seq h0 a) in let h0 = ST.get () in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let templong = frodo_key_decode2 logq b n a i in frodo_key_decode1 logq b n i templong res)
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Lib.Buffer.loop1", "Lib.IntTypes.uint8", "Hacl.Impl.Frodo.Encode.frodo_key_decode1", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Impl.Frodo.Encode.frodo_key_decode2", "Lib.IntTypes.uint64", "Lib.LoopCombinators.unfold_repeati", "Lib.Sequence.lseq", "Lib.IntTypes.U8", "Prims.op_Division", "Prims.op_Multiply", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Spec.Frodo.Encode.frodo_key_decode2", "Hacl.Impl.Matrix.elem" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x inline_for_extraction noextract private val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) let frodo_key_encode2 logq b n a i x res = [@ inline_let] let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k) ) val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) [@"c_inline"] let frodo_key_encode logq b n a res = let h0 = ST.get () in [@ inline_let] let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let x = frodo_key_encode1 logq b n a i in frodo_key_encode2 logq b n a i x res ) inline_for_extraction noextract private val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) let frodo_key_decode1 logq b n i templong res = push_frame(); let v8 = create (size 8) (u8 0) in uint_to_bytes_le v8 templong; let tmp = sub v8 (size 0) b in update_sub res (i *! b) b tmp; pop_frame() inline_for_extraction noextract private val frodo_key_decode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == Loops.repeat_gen 8 S.decode_templong_t (S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0)) let frodo_key_decode2 logq b n a i = push_frame(); let templong = create (size 1) (u64 0) in [@ inline_let] let refl h i : GTot uint64 = bget h templong 0 in [@ inline_let] let footprint i = loc templong in [@ inline_let] let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in let h0 = ST.get () in assert (bget h0 templong 0 == u64 0); loop h0 (size 8) S.decode_templong_t refl footprint spec (fun k -> Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k); let aik = mget a i k in templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k)) ); let templong = templong.(size 0) in pop_frame(); templong val frodo_key_decode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a)) [@"c_inline"]
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_decode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a))
[]
Hacl.Impl.Frodo.Encode.frodo_key_decode
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> a: Hacl.Impl.Matrix.matrix_t n n -> res: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 3, "end_line": 217, "start_col": 2, "start_line": 209 }
FStar.HyperStack.ST.Stack
val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_decode1 logq b n i templong res = push_frame(); let v8 = create (size 8) (u8 0) in uint_to_bytes_le v8 templong; let tmp = sub v8 (size 0) b in update_sub res (i *! b) b tmp; pop_frame()
val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) let frodo_key_decode1 logq b n i templong res =
true
null
false
push_frame (); let v8 = create (size 8) (u8 0) in uint_to_bytes_le v8 templong; let tmp = sub v8 (size 0) b in update_sub res (i *! b) b tmp; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Lib.IntTypes.uint64", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Buffer.update_sub", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Lib.IntTypes.uint_t", "Lib.ByteBuffer.uint_to_bytes_le", "Lib.IntTypes.U64", "Lib.IntTypes.mk_int", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x inline_for_extraction noextract private val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) let frodo_key_encode2 logq b n a i x res = [@ inline_let] let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k) ) val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) [@"c_inline"] let frodo_key_encode logq b n a res = let h0 = ST.get () in [@ inline_let] let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let x = frodo_key_encode1 logq b n a i in frodo_key_encode2 logq b n a i x res ) inline_for_extraction noextract private val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res))
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res))
[]
Hacl.Impl.Frodo.Encode.frodo_key_decode1
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} -> templong: Lib.IntTypes.uint64 -> res: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 13, "end_line": 156, "start_col": 2, "start_line": 151 }
FStar.HyperStack.ST.Stack
val frodo_key_decode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == Loops.repeat_gen 8 S.decode_templong_t (S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0))
[ { "abbrev": true, "full_module": "Spec.Frodo.Encode", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_key_decode2 logq b n a i = push_frame(); let templong = create (size 1) (u64 0) in [@ inline_let] let refl h i : GTot uint64 = bget h templong 0 in [@ inline_let] let footprint i = loc templong in [@ inline_let] let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in let h0 = ST.get () in assert (bget h0 templong 0 == u64 0); loop h0 (size 8) S.decode_templong_t refl footprint spec (fun k -> Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k); let aik = mget a i k in templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k)) ); let templong = templong.(size 0) in pop_frame(); templong
val frodo_key_decode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == Loops.repeat_gen 8 S.decode_templong_t (S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0)) let frodo_key_decode2 logq b n a i =
true
null
false
push_frame (); let templong = create (size 1) (u64 0) in [@@ inline_let ]let refl h i : GTot uint64 = bget h templong 0 in [@@ inline_let ]let footprint i = loc templong in [@@ inline_let ]let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in let h0 = ST.get () in assert (bget h0 templong 0 == u64 0); loop h0 (size 8) S.decode_templong_t refl footprint spec (fun k -> Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k); let aik = mget a i k in templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k))); let templong = templong.(size 0) in pop_frame (); templong
{ "checked_file": "Hacl.Impl.Frodo.Encode.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "Spec.Frodo.Encode.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.Encode.fst" }
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "Hacl.Impl.Matrix.matrix_t", "Lib.IntTypes.uint64", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.IntTypes.size", "Lib.Buffer.loop", "Spec.Frodo.Encode.decode_templong_t", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.to_u64", "Lib.IntTypes.U16", "Hacl.Impl.Frodo.Encode.dc", "Lib.IntTypes.op_Star_Bang", "Hacl.Impl.Matrix.mget", "Hacl.Impl.Matrix.elem", "Lib.LoopCombinators.unfold_repeat_gen", "Prims._assert", "Lib.Buffer.bget", "Lib.IntTypes.u64", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Spec.Frodo.Encode.frodo_key_decode0", "Hacl.Impl.Matrix.as_matrix", "Lib.IntTypes.mk_int", "LowStar.Monotonic.Buffer.loc", "Lib.IntTypes.size_nat", "Lib.Buffer.loc", "Lib.Buffer.lbuffer_t", "Lib.Buffer.create", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.Encode open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Matrix module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence module S = Spec.Frodo.Encode #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract private val ec: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= v logq} -> k:uint16{v k < pow2 (v b)} -> r:uint16{r == S.ec (v logq) (v b) k} let ec logq b a = a <<. (logq -. b) inline_for_extraction noextract private val dc: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b < v logq} -> c:uint16 -> r:uint16{r == S.dc (v logq) (v b) c} let dc logq b c = let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in res1 &. ((u16 1 <<. b) -. u16 1) inline_for_extraction noextract private val ec1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> x:uint64 -> k:size_t{v k < 8} -> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} let ec1 logq b x k = Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b); let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in ec logq b (to_u16 rk) inline_for_extraction noextract private val frodo_key_encode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) let frodo_key_encode1 logq b n a i = let h0 = ST.get() in push_frame(); let v8 = create (size 8) (u8 0) in let chunk = sub a (i *! b) b in let h1 = ST.get() in assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b)); update_sub v8 (size 0) b chunk; let x = uint_from_bytes_le #U64 v8 in pop_frame(); x inline_for_extraction noextract private val frodo_key_encode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> i:size_t{v i < v n} -> x:uint64 -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) let frodo_key_encode2 logq b n a i x res = [@ inline_let] let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in let h0 = ST.get () in loop1 h0 (size 8) res spec (fun k -> Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k); mset res i k (ec1 logq b x k) ) val frodo_key_encode: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq} -> n:size_t{v n == 8} -> a:lbytes (n *! n *! b /. size 8) -> res:matrix_t n n -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint a res /\ as_seq h res == Spec.Matrix.create (v n) (v n)) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) [@"c_inline"] let frodo_key_encode logq b n a res = let h0 = ST.get () in [@ inline_let] let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in loop1 h0 n res spec (fun i -> Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i); let x = frodo_key_encode1 logq b n a i in frodo_key_encode2 logq b n a i x res ) inline_for_extraction noextract private val frodo_key_decode1: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> i:size_t{v i < v n} -> templong:uint64 -> res:lbytes (n *! n *! b /. size 8) -> Stack unit (requires fun h -> live h res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) let frodo_key_decode1 logq b n i templong res = push_frame(); let v8 = create (size 8) (u8 0) in uint_to_bytes_le v8 templong; let tmp = sub v8 (size 0) b in update_sub res (i *! b) b tmp; pop_frame() inline_for_extraction noextract private val frodo_key_decode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == Loops.repeat_gen 8 S.decode_templong_t (S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0))
false
false
Hacl.Impl.Frodo.Encode.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_key_decode2: logq:size_t{0 < v logq /\ v logq <= 16} -> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq} -> n:size_t{v n == 8} -> a:matrix_t n n -> i:size_t{v i < v n} -> Stack uint64 (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == Loops.repeat_gen 8 S.decode_templong_t (S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0))
[]
Hacl.Impl.Frodo.Encode.frodo_key_decode2
{ "file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> b: Lib.IntTypes.size_t {0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} -> a: Hacl.Impl.Matrix.matrix_t n n -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint64
{ "end_col": 10, "end_line": 191, "start_col": 2, "start_line": 173 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx (t: limb_t) =
false
null
false
bn_mont_ctx' t (lb t) (ll t)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.bn_mont_ctx'", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; }
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mont_ctx : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_mont_ctx
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 57, "end_line": 48, "start_col": 29, "start_line": 48 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k)
let freeable (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
false
null
false
B.freeable k /\ freeable_s h (B.deref h k)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Prims.l_and", "LowStar.Monotonic.Buffer.freeable", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.freeable_s", "LowStar.Monotonic.Buffer.deref", "Prims.logical" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freeable : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical
[]
Hacl.Bignum.MontArithmetic.freeable
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical
{ "end_col": 44, "end_line": 91, "start_col": 2, "start_line": 91 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u32 =
false
null
false
bn_mont_ctx' U32 (lb U32) (ll U32)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.MontArithmetic.bn_mont_ctx'", "Lib.IntTypes.U32", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mont_ctx_u32 : Type0
[]
Hacl.Bignum.MontArithmetic.bn_mont_ctx_u32
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 56, "end_line": 50, "start_col": 22, "start_line": 50 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
let pbn_mont_ctx_u64 =
false
null
false
B.pointer bn_mont_ctx_u64
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "LowStar.Buffer.pointer", "Hacl.Bignum.MontArithmetic.bn_mont_ctx_u64" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pbn_mont_ctx_u64 : Type0
[]
Hacl.Bignum.MontArithmetic.pbn_mont_ctx_u64
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 48, "end_line": 59, "start_col": 23, "start_line": 59 }
Prims.GTot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
let footprint (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
false
null
false
let open B in loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.footprint_s", "LowStar.Monotonic.Buffer.deref", "LowStar.Monotonic.Buffer.loc" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val footprint : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.GTot LowStar.Monotonic.Buffer.loc
[]
Hacl.Bignum.MontArithmetic.footprint
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 68, "end_line": 101, "start_col": 2, "start_line": 101 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
let pbn_mont_ctx (t: limb_t) =
false
null
false
B.pointer (bn_mont_ctx t)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "LowStar.Buffer.pointer", "Hacl.Bignum.MontArithmetic.bn_mont_ctx" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pbn_mont_ctx : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.pbn_mont_ctx
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 55, "end_line": 54, "start_col": 30, "start_line": 54 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
let bn_mont_ctx_u64 =
false
null
false
bn_mont_ctx' U64 (lb U64) (ll U64)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.MontArithmetic.bn_mont_ctx'", "Lib.IntTypes.U64", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mont_ctx_u64 : Type0
[]
Hacl.Bignum.MontArithmetic.bn_mont_ctx_u64
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 56, "end_line": 51, "start_col": 22, "start_line": 51 }
Prims.GTot
val as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t)
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k)
val as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) let as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
false
null
false
as_ctx h (B.deref h k)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.MontArithmetic.as_ctx", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t)
[]
Hacl.Bignum.MontArithmetic.as_pctx
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.GTot (Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t)
{ "end_col": 24, "end_line": 105, "start_col": 2, "start_line": 105 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k)
let pbn_mont_ctx_inv (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
false
null
false
B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "Hacl.Bignum.MontArithmetic.footprint_s", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx_inv", "Prims.logical" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pbn_mont_ctx_inv : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical
[]
Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical
{ "end_col": 33, "end_line": 111, "start_col": 2, "start_line": 109 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
let pbn_mont_ctx_u32 =
false
null
false
B.pointer bn_mont_ctx_u32
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "LowStar.Buffer.pointer", "Hacl.Bignum.MontArithmetic.bn_mont_ctx_u32" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pbn_mont_ctx_u32 : Type0
[]
Hacl.Bignum.MontArithmetic.pbn_mont_ctx_u32
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 48, "end_line": 57, "start_col": 23, "start_line": 57 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1))
let bn_field_free_st (t: limb_t) =
false
null
false
k: pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> let open B in modifies (footprint h0 k) h0 h1)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Hacl.Bignum.MontArithmetic.freeable", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "LowStar.Monotonic.Buffer.modifies", "Hacl.Bignum.MontArithmetic.footprint" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_free_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_free_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 40, "end_line": 173, "start_col": 34, "start_line": 167 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64
let ll (t: limb_t) =
false
null
false
match t with | U32 -> uint32 | U64 -> uint64
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.uint32", "Lib.IntTypes.uint64" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ll : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.ll
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 17, "end_line": 36, "start_col": 2, "start_line": 34 }
Prims.GTot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n
let bn_v_n (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
false
null
false
let k1 = B.deref h k in let n:lbignum t k1.len = k1.n in bn_v h n
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Monotonic.Buffer.deref", "LowStar.Buffer.trivial_preorder", "Prims.nat" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k)
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_v_n : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.GTot Prims.nat
[]
Hacl.Bignum.MontArithmetic.bn_v_n
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.GTot Prims.nat
{ "end_col": 10, "end_line": 81, "start_col": 51, "start_line": 78 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k)
let bn_mont_ctx_inv (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
false
null
false
let n:buffer (limb t) = k.n in let r2:buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv", "Hacl.Bignum.MontArithmetic.as_ctx", "Lib.Buffer.buffer_t", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Prims.logical" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); }
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mont_ctx_inv : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical
[]
Hacl.Bignum.MontArithmetic.bn_mont_ctx_inv
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical
{ "end_col": 32, "end_line": 74, "start_col": 59, "start_line": 70 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2
let freeable_s (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
false
null
false
let n:buffer (limb t) = k.n in let r2:buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "Prims.l_and", "LowStar.Monotonic.Buffer.freeable", "Hacl.Bignum.Definitions.limb", "LowStar.Buffer.trivial_preorder", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Prims.logical" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freeable_s : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical
[]
Hacl.Bignum.MontArithmetic.freeable_s
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical
{ "end_col": 31, "end_line": 87, "start_col": 54, "start_line": 84 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64
let lb (t: limb_t) =
false
null
false
match t with | U32 -> buffer uint32 | U64 -> buffer uint64
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.Buffer.buffer", "Lib.IntTypes.uint32", "Lib.IntTypes.uint64" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lb : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.lb
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 24, "end_line": 30, "start_col": 2, "start_line": 28 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k))
let bn_field_get_len_st (t: limb_t) =
false
null
false
k: pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.meta_len", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.MontArithmetic.bn_field_get_len", "Hacl.Bignum.MontArithmetic.as_pctx" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k)
false
true
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_get_len_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_get_len_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 45, "end_line": 120, "start_col": 37, "start_line": 115 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n))
let bn_field_check_modulus_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
n: lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.Definitions.lbignum", "Prims.bool", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims.l_and", "Lib.Buffer.modifies0", "Prims.eq2", "Hacl.Spec.Bignum.MontArithmetic.bn_field_check_modulus", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_check_modulus_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_check_modulus_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 48, "end_line": 132, "start_col": 63, "start_line": 128 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n))
let bn_field_init_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
r: HS.rid -> n: lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "FStar.Monotonic.HyperHeap.rid", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_pre", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.live", "FStar.HyperStack.ST.is_eternal_region", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "LowStar.Monotonic.Buffer.fresh_loc", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.loc_region_only", "Hacl.Bignum.MontArithmetic.freeable", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Prims.nat", "Hacl.Bignum.MontArithmetic.bn_v_n", "Hacl.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx", "Hacl.Spec.Bignum.MontArithmetic.bn_field_init" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_init_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_init_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 52, "end_line": 155, "start_col": 4, "start_line": 141 }
Prims.GTot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
let footprint_s (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
false
null
false
let n:buffer (limb t) = k.n in let r2:buffer (limb t) = k.r2 in let open B in loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "Hacl.Bignum.Definitions.limb", "LowStar.Buffer.trivial_preorder", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "LowStar.Monotonic.Buffer.loc" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k)
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val footprint_s : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.GTot LowStar.Monotonic.Buffer.loc
[]
Hacl.Bignum.MontArithmetic.footprint_s
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.GTot LowStar.Monotonic.Buffer.loc
{ "end_col": 62, "end_line": 97, "start_col": 55, "start_line": 94 }
Prims.GTot
val as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t)
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); }
val as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t) let as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
false
null
false
{ S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len) }
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "Hacl.Spec.Bignum.MontArithmetic.Mkbn_mont_ctx", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t)
[]
Hacl.Bignum.MontArithmetic.as_ctx
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.GTot (Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t)
{ "end_col": 44, "end_line": 66, "start_col": 2, "start_line": 63 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_one_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> oneM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h oneM /\ B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\ bn_v h1 oneM < bn_v_n h0 k /\ as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
let bn_field_one_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> oneM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h oneM /\ B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\ bn_v h1 oneM < bn_v_n h0 k /\ as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_one" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_one_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_one_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 52, "end_line": 341, "start_col": 4, "start_line": 330 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
let bn_field_add_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_add" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_add_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_add_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 80, "end_line": 244, "start_col": 4, "start_line": 226 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
let bn_from_field_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> a: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_from_field" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_from_field_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_from_field_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 65, "end_line": 217, "start_col": 4, "start_line": 204 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
let bn_to_field_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> a: lbignum t len -> aM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_to_field" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_field_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_to_field_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 63, "end_line": 195, "start_col": 4, "start_line": 182 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
let bn_field_sqr_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> cM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_sqr" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_sqr_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_sqr_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 65, "end_line": 321, "start_col": 4, "start_line": 307 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
let bn_field_sub_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_sub" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_sub_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_sub_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 80, "end_line": 271, "start_col": 4, "start_line": 253 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
let bn_field_mul_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_mul" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_mul_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_mul_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 80, "end_line": 298, "start_col": 4, "start_line": 280 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_inv_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> aInvM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ Euclid.is_prime (bn_v_n h k) /\ 0 < bn_v h aM /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h aInvM /\ disjoint aM aInvM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aInvM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aInvM) h0 h1 /\ bn_v h1 aInvM < bn_v_n h0 k /\ as_seq h1 aInvM == S.bn_field_inv (as_pctx h0 k) (as_seq h0 aM))
let bn_field_inv_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> aInvM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ Euclid.is_prime (bn_v_n h k) /\ 0 < bn_v h aM /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h aInvM /\ disjoint aM aInvM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aInvM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aInvM) h0 h1 /\ bn_v h1 aInvM < bn_v_n h0 k /\ as_seq h1 aInvM == S.bn_field_inv (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "FStar.Math.Euclid.is_prime", "Hacl.Bignum.MontArithmetic.bn_v_n", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_inv" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_one_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> oneM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h oneM /\ B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\ bn_v h1 oneM < bn_v_n h0 k /\ as_seq h1 oneM == S.bn_field_one (as_pctx h0 k)) inline_for_extraction noextract val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_exp_consttime_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) inline_for_extraction noextract val bn_field_exp_consttime: #t:limb_t -> km:BM.mont t -> bn_field_exp_consttime_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_exp_vartime_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) inline_for_extraction noextract val bn_field_exp_vartime: #t:limb_t -> km:BM.mont t -> bn_field_exp_vartime_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_inv_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_inv_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 68, "end_line": 419, "start_col": 4, "start_line": 404 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_exp_consttime_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
let bn_field_exp_consttime_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> bBits: size_t -> b: lbignum t (blocks0 bBits (size (bits t))) -> resM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Prims.pow2", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_exp_consttime" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_one_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> oneM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h oneM /\ B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\ bn_v h1 oneM < bn_v_n h0 k /\ as_seq h1 oneM == S.bn_field_one (as_pctx h0 k)) inline_for_extraction noextract val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_exp_consttime_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_exp_consttime_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 101, "end_line": 368, "start_col": 4, "start_line": 350 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_field_exp_vartime_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
let bn_field_exp_vartime_st (t: limb_t) (len: BN.meta_len t) =
false
null
false
k: pbn_mont_ctx t -> aM: lbignum t len -> bBits: size_t -> b: lbignum t (blocks0 bBits (size (bits t))) -> resM: lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.MontArithmetic.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Euclid.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.MontArithmetic.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "LowStar.Monotonic.Buffer.deref", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "Prims.pow2", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "LowStar.Monotonic.Buffer.loc_disjoint", "Hacl.Bignum.MontArithmetic.footprint", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.buffer", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.MontArithmetic.bn_field_exp_vartime" ]
[]
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module Euclid = FStar.Math.Euclid module S = Hacl.Spec.Bignum.MontArithmetic module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val _align_fsti : unit inline_for_extraction noextract let lb (t:limb_t) = match t with | U32 -> buffer uint32 | U64 -> buffer uint64 inline_for_extraction noextract let ll (t:limb_t) = match t with | U32 -> uint32 | U64 -> uint64 inline_for_extraction noeq type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = { len: BN.meta_len t; n: x:a{length #MUT #(limb t) x == v len}; mu: b; r2: x:a{length #MUT #(limb t) x == v len}; } inline_for_extraction noextract let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) inline_for_extraction noextract let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) inline_for_extraction noextract let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 inline_for_extraction noextract let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 inline_for_extraction noextract let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = { S.len = v k.len; S.n = as_seq h (k.n <: lbignum t k.len); S.mu = k.mu; S.r2 = as_seq h (k.r2 <: lbignum t k.len); } inline_for_extraction noextract let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) inline_for_extraction noextract let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = let k1 = B.deref h k in let n : lbignum t k1.len = k1.n in bn_v h n inline_for_extraction noextract let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.freeable n /\ B.freeable r2 inline_for_extraction noextract let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.freeable k /\ freeable_s h (B.deref h k) inline_for_extraction noextract let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) = let n : buffer (limb t) = k.n in let r2 : buffer (limb t) = k.r2 in B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) inline_for_extraction noextract let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) inline_for_extraction noextract let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) = as_ctx h (B.deref h k) inline_for_extraction noextract let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) = B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\ bn_mont_ctx_inv h (B.deref h k) inline_for_extraction noextract let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t -> Stack (BN.meta_len t) (requires fun h -> pbn_mont_ctx_inv h k) (ensures fun h0 r h1 -> h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) inline_for_extraction noextract val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t inline_for_extraction noextract let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> Stack bool (requires fun h -> live h n) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) inline_for_extraction noextract val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_init_st (t:limb_t) (len:BN.meta_len t) = r:HS.rid -> n:lbignum t len -> ST (pbn_mont_ctx t) (requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r) (ensures fun h0 res h1 -> B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\ B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\ (B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\ S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) inline_for_extraction noextract val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len inline_for_extraction noextract let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t -> ST unit (requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k) (ensures fun h0 _ h1 -> B.(modifies (footprint h0 k) h0 h1)) inline_for_extraction noextract val bn_field_free: #t:limb_t -> bn_field_free_st t inline_for_extraction noextract let bn_to_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> a:lbignum t len -> aM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\ as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) inline_for_extraction noextract val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_from_field_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\ live h aM /\ disjoint a aM /\ B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\ as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_add_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> cM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h cM /\ eq_or_disjoint aM cM /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\ as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) inline_for_extraction noextract val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_one_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> oneM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h oneM /\ B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\ bn_v h1 oneM < bn_v_n h0 k /\ as_seq h1 oneM == S.bn_field_one (as_pctx h0 k)) inline_for_extraction noextract val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len inline_for_extraction noextract let bn_field_exp_consttime_st (t:limb_t) (len:BN.meta_len t) = k:pbn_mont_ctx t -> aM:lbignum t len -> bBits:size_t -> b:lbignum t (blocks0 bBits (size (bits t))) -> resM:lbignum t len -> Stack unit (requires fun h -> (B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ bn_v h b < pow2 (v bBits) /\ live h aM /\ live h b /\ live h resM /\ disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\ B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\ B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t))))) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ bn_v h1 resM < bn_v_n h0 k /\ as_seq h1 resM == S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) inline_for_extraction noextract val bn_field_exp_consttime: #t:limb_t -> km:BM.mont t -> bn_field_exp_consttime_st t km.BM.bn.BN.len inline_for_extraction noextract
false
false
Hacl.Bignum.MontArithmetic.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_field_exp_vartime_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
[]
Hacl.Bignum.MontArithmetic.bn_field_exp_vartime_st
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
{ "end_col": 99, "end_line": 395, "start_col": 4, "start_line": 377 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lbytes len = lbuffer uint8 len
let lbytes len =
false
null
false
lbuffer uint8 len
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lbytes : len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Impl.P256.Verify.lbytes
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> Type0
{ "end_col": 34, "end_line": 26, "start_col": 17, "start_line": 26 }
FStar.HyperStack.ST.Stack
val load_signature (r_q s_q:felem) (sign_r sign_s:lbytes 32ul) : Stack bool (requires fun h -> live h sign_r /\ live h sign_s /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q sign_r /\ disjoint r_q sign_s /\ disjoint s_q sign_r /\ disjoint s_q sign_s) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in as_nat h1 r_q = r_q_nat /\ as_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.order && 0 < s_q_nat && s_q_nat < S.order)))
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_signature r_q s_q sign_r sign_s = bn_from_bytes_be4 r_q sign_r; bn_from_bytes_be4 s_q sign_s; let is_r_valid = bn_is_lt_order_and_gt_zero_mask4 r_q in let is_s_valid = bn_is_lt_order_and_gt_zero_mask4 s_q in Hacl.Bignum.Base.unsafe_bool_of_limb is_r_valid && Hacl.Bignum.Base.unsafe_bool_of_limb is_s_valid
val load_signature (r_q s_q:felem) (sign_r sign_s:lbytes 32ul) : Stack bool (requires fun h -> live h sign_r /\ live h sign_s /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q sign_r /\ disjoint r_q sign_s /\ disjoint s_q sign_r /\ disjoint s_q sign_s) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in as_nat h1 r_q = r_q_nat /\ as_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.order && 0 < s_q_nat && s_q_nat < S.order))) let load_signature r_q s_q sign_r sign_s =
true
null
false
bn_from_bytes_be4 r_q sign_r; bn_from_bytes_be4 s_q sign_s; let is_r_valid = bn_is_lt_order_and_gt_zero_mask4 r_q in let is_s_valid = bn_is_lt_order_and_gt_zero_mask4 s_q in Hacl.Bignum.Base.unsafe_bool_of_limb is_r_valid && Hacl.Bignum.Base.unsafe_bool_of_limb is_s_valid
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Bignum.felem", "Hacl.Impl.P256.Verify.lbytes", "FStar.UInt32.__uint_to_t", "Prims.op_AmpAmp", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Lib.IntTypes.U64", "Prims.bool", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Hacl.Impl.P256.Scalar.bn_is_lt_order_and_gt_zero_mask4", "Lib.IntTypes.uint64", "Prims.unit", "Hacl.Impl.P256.Bignum.bn_from_bytes_be4" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) [@CInline] let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame () inline_for_extraction noextract val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order)) let ecdsa_verification_get_u12 u1 u2 r s z = push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); //assert (as_nat h2 sinv * SM.qmont_R_inv % S.order == //S.qinv (as_nat h1 sinv * SM.qmont_R_inv % S.order)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame () inline_for_extraction noextract val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verify_finv p r_q = push_frame (); let x = create_felem () in to_aff_point_x x p; qmod_short x x; let res = bn_is_eq_vartime4 x r_q in pop_frame (); res inline_for_extraction noextract val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verification_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_double_g res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (from_mont_point (as_point_nat h1 res)) == S.to_aff_point (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)))); SL.lemma_aff_is_point_at_inf (from_mont_point (as_point_nat h1 res)); SL.lemma_aff_is_point_at_inf (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk))); let b = if is_point_at_inf_vartime res then false else ecdsa_verify_finv res r in pop_frame (); b inline_for_extraction noextract val load_signature (r_q s_q:felem) (sign_r sign_s:lbytes 32ul) : Stack bool (requires fun h -> live h sign_r /\ live h sign_s /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q sign_r /\ disjoint r_q sign_s /\ disjoint s_q sign_r /\ disjoint s_q sign_s) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in as_nat h1 r_q = r_q_nat /\ as_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.order && 0 < s_q_nat && s_q_nat < S.order)))
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_signature (r_q s_q:felem) (sign_r sign_s:lbytes 32ul) : Stack bool (requires fun h -> live h sign_r /\ live h sign_s /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q sign_r /\ disjoint r_q sign_s /\ disjoint s_q sign_r /\ disjoint s_q sign_s) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in as_nat h1 r_q = r_q_nat /\ as_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.order && 0 < s_q_nat && s_q_nat < S.order)))
[]
Hacl.Impl.P256.Verify.load_signature
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r_q: Hacl.Impl.P256.Bignum.felem -> s_q: Hacl.Impl.P256.Bignum.felem -> sign_r: Hacl.Impl.P256.Verify.lbytes 32ul -> sign_s: Hacl.Impl.P256.Verify.lbytes 32ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 49, "end_line": 153, "start_col": 2, "start_line": 148 }
FStar.HyperStack.ST.Stack
val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order)
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame ()
val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) let qmul_mont sinv b res =
true
null
false
let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = ((as_nat h1 sinv * as_nat h1 tmp) * SM.qmont_R_inv) % S.order); pop_frame ()
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Bignum.felem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Hacl.Impl.P256.Bignum.as_nat", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.P256.Montgomery.qmont_R_inv", "Spec.P256.PointOps.order", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Prims.eq2", "Prims.nat", "Hacl.Spec.P256.Montgomery.from_qmont", "Hacl.Impl.P256.Scalar.from_qmont", "Hacl.Impl.P256.Bignum.create_felem", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order)
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order)
[]
Hacl.Impl.P256.Verify.qmul_mont
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
sinv: Hacl.Impl.P256.Bignum.felem -> b: Hacl.Impl.P256.Bignum.felem -> res: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 48, "start_col": 26, "start_line": 38 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_finv p r_q = push_frame (); let x = create_felem () in to_aff_point_x x p; qmod_short x x; let res = bn_is_eq_vartime4 x r_q in pop_frame (); res
val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verify_finv p r_q =
true
null
false
push_frame (); let x = create_felem () in to_aff_point_x x p; qmod_short x x; let res = bn_is_eq_vartime4 x r_q in pop_frame (); res
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Point.point", "Hacl.Impl.P256.Bignum.felem", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.P256.Bignum.bn_is_eq_vartime4", "Hacl.Impl.P256.Scalar.qmod_short", "Hacl.Impl.P256.Point.to_aff_point_x", "Hacl.Impl.P256.Bignum.create_felem", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) [@CInline] let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame () inline_for_extraction noextract val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order)) let ecdsa_verification_get_u12 u1 u2 r s z = push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); //assert (as_nat h2 sinv * SM.qmont_R_inv % S.order == //S.qinv (as_nat h1 sinv * SM.qmont_R_inv % S.order)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame () inline_for_extraction noextract val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
[]
Hacl.Impl.P256.Verify.ecdsa_verify_finv
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Hacl.Impl.P256.Point.point -> r: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 97, "start_col": 2, "start_line": 91 }
FStar.HyperStack.ST.Stack
val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order))
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verification_get_u12 u1 u2 r s z = push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); //assert (as_nat h2 sinv * SM.qmont_R_inv % S.order == //S.qinv (as_nat h1 sinv * SM.qmont_R_inv % S.order)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame ()
val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order)) let ecdsa_verification_get_u12 u1 u2 r s z =
true
null
false
push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame ()
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Bignum.felem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.P256.Verify.qmul_mont", "Hacl.Spec.P256.Montgomery.qmont_inv_mul_lemma", "Hacl.Impl.P256.Bignum.as_nat", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qinv", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Qinv.qinv", "Hacl.Impl.P256.Bignum.create_felem", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) [@CInline] let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame () inline_for_extraction noextract val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order))
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order))
[]
Hacl.Impl.P256.Verify.ecdsa_verification_get_u12
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u1: Hacl.Impl.P256.Bignum.felem -> u2: Hacl.Impl.P256.Bignum.felem -> r: Hacl.Impl.P256.Bignum.felem -> s: Hacl.Impl.P256.Bignum.felem -> z: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 77, "start_col": 2, "start_line": 64 }
FStar.HyperStack.ST.Stack
val ecdsa_verify_msg_as_qelem: m_q:felem -> public_key:lbuffer uint8 64ul -> signature_r:lbuffer uint8 32ul -> signature_s:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h m_q /\ as_nat h m_q < S.order) (ensures fun h0 result h1 -> modifies0 h0 h1 /\ result == S.ecdsa_verify_msg_as_qelem (as_nat h0 m_q) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s))
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verify_msg_as_qelem m_q public_key signature_r signature_s = push_frame (); let tmp = create 28ul (u64 0) in let pk = sub tmp 0ul 12ul in let r_q = sub tmp 12ul 4ul in let s_q = sub tmp 16ul 4ul in let u1 = sub tmp 20ul 4ul in let u2 = sub tmp 24ul 4ul in let is_pk_valid = load_point_vartime pk public_key in let is_rs_valid = load_signature r_q s_q signature_r signature_s in let res = if not (is_pk_valid && is_rs_valid) then false else begin ecdsa_verification_get_u12 u1 u2 r_q s_q m_q; ecdsa_verification_cmpr r_q pk u1 u2 end in pop_frame (); res
val ecdsa_verify_msg_as_qelem: m_q:felem -> public_key:lbuffer uint8 64ul -> signature_r:lbuffer uint8 32ul -> signature_s:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h m_q /\ as_nat h m_q < S.order) (ensures fun h0 result h1 -> modifies0 h0 h1 /\ result == S.ecdsa_verify_msg_as_qelem (as_nat h0 m_q) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s)) let ecdsa_verify_msg_as_qelem m_q public_key signature_r signature_s =
true
null
false
push_frame (); let tmp = create 28ul (u64 0) in let pk = sub tmp 0ul 12ul in let r_q = sub tmp 12ul 4ul in let s_q = sub tmp 16ul 4ul in let u1 = sub tmp 20ul 4ul in let u2 = sub tmp 24ul 4ul in let is_pk_valid = load_point_vartime pk public_key in let is_rs_valid = load_signature r_q s_q signature_r signature_s in let res = if not (is_pk_valid && is_rs_valid) then false else (ecdsa_verification_get_u12 u1 u2 r_q s_q m_q; ecdsa_verification_cmpr r_q pk u1 u2) in pop_frame (); res
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Bignum.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Prims.op_Negation", "Prims.op_AmpAmp", "Hacl.Impl.P256.Verify.ecdsa_verification_cmpr", "Hacl.Impl.P256.Verify.ecdsa_verification_get_u12", "Hacl.Impl.P256.Verify.load_signature", "Hacl.Impl.P256.Point.load_point_vartime", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint64", "Lib.Buffer.create", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) [@CInline] let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame () inline_for_extraction noextract val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order)) let ecdsa_verification_get_u12 u1 u2 r s z = push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); //assert (as_nat h2 sinv * SM.qmont_R_inv % S.order == //S.qinv (as_nat h1 sinv * SM.qmont_R_inv % S.order)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame () inline_for_extraction noextract val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verify_finv p r_q = push_frame (); let x = create_felem () in to_aff_point_x x p; qmod_short x x; let res = bn_is_eq_vartime4 x r_q in pop_frame (); res inline_for_extraction noextract val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verification_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_double_g res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (from_mont_point (as_point_nat h1 res)) == S.to_aff_point (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)))); SL.lemma_aff_is_point_at_inf (from_mont_point (as_point_nat h1 res)); SL.lemma_aff_is_point_at_inf (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk))); let b = if is_point_at_inf_vartime res then false else ecdsa_verify_finv res r in pop_frame (); b inline_for_extraction noextract val load_signature (r_q s_q:felem) (sign_r sign_s:lbytes 32ul) : Stack bool (requires fun h -> live h sign_r /\ live h sign_s /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q sign_r /\ disjoint r_q sign_s /\ disjoint s_q sign_r /\ disjoint s_q sign_s) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in as_nat h1 r_q = r_q_nat /\ as_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.order && 0 < s_q_nat && s_q_nat < S.order))) let load_signature r_q s_q sign_r sign_s = bn_from_bytes_be4 r_q sign_r; bn_from_bytes_be4 s_q sign_s; let is_r_valid = bn_is_lt_order_and_gt_zero_mask4 r_q in let is_s_valid = bn_is_lt_order_and_gt_zero_mask4 s_q in Hacl.Bignum.Base.unsafe_bool_of_limb is_r_valid && Hacl.Bignum.Base.unsafe_bool_of_limb is_s_valid val ecdsa_verify_msg_as_qelem: m_q:felem -> public_key:lbuffer uint8 64ul -> signature_r:lbuffer uint8 32ul -> signature_s:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h m_q /\ as_nat h m_q < S.order) (ensures fun h0 result h1 -> modifies0 h0 h1 /\ result == S.ecdsa_verify_msg_as_qelem (as_nat h0 m_q) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s)) [@CInline]
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verify_msg_as_qelem: m_q:felem -> public_key:lbuffer uint8 64ul -> signature_r:lbuffer uint8 32ul -> signature_s:lbuffer uint8 32ul -> Stack bool (requires fun h -> live h public_key /\ live h signature_r /\ live h signature_s /\ live h m_q /\ as_nat h m_q < S.order) (ensures fun h0 result h1 -> modifies0 h0 h1 /\ result == S.ecdsa_verify_msg_as_qelem (as_nat h0 m_q) (as_seq h0 public_key) (as_seq h0 signature_r) (as_seq h0 signature_s))
[]
Hacl.Impl.P256.Verify.ecdsa_verify_msg_as_qelem
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m_q: Hacl.Impl.P256.Bignum.felem -> public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> signature_r: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> signature_s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 5, "end_line": 188, "start_col": 2, "start_line": 171 }
FStar.HyperStack.ST.Stack
val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
[ { "abbrev": true, "full_module": "Hacl.Impl.P256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ecdsa_verification_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_double_g res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (from_mont_point (as_point_nat h1 res)) == S.to_aff_point (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)))); SL.lemma_aff_is_point_at_inf (from_mont_point (as_point_nat h1 res)); SL.lemma_aff_is_point_at_inf (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk))); let b = if is_point_at_inf_vartime res then false else ecdsa_verify_finv res r in pop_frame (); b
val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verification_cmpr r pk u1 u2 =
true
null
false
push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_double_g res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (from_mont_point (as_point_nat h1 res)) == S.to_aff_point (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)))); SL.lemma_aff_is_point_at_inf (from_mont_point (as_point_nat h1 res)); SL.lemma_aff_is_point_at_inf (S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk))); let b = if is_point_at_inf_vartime res then false else ecdsa_verify_finv res r in pop_frame (); b
{ "checked_file": "Hacl.Impl.P256.Verify.fst.checked", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Qinv.fsti.checked", "Hacl.Impl.P256.PointMul.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Verify.fst" }
[]
[ "Hacl.Impl.P256.Bignum.felem", "Hacl.Impl.P256.Point.point", "Prims.bool", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.P256.Verify.ecdsa_verify_finv", "Hacl.Impl.P256.Point.is_point_at_inf_vartime", "Spec.P256.Lemmas.lemma_aff_is_point_at_inf", "Spec.P256.point_mul_double_g", "Hacl.Impl.P256.Bignum.as_nat", "Hacl.Impl.P256.Point.from_mont_point", "Hacl.Impl.P256.Point.as_point_nat", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.aff_point", "Spec.P256.PointOps.to_aff_point", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.PointMul.point_mul_double_g", "Hacl.Impl.P256.Point.create_point", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.P256.Verify open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Point open Hacl.Impl.P256.Scalar open Hacl.Impl.P256.PointMul module BSeq = Lib.ByteSequence module S = Spec.P256 module SL = Spec.P256.Lemmas module SM = Hacl.Spec.P256.Montgomery module QI = Hacl.Impl.P256.Qinv #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len val qmul_mont: sinv:felem -> b:felem -> res:felem -> Stack unit (requires fun h -> live h sinv /\ live h b /\ live h res /\ disjoint sinv res /\ disjoint b res /\ as_nat h sinv < S.order /\ as_nat h b < S.order) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_nat h1 res < S.order /\ as_nat h1 res = (as_nat h0 sinv * SM.from_qmont (as_nat h0 b) * SM.qmont_R_inv) % S.order) [@CInline] let qmul_mont sinv b res = let h0 = ST.get () in push_frame (); let tmp = create_felem () in from_qmont tmp b; let h1 = ST.get () in assert (as_nat h1 tmp == SM.from_qmont (as_nat h0 b)); qmul res sinv tmp; let h2 = ST.get () in assert (as_nat h2 res = (as_nat h1 sinv * as_nat h1 tmp * SM.qmont_R_inv) % S.order); pop_frame () inline_for_extraction noextract val ecdsa_verification_get_u12: u1:felem -> u2:felem -> r:felem -> s:felem -> z:felem -> Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ as_nat h s < S.order /\ as_nat h z < S.order /\ as_nat h r < S.order) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (as_nat h0 s) in as_nat h1 u1 == sinv * as_nat h0 z % S.order /\ as_nat h1 u2 == sinv * as_nat h0 r % S.order)) let ecdsa_verification_get_u12 u1 u2 r s z = push_frame (); let h0 = ST.get () in let sinv = create_felem () in QI.qinv sinv s; let h1 = ST.get () in assert (qmont_as_nat h1 sinv == S.qinv (qmont_as_nat h0 s)); //assert (as_nat h2 sinv * SM.qmont_R_inv % S.order == //S.qinv (as_nat h1 sinv * SM.qmont_R_inv % S.order)); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 z); SM.qmont_inv_mul_lemma (as_nat h0 s) (as_nat h1 sinv) (as_nat h0 r); qmul_mont sinv z u1; qmul_mont sinv r u2; pop_frame () inline_for_extraction noextract val ecdsa_verify_finv: p:point -> r:felem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ 0 < as_nat h r /\ as_nat h r < S.order) //not (S.is_point_at_inf (from_mont_point (as_point_nat h p)))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = from_mont_point (as_point_nat h0 p) in b <==> (S.fmul _X (S.finv _Z) % S.order = as_nat h0 r))) let ecdsa_verify_finv p r_q = push_frame (); let x = create_felem () in to_aff_point_x x p; qmod_short x x; let res = bn_is_eq_vartime4 x r_q in pop_frame (); res inline_for_extraction noextract val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
false
false
Hacl.Impl.P256.Verify.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ecdsa_verification_cmpr: r:felem -> pk:point -> u1:felem -> u2:felem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ as_nat h u1 < S.order /\ as_nat h u2 < S.order /\ 0 < as_nat h r /\ as_nat h r < S.order) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (as_nat h0 u1) (as_nat h0 u2) (from_mont_point (as_point_nat h0 pk)) in b <==> (if S.is_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.order = as_nat h0 r)))
[]
Hacl.Impl.P256.Verify.ecdsa_verification_cmpr
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Hacl.Impl.P256.Bignum.felem -> pk: Hacl.Impl.P256.Point.point -> u1: Hacl.Impl.P256.Bignum.felem -> u2: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.bool
{ "end_col": 3, "end_line": 132, "start_col": 2, "start_line": 115 }
Prims.Tot
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM =
false
null
false
mont_reduction pbits rLen n mu aM
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_reduction" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.from_mont
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> Prims.nat
{ "end_col": 35, "end_line": 225, "start_col": 2, "start_line": 225 }
Prims.Tot
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a =
false
null
false
mont_mul pbits rLen n mu a a
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_mul" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_sqr
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> Prims.nat
{ "end_col": 30, "end_line": 234, "start_col": 2, "start_line": 234 }
Prims.Tot
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b =
false
null
false
let c = a * b in mont_reduction pbits rLen n mu c
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_reduction", "Prims.int", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_mul
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat -> Prims.nat
{ "end_col": 34, "end_line": 230, "start_col": 34, "start_line": 228 }
Prims.Tot
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c =
false
null
false
let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Prims.op_LessThan", "Prims.bool", "Prims.op_Subtraction", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> Prims.nat
{ "end_col": 34, "end_line": 215, "start_col": 38, "start_line": 213 }
Prims.Tot
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu =
false
null
false
let r2 = pow2 ((2 * pbits) * rLen) % n in mont_reduction pbits rLen n mu r2
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_reduction", "Prims.int", "Prims.op_Modulus", "Prims.pow2", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_one
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> Prims.nat
{ "end_col": 35, "end_line": 239, "start_col": 30, "start_line": 237 }
Prims.Tot
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a =
false
null
false
let r2 = pow2 ((2 * pbits) * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_reduction", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.to_mont
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> Prims.nat
{ "end_col": 34, "end_line": 221, "start_col": 31, "start_line": 218 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1
let mont_pre (pbits rLen n: pos) (mu: nat) =
false
null
false
(1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.logical" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n)
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_pre : pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> Prims.logical
[]
Hacl.Spec.Montgomery.Lemmas.mont_pre
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> Prims.logical
{ "end_col": 47, "end_line": 456, "start_col": 2, "start_line": 455 }
Prims.Tot
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c =
false
null
false
let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + (n * q_i) * pow2 (pbits * i) in res
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Modulus", "Prims.op_Division" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_f
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.nat{i < rLen} -> c: Prims.nat -> Prims.nat
{ "end_col": 5, "end_line": 204, "start_col": 42, "start_line": 200 }
Prims.Tot
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c =
false
null
false
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.LoopCombinators.repeati", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res
false
true
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> Prims.nat
{ "end_col": 5, "end_line": 210, "start_col": 49, "start_line": 207 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n)
val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
false
null
true
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + (n * q_i) * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims._assert", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound_aux", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.pos{i <= rLen} -> c: Prims.nat -> res0: Prims.nat -> FStar.Pervasives.Lemma (requires res0 <= c + (Prims.pow2 (pbits * (i - 1)) - 1) * n) (ensures Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (Prims.pow2 (pbits * i) - 1) * n)
{ "end_col": 48, "end_line": 287, "start_col": 62, "start_line": 281 }
Prims.Pure
val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k)
val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n =
false
null
false
let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == (n * k / pow2 a) * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[]
[ "Prims.pos", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "Prims.op_Minus", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.pow2", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.cancel_mul_div", "FStar.Math.Lemmas.lemma_mult_lt_left", "Prims.op_Division", "Prims.op_Modulus", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n)
[]
Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> n: Prims.pos -> Prims.Pure (Prims.int * Prims.int)
{ "end_col": 12, "end_line": 144, "start_col": 22, "start_line": 134 }
FStar.Pervasives.Lemma
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 =
false
null
true
let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then (Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); ())
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "FStar.Math.Lemmas.small_division_lemma_2", "Prims.bool", "Prims.eq2", "Prims.op_Division", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
[]
Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_d
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> n: Prims.pos -> k1: Prims.pos -> FStar.Pervasives.Lemma (requires n * k1 % Prims.pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / Prims.pow2 (a - 1) in d % 2 == (match n * k1 % Prims.pow2 a < Prims.pow2 (a - 1) with | true -> 0 | _ -> 1)))
{ "end_col": 10, "end_line": 28, "start_col": 35, "start_line": 21 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1)))
val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 =
false
null
true
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + (n * q_i) * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1)))
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.paren_mul_right", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.op_Modulus", "Prims.op_Division", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modn
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.pos{i <= rLen} -> c: Prims.nat -> res0: Prims.nat -> FStar.Pervasives.Lemma (requires res0 % n == c % n) (ensures Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n)
{ "end_col": 73, "end_line": 365, "start_col": 61, "start_line": 359 }
FStar.Pervasives.Lemma
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu =
false
null
true
mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_n0", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
[]
Hacl.Spec.Montgomery.Lemmas.mont_preconditions
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos{1 < n} -> mu: Prims.nat -> FStar.Pervasives.Lemma (requires n % 2 = 1 /\ (1 + (n % Prims.pow2 pbits) * mu) % Prims.pow2 pbits == 0) (ensures (let r = Prims.pow2 (pbits * rLen) in let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in r * d % n == 1 /\ (1 + n * mu) % Prims.pow2 pbits == 0) <: Type0))
{ "end_col": 34, "end_line": 194, "start_col": 2, "start_line": 193 }
FStar.Pervasives.Lemma
val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r
val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n =
false
null
true
assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.lemma_div_le", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "FStar.Math.Lemmas.cancel_mul_div", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n)
[]
Hacl.Spec.Montgomery.Lemmas.lemma_fits_c_lt_rn
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Prims.nat -> r: Prims.pos -> n: Prims.pos -> FStar.Pervasives.Lemma (requires c < r * n) (ensures (c - n) / r < n)
{ "end_col": 38, "end_line": 482, "start_col": 2, "start_line": 479 }
FStar.Pervasives.Lemma
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 =
false
null
true
if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.op_LessThan", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.bool", "FStar.Math.Lemmas.pow2_double_sum", "Prims.unit" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a))
[]
Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_bound
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> n: Prims.pos -> k1: Prims.pos -> FStar.Pervasives.Lemma (requires n * k1 % Prims.pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < Prims.pow2 (a - 1)) (ensures (let k = (match n * k1 % Prims.pow2 a < Prims.pow2 (a - 1) with | true -> k1 | _ -> k1 + Prims.pow2 (a - 1)) <: Prims.int in k < Prims.pow2 a))
{ "end_col": 39, "end_line": 107, "start_col": 2, "start_line": 104 }
Prims.Pure
val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end
val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n =
false
null
false
if a = 1 then 1 else let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[]
[ "Prims.pos", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_bound", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_Addition", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a)
[ "recursion" ]
Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> n: Prims.pos -> Prims.Pure Prims.pos
{ "end_col": 9, "end_line": 125, "start_col": 2, "start_line": 117 }
FStar.Pervasives.Lemma
val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1
val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu =
false
null
true
to_mont_lemma pbits rLen n mu 1
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.to_mont_lemma", "Prims.unit" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n)
[]
Hacl.Spec.Montgomery.Lemmas.mont_one_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu) (ensures Hacl.Spec.Montgomery.Lemmas.mont_one pbits rLen n mu == 1 * Prims.pow2 (pbits * rLen) % n)
{ "end_col": 33, "end_line": 618, "start_col": 2, "start_line": 618 }
FStar.Pervasives.Lemma
val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n
val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else (assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n); Math.Lemmas.small_mod res1 n
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "FStar.Math.Lemmas.small_mod", "Prims.unit", "Prims.op_LessThan", "Prims.bool", "Hacl.Spec.Montgomery.Lemmas.lemma_fits_c_lt_rn", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Subtraction", "Prims.eq2", "Prims.op_Modulus", "FStar.Math.Lemmas.lemma_mod_sub", "Prims.op_GreaterThanOrEqual", "Prims.l_and", "FStar.Mul.op_Star", "Prims.op_Addition", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ c < Prims.pow2 (pbits * rLen) * n) (ensures (let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in Hacl.Spec.Montgomery.Lemmas.mont_reduction pbits rLen n mu c == c * d % n) <: Type0))
{ "end_col": 30, "end_line": 506, "start_col": 44, "start_line": 491 }
FStar.Pervasives.Lemma
val from_mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let oneM = mont_one pbits rLen n mu in let one = from_mont pbits rLen n mu oneM in one == 1))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont_one_lemma pbits rLen n mu = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let oneM = mont_one pbits rLen n mu in mont_one_lemma pbits rLen n mu; assert (oneM == r % n); let one = from_mont pbits rLen n mu oneM in from_mont_lemma pbits rLen n mu oneM; assert (one == oneM * d % n); assert (one == (r % n) * d % n); lemma_mont_id n r d 1; assert (one == 1 % n); Math.Lemmas.small_mod 1 n
val from_mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let oneM = mont_one pbits rLen n mu in let one = from_mont pbits rLen n mu oneM in one == 1)) let from_mont_one_lemma pbits rLen n mu =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let oneM = mont_one pbits rLen n mu in mont_one_lemma pbits rLen n mu; assert (oneM == r % n); let one = from_mont pbits rLen n mu oneM in from_mont_lemma pbits rLen n mu oneM; assert (one == oneM * d % n); assert (one == (r % n) * d % n); lemma_mont_id n r d 1; assert (one == 1 % n); Math.Lemmas.small_mod 1 n
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "FStar.Math.Lemmas.small_mod", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Montgomery.Lemmas.lemma_mont_id", "FStar.Mul.op_Star", "Hacl.Spec.Montgomery.Lemmas.from_mont_lemma", "Hacl.Spec.Montgomery.Lemmas.from_mont", "Hacl.Spec.Montgomery.Lemmas.mont_one_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_one", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; } val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n)) let from_mont_add_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM + bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; (==) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; (==) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n)) let from_mont_sub_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM - bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM - bM) d n } (aM - bM) * d % n; (==) { Math.Lemmas.distributivity_sub_left aM bM d } (aM * d - bM * d) % n; (==) { Math.Lemmas.lemma_mod_plus_distr_l (aM * d) (- bM * d) n } (aM * d % n - bM * d) % n; (==) { Math.Lemmas.lemma_mod_sub_distr (aM * d % n) (bM * d) n } (aM * d % n - bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n)) let from_mont_mul_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in mont_mul_lemma pbits rLen n mu aM bM; assert (cM == aM * bM * d % n); from_mont_lemma pbits rLen n mu cM; calc (==) { //c cM * d % n; (==) { } (aM * bM * d % n) * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * bM * d) d n } aM * bM * d * d % n; (==) { Math.Lemmas.paren_mul_right aM bM d } aM * (bM * d) * d % n; (==) { Math.Lemmas.paren_mul_right aM (bM * d) d; Math.Lemmas.swap_mul (bM * d) d; Math.Lemmas.paren_mul_right aM d (bM * d) } aM * d * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (bM * d) n } (aM * d % n) * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (bM * d) n } (aM * d % n) * (bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let oneM = mont_one pbits rLen n mu in let one = from_mont pbits rLen n mu oneM in one == 1))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let oneM = mont_one pbits rLen n mu in let one = from_mont pbits rLen n mu oneM in one == 1))
[]
Hacl.Spec.Montgomery.Lemmas.from_mont_one_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu) (ensures (let oneM = Hacl.Spec.Montgomery.Lemmas.mont_one pbits rLen n mu in let one = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu oneM in one == 1))
{ "end_col": 27, "end_line": 824, "start_col": 41, "start_line": 810 }
FStar.Pervasives.Lemma
val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c
val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c =
false
null
true
let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_eval_lemma", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_fits_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu) (ensures (let res = Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r pbits rLen n mu c in let r = Prims.pow2 (pbits * rLen) in let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in res % n == c * d % n /\ res <= (c - n) / r + n) <: Type0))
{ "end_col": 58, "end_line": 469, "start_col": 55, "start_line": 465 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0
val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 =
false
null
true
mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modn", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.pos{i <= rLen} -> c: Prims.nat -> res0: Prims.nat -> FStar.Pervasives.Lemma (requires res0 % n == c % n /\ res0 % Prims.pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (Prims.pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % Prims.pow2 pbits == 0) (ensures (let res = Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % Prims.pow2 (pbits * i) == 0 /\ res <= c + (Prims.pow2 (pbits * i) - 1) * n))
{ "end_col": 57, "end_line": 379, "start_col": 2, "start_line": 377 }
FStar.Pervasives.Lemma
val from_to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in mont_pre pbits rLen n mu /\ a < r)) (ensures (let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in a' == a % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_to_mont_lemma pbits rLen n mu a = let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; assert (r * d % n == 1); to_mont_lemma pbits rLen n mu a; assert (aM == a * r % n); from_mont_lemma pbits rLen n mu aM; assert (a' == aM * d % n); lemma_mont_id n r d a; assert (a' == a % n)
val from_to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in mont_pre pbits rLen n mu /\ a < r)) (ensures (let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in a' == a % n)) let from_to_mont_lemma pbits rLen n mu a =
false
null
true
let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; assert (r * d % n == 1); to_mont_lemma pbits rLen n mu a; assert (aM == a * r % n); from_mont_lemma pbits rLen n mu aM; assert (a' == aM * d % n); lemma_mont_id n r d a; assert (a' == a % n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.lemma_mont_id", "FStar.Mul.op_Star", "Hacl.Spec.Montgomery.Lemmas.from_mont_lemma", "Hacl.Spec.Montgomery.Lemmas.to_mont_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2", "Hacl.Spec.Montgomery.Lemmas.from_mont", "Hacl.Spec.Montgomery.Lemmas.to_mont" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; } val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n)) let from_mont_add_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM + bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; (==) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; (==) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n)) let from_mont_sub_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM - bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM - bM) d n } (aM - bM) * d % n; (==) { Math.Lemmas.distributivity_sub_left aM bM d } (aM * d - bM * d) % n; (==) { Math.Lemmas.lemma_mod_plus_distr_l (aM * d) (- bM * d) n } (aM * d % n - bM * d) % n; (==) { Math.Lemmas.lemma_mod_sub_distr (aM * d % n) (bM * d) n } (aM * d % n - bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n)) let from_mont_mul_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in mont_mul_lemma pbits rLen n mu aM bM; assert (cM == aM * bM * d % n); from_mont_lemma pbits rLen n mu cM; calc (==) { //c cM * d % n; (==) { } (aM * bM * d % n) * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * bM * d) d n } aM * bM * d * d % n; (==) { Math.Lemmas.paren_mul_right aM bM d } aM * (bM * d) * d % n; (==) { Math.Lemmas.paren_mul_right aM (bM * d) d; Math.Lemmas.swap_mul (bM * d) d; Math.Lemmas.paren_mul_right aM d (bM * d) } aM * d * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (bM * d) n } (aM * d % n) * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (bM * d) n } (aM * d % n) * (bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let oneM = mont_one pbits rLen n mu in let one = from_mont pbits rLen n mu oneM in one == 1)) let from_mont_one_lemma pbits rLen n mu = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let oneM = mont_one pbits rLen n mu in mont_one_lemma pbits rLen n mu; assert (oneM == r % n); let one = from_mont pbits rLen n mu oneM in from_mont_lemma pbits rLen n mu oneM; assert (one == oneM * d % n); assert (one == (r % n) * d % n); lemma_mont_id n r d 1; assert (one == 1 % n); Math.Lemmas.small_mod 1 n val from_to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in mont_pre pbits rLen n mu /\ a < r)) (ensures (let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in a' == a % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in mont_pre pbits rLen n mu /\ a < r)) (ensures (let aM = to_mont pbits rLen n mu a in let a' = from_mont pbits rLen n mu aM in a' == a % n))
[]
Hacl.Spec.Montgomery.Lemmas.from_to_mont_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> FStar.Pervasives.Lemma (requires (let r = Prims.pow2 (pbits * rLen) in Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ a < r)) (ensures (let aM = Hacl.Spec.Montgomery.Lemmas.to_mont pbits rLen n mu a in let a' = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM in a' == a % n))
{ "end_col": 22, "end_line": 850, "start_col": 42, "start_line": 835 }
FStar.Pervasives.Lemma
val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; }
val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a =
false
null
true
calc ( == ) { (a * r % n) * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } (a * r) * d % n; ( == ) { (Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n) } a * (r * d % n) % n; ( == ) { assert (r * d % n == 1) } a % n; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.nat", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.paren_mul_right", "Prims._assert" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n)
[]
Hacl.Spec.Montgomery.Lemmas.lemma_mont_id
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.pos -> r: Prims.pos -> d: Prims.int{r * d % n == 1} -> a: Prims.nat -> FStar.Pervasives.Lemma (ensures (a * r % n) * d % n == a % n)
{ "end_col": 3, "end_line": 635, "start_col": 2, "start_line": 627 }
FStar.Pervasives.Lemma
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n =
false
null
true
let d, k = eea_pow2_odd (pbits * rLen) n in calc ( == ) { pow2 (pbits * rLen) * d % n; ( == ) { () } (1 + k * n) % n; ( == ) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; ( == ) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.int", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Math.Lemmas.small_mod", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
[]
Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos{1 < n} -> FStar.Pervasives.Lemma (requires n % 2 = 1) (ensures (let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in Prims.pow2 (pbits * rLen) * d % n == 1) <: Type0))
{ "end_col": 43, "end_line": 162, "start_col": 39, "start_line": 151 }
FStar.Pervasives.Lemma
val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; }
val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n =
false
null
true
calc ( == ) { (a * (b % n)) * c % n; ( == ) { () } ((b % n) * a) * c % n; ( == ) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; ( == ) { Math.Lemmas.paren_mul_right b a c } (a * b) * c % n; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.pos", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n)
[]
Hacl.Spec.Montgomery.Lemmas.lemma_mod_mul_distr3
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> c: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures (a * (b % n)) * c % n == (a * b) * c % n)
{ "end_col": 3, "end_line": 539, "start_col": 2, "start_line": 529 }
FStar.Pervasives.Lemma
val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM
val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM =
false
null
true
mont_reduction_lemma pbits rLen n mu aM
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma", "Prims.unit" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n))
[]
Hacl.Spec.Montgomery.Lemmas.from_mont_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ aM < Prims.pow2 (pbits * rLen)) (ensures (let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM == aM * d % n) <: Type0))
{ "end_col": 41, "end_line": 608, "start_col": 2, "start_line": 608 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i
val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 =
false
null
true
let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_mod_pbits", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr_aux", "FStar.Math.Lemmas.lemma_div_exact", "Prims.int", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Division", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f", "Prims.op_Subtraction" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.pos{i <= rLen} -> res0: Prims.nat -> FStar.Pervasives.Lemma (requires res0 % Prims.pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % Prims.pow2 pbits == 0) (ensures Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 % Prims.pow2 (pbits * i) == 0)
{ "end_col": 52, "end_line": 351, "start_col": 59, "start_line": 343 }
FStar.Pervasives.Lemma
val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; }
val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a =
false
null
true
let r0 = 1 * r % n in let r1 = a * r % n in calc ( == ) { (r1 * r0) * d % n; ( == ) { (Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n) } r1 * (r0 * d % n) % n; ( == ) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.int", "Prims.b2t", "Prims.op_Equality", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "Hacl.Spec.Montgomery.Lemmas.lemma_mont_id" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat ->
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n)
[]
Hacl.Spec.Montgomery.Lemmas.lemma_mont_mul_one
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.pos -> r: Prims.pos -> d: Prims.int{r * d % n = 1} -> a: Prims.nat -> FStar.Pervasives.Lemma (ensures (let r0 = 1 * r % n in let r1 = a * r % n in (r0 * r1) * d % n == r1 % n))
{ "end_col": 5, "end_line": 671, "start_col": 32, "start_line": 659 }
FStar.Pervasives.Lemma
val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont_add_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM + bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; (==) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; (==) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n)) let from_mont_add_lemma pbits rLen n mu aM bM =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc ( == ) { cM * d % n; ( == ) { () } ((aM + bM) % n) * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; ( == ) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; ( == ) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Hacl.Spec.Montgomery.Lemmas.from_mont_lemma", "Prims.unit", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.modulo_distributivity", "Prims._assert", "Hacl.Spec.Montgomery.Lemmas.from_mont", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; } val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n))
[]
Hacl.Spec.Montgomery.Lemmas.from_mont_add_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> bM: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu cM in let a = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM in let b = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu bM in c == (a + b) % n))
{ "end_col": 36, "end_line": 710, "start_col": 47, "start_line": 685 }
FStar.Pervasives.Lemma
val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n)
val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c =
false
null
true
let r = pow2 (pbits * rLen) in let res:nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc ( == ) { (c + (r - 1) * n) / r; ( == ) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; ( == ) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_sub_left", "Prims.squash", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.lemma_div_le", "Prims.l_and", "Prims.op_Modulus", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_lemma", "Lib.LoopCombinators.repeati", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_fits_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> FStar.Pervasives.Lemma (requires (let r = Prims.pow2 (pbits * rLen) in (1 + n * mu) % Prims.pow2 pbits == 0)) (ensures (let res = Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r pbits rLen n mu c in let r = Prims.pow2 (pbits * rLen) in res <= (c - n) / r + n))
{ "end_col": 37, "end_line": 420, "start_col": 60, "start_line": 405 }
FStar.Pervasives.Lemma
val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n)
val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a =
false
null
true
let r = pow2 (pbits * rLen) in let r2 = pow2 ((2 * pbits) * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.to_mont_eval_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Montgomery.Lemmas.mult_lt_lemma", "Hacl.Spec.Montgomery.Lemmas.mont_reduction", "Hacl.Spec.Montgomery.Lemmas.to_mont", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n)
[]
Hacl.Spec.Montgomery.Lemmas.to_mont_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ a < Prims.pow2 (pbits * rLen)) (ensures Hacl.Spec.Montgomery.Lemmas.to_mont pbits rLen n mu a == a * Prims.pow2 (pbits * rLen) % n)
{ "end_col": 26, "end_line": 598, "start_col": 37, "start_line": 586 }
FStar.Pervasives.Lemma
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu =
false
null
true
calc ( == ) { (1 + n * mu) % pow2 pbits; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + (n % pow2 pbits) * mu % pow2 pbits) % pow2 pbits; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r 1 ((n % pow2 pbits) * mu) (pow2 pbits) } (1 + (n % pow2 pbits) * mu) % pow2 pbits; ( == ) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_GreaterThan", "Prims.nat", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0)
[]
Hacl.Spec.Montgomery.Lemmas.mont_preconditions_n0
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> n: Prims.pos{n > 1} -> mu: Prims.nat -> FStar.Pervasives.Lemma (requires (1 + (n % Prims.pow2 pbits) * mu) % Prims.pow2 pbits == 0) (ensures (1 + n * mu) % Prims.pow2 pbits == 0)
{ "end_col": 41, "end_line": 181, "start_col": 2, "start_line": 170 }
FStar.Pervasives.Lemma
val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont_mul_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in mont_mul_lemma pbits rLen n mu aM bM; assert (cM == aM * bM * d % n); from_mont_lemma pbits rLen n mu cM; calc (==) { //c cM * d % n; (==) { } (aM * bM * d % n) * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * bM * d) d n } aM * bM * d * d % n; (==) { Math.Lemmas.paren_mul_right aM bM d } aM * (bM * d) * d % n; (==) { Math.Lemmas.paren_mul_right aM (bM * d) d; Math.Lemmas.swap_mul (bM * d) d; Math.Lemmas.paren_mul_right aM d (bM * d) } aM * d * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (bM * d) n } (aM * d % n) * (bM * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (bM * d) n } (aM * d % n) * (bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n)) let from_mont_mul_lemma pbits rLen n mu aM bM =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in mont_mul_lemma pbits rLen n mu aM bM; assert (cM == (aM * bM) * d % n); from_mont_lemma pbits rLen n mu cM; calc ( == ) { cM * d % n; ( == ) { () } ((aM * bM) * d % n) * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l ((aM * bM) * d) d n } ((aM * bM) * d) * d % n; ( == ) { Math.Lemmas.paren_mul_right aM bM d } (aM * (bM * d)) * d % n; ( == ) { (Math.Lemmas.paren_mul_right aM (bM * d) d; Math.Lemmas.swap_mul (bM * d) d; Math.Lemmas.paren_mul_right aM d (bM * d)) } (aM * d) * (bM * d) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (aM * d) (bM * d) n } (aM * d % n) * (bM * d) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r (aM * d % n) (bM * d) n } (aM * d % n) * (bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Hacl.Spec.Montgomery.Lemmas.from_mont_lemma", "Prims.unit", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims._assert", "Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma", "Hacl.Spec.Montgomery.Lemmas.from_mont", "Hacl.Spec.Montgomery.Lemmas.mont_mul", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; } val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n)) let from_mont_add_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM + bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; (==) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; (==) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n)) let from_mont_sub_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM - bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM - bM) d n } (aM - bM) * d % n; (==) { Math.Lemmas.distributivity_sub_left aM bM d } (aM * d - bM * d) % n; (==) { Math.Lemmas.lemma_mod_plus_distr_l (aM * d) (- bM * d) n } (aM * d % n - bM * d) % n; (==) { Math.Lemmas.lemma_mod_sub_distr (aM * d % n) (bM * d) n } (aM * d % n - bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = mont_mul pbits rLen n mu aM bM in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == a * b % n))
[]
Hacl.Spec.Montgomery.Lemmas.from_mont_mul_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> bM: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = Hacl.Spec.Montgomery.Lemmas.mont_mul pbits rLen n mu aM bM in let c = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu cM in let a = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM in let b = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu bM in c == a * b % n))
{ "end_col": 36, "end_line": 799, "start_col": 47, "start_line": 765 }
FStar.Pervasives.Lemma
val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_mont_sub_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM - bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM - bM) d n } (aM - bM) * d % n; (==) { Math.Lemmas.distributivity_sub_left aM bM d } (aM * d - bM * d) % n; (==) { Math.Lemmas.lemma_mod_plus_distr_l (aM * d) (- bM * d) n } (aM * d % n - bM * d) % n; (==) { Math.Lemmas.lemma_mod_sub_distr (aM * d % n) (bM * d) n } (aM * d % n - bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n)) let from_mont_sub_lemma pbits rLen n mu aM bM =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc ( == ) { cM * d % n; ( == ) { () } ((aM - bM) % n) * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (aM - bM) d n } (aM - bM) * d % n; ( == ) { Math.Lemmas.distributivity_sub_left aM bM d } (aM * d - bM * d) % n; ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (aM * d) (- bM * d) n } (aM * d % n - bM * d) % n; ( == ) { Math.Lemmas.lemma_mod_sub_distr (aM * d % n) (bM * d) n } (aM * d % n - bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Hacl.Spec.Montgomery.Lemmas.from_mont_lemma", "Prims.unit", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.op_Minus", "FStar.Math.Lemmas.lemma_mod_sub_distr", "Prims._assert", "Hacl.Spec.Montgomery.Lemmas.from_mont", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n) val to_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < pow2 (pbits * rLen)) (ensures to_mont pbits rLen n mu a == a * pow2 (pbits * rLen) % n) let to_mont_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in let c = a * r2 in let aM = to_mont pbits rLen n mu a in assert (aM == mont_reduction pbits rLen n mu c); mult_lt_lemma a r2 r n; assert (a * r2 < r * n); mont_reduction_lemma pbits rLen n mu c; assert (aM == c * d % n); to_mont_eval_lemma pbits rLen n mu a; assert (aM == a * r % n) /// Lemma (from_mont rLen n mu aM == aM * d % n) val from_mont_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < pow2 (pbits * rLen)) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in from_mont pbits rLen n mu aM == aM * d % n)) let from_mont_lemma pbits rLen n mu aM = mont_reduction_lemma pbits rLen n mu aM /// Lemma (mont_one pbits rLen n mu == 1 * r % n) val mont_one_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures mont_one pbits rLen n mu == 1 * pow2 (pbits * rLen) % n) let mont_one_lemma pbits rLen n mu = to_mont_lemma pbits rLen n mu 1 /// Properties of Montgomery arithmetic // from_mont (to_mont a) = a % n val lemma_mont_id: n:pos -> r:pos -> d:int{r * d % n == 1} -> a:nat -> Lemma (a * r % n * d % n == a % n) let lemma_mont_id n r d a = calc (==) { a * r % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * r) d n } a * r * d % n; (==) { Math.Lemmas.paren_mul_right a r d; Math.Lemmas.lemma_mod_mul_distr_r a (r * d) n } a * (r * d % n) % n; (==) { assert (r * d % n == 1) } a % n; } // to_mont (mont_reduction a) = a % n val lemma_mont_id1: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (a * d % n * r % n == a % n) let lemma_mont_id1 n r d a = calc (==) { ((a * d % n) * r) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * d) r n } ((a * d) * r) % n; (==) { Math.Lemmas.paren_mul_right a d r } (a * (d * r)) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (d * r) n } (a * (d * r % n)) % n; (==) { assert (r * d % n = 1) } a % n; }; assert (a * d % n * r % n == a % n) // one_M * a = a val lemma_mont_mul_one: n:pos -> r:pos -> d:int{r * d % n = 1} -> a:nat -> Lemma (let r0 = 1 * r % n in let r1 = a * r % n in r0 * r1 * d % n == r1 % n) let lemma_mont_mul_one n r d a = let r0 = 1 * r % n in let r1 = a * r % n in calc (==) { r1 * r0 * d % n; (==) { Math.Lemmas.paren_mul_right r1 r0 d; Math.Lemmas.lemma_mod_mul_distr_r r1 (r0 * d) n } r1 * (r0 * d % n) % n; (==) { lemma_mont_id n r d 1 } r1 * (1 % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r r1 1 n } r1 % n; } val from_mont_add_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a + b) % n)) let from_mont_add_lemma pbits rLen n mu aM bM = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let cM = (aM + bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in from_mont_lemma pbits rLen n mu cM; assert (c == cM * d % n); calc (==) { //c cM * d % n; (==) { } (aM + bM) % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l (aM + bM) d n } (aM + bM) * d % n; (==) { Math.Lemmas.distributivity_add_left aM bM d } (aM * d + bM * d) % n; (==) { Math.Lemmas.modulo_distributivity (aM * d) (bM * d) n } (aM * d % n + bM * d % n) % n; }; from_mont_lemma pbits rLen n mu aM; from_mont_lemma pbits rLen n mu bM val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_mont_sub_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> aM:nat -> bM:nat -> Lemma (requires mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = from_mont pbits rLen n mu cM in let a = from_mont pbits rLen n mu aM in let b = from_mont pbits rLen n mu bM in c == (a - b) % n))
[]
Hacl.Spec.Montgomery.Lemmas.from_mont_sub_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> bM: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ aM < n /\ bM < n) (ensures (let cM = (aM - bM) % n in let c = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu cM in let a = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu aM in let b = Hacl.Spec.Montgomery.Lemmas.from_mont pbits rLen n mu bM in c == (a - b) % n))
{ "end_col": 36, "end_line": 751, "start_col": 47, "start_line": 724 }
FStar.Pervasives.Lemma
val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_mont_eval_lemma pbits rLen n mu a = let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc (==) { c * d % n; (==) { } a * r2 * d % n; (==) { Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen) } a * (r * r % n) * d % n; (==) { lemma_mod_mul_distr3 a (r * r) d n } a * (r * r) * d % n; (==) { Math.Lemmas.paren_mul_right a r r } a * r * r * d % n; (==) { Math.Lemmas.paren_mul_right (a * r) r d } a * r * (r * d) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } a * r * (r * d % n) % n; (==) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n)
val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n)) let to_mont_eval_lemma pbits rLen n mu a =
false
null
true
let r = pow2 (pbits * rLen) in let r2 = pow2 ((2 * pbits) * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; let c = a * r2 in calc ( == ) { c * d % n; ( == ) { () } (a * r2) * d % n; ( == ) { (Math.Lemmas.paren_mul_right 2 pbits rLen; Math.Lemmas.pow2_plus (pbits * rLen) (pbits * rLen)) } (a * (r * r % n)) * d % n; ( == ) { lemma_mod_mul_distr3 a (r * r) d n } (a * (r * r)) * d % n; ( == ) { Math.Lemmas.paren_mul_right a r r } ((a * r) * r) * d % n; ( == ) { Math.Lemmas.paren_mul_right (a * r) r d } (a * r) * (r * d) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r (a * r) (r * d) n } (a * r) * (r * d % n) % n; ( == ) { assert (r * d % n == 1) } a * r % n; }; assert (c * d % n == a * r % n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Montgomery.Lemmas.lemma_mod_mul_distr3", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b) /// Lemma (to_mont rLen n mu a == a * r % n) val lemma_mod_mul_distr3: a:int -> b:int -> c:int -> n:pos -> Lemma (a * (b % n) * c % n == a * b * c % n) let lemma_mod_mul_distr3 a b c n = calc (==) { a * (b % n) * c % n; (==) { } (b % n) * a * c % n; (==) { Math.Lemmas.paren_mul_right (b % n) a c } (b % n) * (a * c) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l b (a * c) n } b * (a * c) % n; (==) { Math.Lemmas.paren_mul_right b a c } a * b * c % n; } val mult_lt_lemma: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a < c /\ b < d) (ensures a * b < c * d) let mult_lt_lemma a b c d = () val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_mont_eval_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let r = pow2 (pbits * rLen) in let r2 = pow2 (2 * pbits * rLen) % n in let d, _ = eea_pow2_odd (pbits * rLen) n in a * r2 * d % n == a * r % n))
[]
Hacl.Spec.Montgomery.Lemmas.to_mont_eval_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu) (ensures (let r = Prims.pow2 (pbits * rLen) in let r2 = Prims.pow2 ((2 * pbits) * rLen) % n in let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in (a * r2) * d % n == a * r % n) <: Type0))
{ "end_col": 33, "end_line": 579, "start_col": 42, "start_line": 555 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; }
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 =
false
null
true
let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc ( == ) { ((res0 / b1) * b1 + (n * q_i) * b1) % pow2 (pbits * i); ( == ) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } ((res0 / b1 + n * q_i) % pow2 pbits) * b1; ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } ((res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits) * b1; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.distributivity_add_left", "Prims.squash", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims._assert", "FStar.Math.Lemmas.distributivity_sub_right" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr_aux
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> n: Prims.pos -> q_i: Prims.nat -> i: Prims.pos -> res0: Prims.nat -> FStar.Pervasives.Lemma (ensures (let b1 = Prims.pow2 (pbits * (i - 1)) in ((res0 / b1) * b1 + (n * q_i) * b1) % Prims.pow2 (pbits * i) == ((res0 / b1 % Prims.pow2 pbits + n * q_i) % Prims.pow2 pbits) * b1))
{ "end_col": 5, "end_line": 335, "start_col": 59, "start_line": 322 }
FStar.Pervasives.Lemma
val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end
val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c =
false
null
true
let res:nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else (unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0:nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Lib.LoopCombinators.eq_repeati0", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f", "Prims.bool", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step", "Prims.unit", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_lemma", "Prims.op_Subtraction", "Lib.LoopCombinators.repeati", "Lib.LoopCombinators.unfold_repeati" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
[ "recursion" ]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> i: Prims.nat{i <= rLen} -> c: Prims.nat -> FStar.Pervasives.Lemma (requires (1 + n * mu) % Prims.pow2 pbits == 0) (ensures (let res = Lib.LoopCombinators.repeati i (Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % Prims.pow2 (pbits * i) == 0 /\ res <= c + (Prims.pow2 (pbits * i) - 1) * n))
{ "end_col": 58, "end_line": 395, "start_col": 55, "start_line": 387 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; }
val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 =
false
null
true
let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc ( <= ) { res0 + (n * q_i) * b1; ( <= ) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + (n * (pow2 pbits - 1)) * b1; ( == ) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); ( == ) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); ( == ) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); ( == ) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; ( <= ) { () } c + (b1 - 1) * n + n * b - n * b1; ( == ) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; ( == ) { () } c - n + b * n; ( == ) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.distributivity_sub_right" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound_aux
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> n: Prims.pos -> q_i: Prims.nat{q_i < Prims.pow2 pbits} -> i: Prims.pos -> c: Prims.nat -> res0: Prims.nat -> FStar.Pervasives.Lemma (requires res0 <= c + (Prims.pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + (n * q_i) * Prims.pow2 (pbits * (i - 1)) <= c + (Prims.pow2 (pbits * i) - 1) * n)
{ "end_col": 3, "end_line": 273, "start_col": 62, "start_line": 249 }
FStar.Pervasives.Lemma
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; }
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i =
false
null
true
let r = pow2 pbits in let q_i = mu * c_i % r in calc ( == ) { (c_i + n * q_i) % r; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; ( == ) { () } (c_i + n * (mu * c_i % r) % r) % r; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; ( == ) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + (n * mu) * c_i) % r; ( == ) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } (((1 + n * mu) % r) * c_i) % r; ( == ) { assert ((1 + n * mu) % r = 0) } 0; }
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_mod_pbits
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> c_i: Prims.nat -> FStar.Pervasives.Lemma (requires (1 + n * mu) % Prims.pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % Prims.pow2 pbits)) % Prims.pow2 pbits == 0)
{ "end_col": 3, "end_line": 315, "start_col": 56, "start_line": 294 }
FStar.Pervasives.Lemma
val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n)
val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c =
false
null
true
let r = pow2 (pbits * rLen) in let res:nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc ( == ) { res / r % n; ( == ) { assert (r * d % n == 1) } (res / r) * (r * d % n) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } (res / r) * (r * d) % n; ( == ) { Math.Lemmas.paren_mul_right (res / r) r d } ((res / r) * r) * d % n; ( == ) { Math.Lemmas.div_exact_r res r } res * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l res d n } (res % n) * d % n; ( == ) { assert (res % n == c % n) } (c % n) * d % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Prims._assert", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Division", "FStar.Mul.op_Star", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.div_exact_r", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Prims.op_Subtraction", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_lemma", "Lib.LoopCombinators.repeati", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_f", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r_eval_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> d: Prims.int -> mu: Prims.nat -> c: Prims.nat -> FStar.Pervasives.Lemma (requires (let r = Prims.pow2 (pbits * rLen) in (1 + n * mu) % Prims.pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n))
{ "end_col": 35, "end_line": 451, "start_col": 62, "start_line": 429 }
FStar.Pervasives.Lemma
val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n))
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Montgomery", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mont_mul_lemma pbits rLen n mu a b = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b)
val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n)) let mont_mul_lemma pbits rLen n mu a b =
false
null
true
let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_mul pbits rLen n mu a b in Math.Lemmas.lemma_mult_lt_sqr a b n; assert (a * b < n * n); Math.Lemmas.lemma_mult_lt_right n n r; assert (a * b < r * n); mont_reduction_lemma pbits rLen n mu (a * b)
{ "checked_file": "Hacl.Spec.Montgomery.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Montgomery.Lemmas.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.int", "Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma", "FStar.Mul.op_Star", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.lemma_mult_lt_sqr", "Hacl.Spec.Montgomery.Lemmas.mont_mul", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd", "Prims.pow2" ]
[]
module Hacl.Spec.Montgomery.Lemmas open FStar.Mul open Lib.IntTypes open Lib.LoopCombinators (** https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf https://eprint.iacr.org/2011/239.pdf https://eprint.iacr.org/2017/1057.pdf *) #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let d = n * k1 / pow2 (a - 1) in d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) let eea_pow2_odd_k_lemma_d a n k1 = let d = n * k1 / pow2 (a - 1) in Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a; assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1)); if d % 2 = 0 then begin Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1)); assert (n * k1 % pow2 a < pow2 (a - 1)); () end #push-options "--z3rlimit 100" val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in n * k % pow2 a == 1)) let eea_pow2_odd_k_lemma a n k1 = let d = n * k1 / pow2 (a - 1) in let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in calc (==) { n * k1; (==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) } 1 + d * pow2 (a - 1); (==) { Math.Lemmas.euclidean_division_definition d 2 } 1 + (d / 2 * 2 + d % 2) * pow2 (a - 1); (==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) } 1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1); (==) { Math.Lemmas.pow2_plus 1 (a - 1) } 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1); }; assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1)); if n * k1 % pow2 a < pow2 (a - 1) then begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 0); calc (==) { n * k % pow2 a; (==) { } (1 + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a = 1); () end else begin eea_pow2_odd_k_lemma_d a n k1; assert (d % 2 = 1); assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1)); //assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1)); calc (==) { n * k % pow2 a; (==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) } (n * k1 + n * pow2 (a - 1)) % pow2 a; (==) { } (1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) } (1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) } (1 + (1 + n) * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.lemma_div_exact (1 + n) 2 } (1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a; (==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) } (1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a; (==) { Math.Lemmas.pow2_plus 1 (a - 1)} (1 + (1 + n) / 2 * pow2 a) % pow2 a; (==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) } 1 % pow2 a; (==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) } 1; }; assert (n * k % pow2 a == 1); () end #pop-options val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma (requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1)) (ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in k < pow2 a)) let eea_pow2_odd_k_lemma_bound a n k1 = if n * k1 % pow2 a < pow2 (a - 1) then Math.Lemmas.pow2_lt_compat a (a - 1) else Math.Lemmas.pow2_double_sum (a - 1) val eea_pow2_odd_k: a:pos -> n:pos -> Pure pos (requires n % 2 = 1) (ensures fun k -> n * k % pow2 a == 1 /\ k < pow2 a) let rec eea_pow2_odd_k a n = if a = 1 then 1 else begin let k1 = eea_pow2_odd_k (a - 1) n in assert (n * k1 % pow2 (a - 1) == 1); let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in eea_pow2_odd_k_lemma a n k1; eea_pow2_odd_k_lemma_bound a n k1; assert (n * k % pow2 a == 1); k end val eea_pow2_odd: a:pos -> n:pos -> Pure (tuple2 int int) (requires n % 2 = 1) (ensures fun (d, k) -> pow2 a * d == 1 + k * n /\ - d < n) let eea_pow2_odd a n = let k = eea_pow2_odd_k a n in assert (n * k % pow2 a == 1); assert (n * k == n * k / pow2 a * pow2 a + 1); let d = n * k / pow2 a in Math.Lemmas.lemma_mult_lt_left n k (pow2 a); assert (n * k < n * pow2 a); Math.Lemmas.cancel_mul_div n (pow2 a); assert (d < n); assert (n * k == d * pow2 a + 1); (- d, - k) val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma (requires n % 2 = 1) (ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) let mont_preconditions_d pbits rLen n = let d, k = eea_pow2_odd (pbits * rLen) n in calc (==) { pow2 (pbits * rLen) * d % n; (==) { } (1 + k * n) % n; (==) { Math.Lemmas.modulo_addition_lemma 1 n k } 1 % n; (==) { Math.Lemmas.small_mod 1 n } 1; }; assert (pow2 (pbits * rLen) * d % n == 1) val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma (requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (1 + n * mu) % pow2 pbits == 0) let mont_preconditions_n0 pbits n mu = calc (==) { (1 + n * mu) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) } (1 + n * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) } (1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits; (==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) } (1 + n % pow2 pbits * mu) % pow2 pbits; (==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) } 0; }; assert ((1 + n * mu) % pow2 pbits == 0) val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma (requires n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) (ensures (let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) let mont_preconditions pbits rLen n mu = mont_preconditions_d pbits rLen n; mont_preconditions_n0 pbits n mu /// High-level specification of Montgomery arithmetic val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat let mont_reduction_f pbits rLen n mu i c = let c_i = c / pow2 (pbits * i) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in let res = c + n * q_i * pow2 (pbits * i) in res val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction_loop_div_r pbits rLen n mu c = let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in let res = res / pow2 (pbits * rLen) in res val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat let mont_reduction pbits rLen n mu c = let res = mont_reduction_loop_div_r pbits rLen n mu c in if res < n then res else res - n val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let to_mont pbits rLen n mu a = let r2 = pow2 (2 * pbits * rLen) % n in let c = a * r2 in mont_reduction pbits rLen n mu c val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat let from_mont pbits rLen n mu aM = mont_reduction pbits rLen n mu aM val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat let mont_mul pbits rLen n mu a b = let c = a * b in mont_reduction pbits rLen n mu c val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat let mont_sqr pbits rLen n mu a = mont_mul pbits rLen n mu a a val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat let mont_one pbits rLen n mu = let r2 = pow2 (2 * pbits * rLen) % n in mont_reduction pbits rLen n mu r2 /// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in /// res % n == c * d % n /\ res <= (c - n) / r + n) val mont_reduction_lemma_step_bound_aux: pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 = let b = pow2 (pbits * i) in let b1 = pow2 (pbits * (i - 1)) in calc (<=) { res0 + n * q_i * b1; (<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) } res0 + n * (pow2 pbits - 1) * b1; (==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 } res0 + n * ((pow2 pbits - 1) * b1); (==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 } res0 + n * (pow2 pbits * b1 - b1); (==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } res0 + n * (b - b1); (==) { Math.Lemmas.distributivity_sub_right n b b1 } res0 + n * b - n * b1; (<=) { } c + (b1 - 1) * n + n * b - n * b1; (==) { Math.Lemmas.distributivity_sub_left b1 1 n } c + b1 * n - n + n * b - n * b1; (==) { } c - n + b * n; (==) { Math.Lemmas.distributivity_sub_left b 1 n } c + (b - 1) * n; } val mont_reduction_lemma_step_bound: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); mont_reduction_lemma_step_bound_aux pbits n q_i i c res0; assert (res <= c + (pow2 (pbits * i) - 1) * n) val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0) let mont_reduction_lemma_step_mod_pbits pbits n mu c_i = let r = pow2 pbits in let q_i = mu * c_i % r in calc (==) { (c_i + n * q_i) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r } (c_i + n * q_i % r) % r; (==) { } (c_i + n * (mu * c_i % r) % r) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r } (c_i + n * (mu * c_i) % r) % r; (==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r } (c_i + n * (mu * c_i)) % r; (==) { Math.Lemmas.paren_mul_right n mu c_i } (c_i + n * mu * c_i) % r; (==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i } ((1 + n * mu) * c_i) % r; (==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r } ((1 + n * mu) % r * c_i) % r; (==) { assert ((1 + n * mu) % r = 0) } 0; } val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat -> Lemma (let b1 = pow2 (pbits * (i - 1)) in (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1) let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 = let b1 = pow2 (pbits * (i - 1)) in Math.Lemmas.distributivity_sub_right pbits i 1; assert (pbits * i - pbits * (i - 1) == pbits); calc (==) { (res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i); (==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 } (res0 / b1 + n * q_i) * b1 % pow2 (pbits * i); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) } (res0 / b1 + n * q_i) % pow2 pbits * b1; (==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) } (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1; } val mont_reduction_lemma_step_modr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma (requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) let mont_reduction_lemma_step_modr pbits rLen n mu i res0 = let b1 = pow2 (pbits * (i - 1)) in let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / b1 % pow2 pbits in let q_i = mu * c_i % pow2 pbits in Math.Lemmas.lemma_div_exact res0 b1; mont_reduction_lemma_step_modr_aux pbits n q_i i res0; mont_reduction_lemma_step_mod_pbits pbits n mu c_i val mont_reduction_lemma_step_modn: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n) (ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 = let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in let q_i = mu * c_i % pow2 pbits in assert (res == res0 + n * q_i * pow2 (pbits * (i - 1))); Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1))); Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) val mont_reduction_lemma_step: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma (requires res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\ res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0) (ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let mont_reduction_lemma_step pbits rLen n mu i c res0 = mont_reduction_lemma_step_bound pbits rLen n mu i c res0; mont_reduction_lemma_step_modr pbits rLen n mu i res0; mont_reduction_lemma_step_modn pbits rLen n mu i c res0 val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma (requires (1 + n * mu) % pow2 pbits == 0) (ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n)) let rec mont_reduction_loop_lemma pbits rLen n mu i c = let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in if i = 0 then eq_repeati0 i (mont_reduction_f pbits rLen n mu) c else begin unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1); let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu (i - 1) c; mont_reduction_lemma_step pbits rLen n mu i c res0 end val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in res <= (c - n) / r + n)) let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r; assert (res / r <= (c + (r - 1) * n) / r); calc (==) { (c + (r - 1) * n) / r; (==) { Math.Lemmas.distributivity_sub_left r 1 n } (c - n + r * n) / r; (==) { Math.Lemmas.division_addition_lemma (c - n) r n } (c - n) / r + n; }; assert (res / r <= (c - n) / r + n) val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma (requires (let r = pow2 (pbits * rLen) in (1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1)) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in res % n == c * d % n)) let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c = let r = pow2 (pbits * rLen) in let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in mont_reduction_loop_lemma pbits rLen n mu rLen c; assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n); calc (==) { res / r % n; (==) { assert (r * d % n == 1) } res / r * (r * d % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n } res / r * (r * d) % n; (==) { Math.Lemmas.paren_mul_right (res / r) r d } res / r * r * d % n; (==) { Math.Lemmas.div_exact_r res r } res * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l res d n } res % n * d % n; (==) { assert (res % n == c % n) } c % n * d % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l c d n } c * d % n; }; assert (res / r % n == c * d % n) let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) = (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 val mont_reduction_loop_div_r_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu) (ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in res % n == c * d % n /\ res <= (c - n) / r + n)) let mont_reduction_loop_div_r_lemma pbits rLen n mu c = let d, _ = eea_pow2_odd (pbits * rLen) n in mont_preconditions_d pbits rLen n; mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c; mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c /// Montgomery multiplication val lemma_fits_c_lt_rn: c:nat -> r:pos -> n:pos -> Lemma (requires c < r * n) (ensures (c - n) / r < n) let lemma_fits_c_lt_rn c r n = assert (c < r * n); Math.Lemmas.cancel_mul_div n r; assert (c / r < n); Math.Lemmas.lemma_div_le (c - n) c r val mont_reduction_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> c:nat -> Lemma (requires mont_pre pbits rLen n mu /\ c < pow2 (pbits * rLen) * n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_reduction pbits rLen n mu c == c * d % n)) let mont_reduction_lemma pbits rLen n mu c = let r = pow2 (pbits * rLen) in let d, _ = eea_pow2_odd (pbits * rLen) n in let res = mont_reduction_loop_div_r pbits rLen n mu c in mont_reduction_loop_div_r_lemma pbits rLen n mu c; assert (res % n == c * d % n /\ res <= (c - n) / r + n); let res1 = if res < n then res else res - n in if res < n then () else begin assert (res1 % n == (res - n) % n); Math.Lemmas.lemma_mod_sub res n 1; assert (res1 % n == res % n); assert (res1 <= (c - n) / r); lemma_fits_c_lt_rn c r n end; Math.Lemmas.small_mod res1 n val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n))
false
false
Hacl.Spec.Montgomery.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mont_mul_lemma: pbits:pos -> rLen:pos -> n:pos -> mu:nat -> a:nat -> b:nat -> Lemma (requires mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let d, _ = eea_pow2_odd (pbits * rLen) n in mont_mul pbits rLen n mu a b == a * b * d % n))
[]
Hacl.Spec.Montgomery.Lemmas.mont_mul_lemma
{ "file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (requires Hacl.Spec.Montgomery.Lemmas.mont_pre pbits rLen n mu /\ a < n /\ b < n) (ensures (let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in (let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in Hacl.Spec.Montgomery.Lemmas.mont_mul pbits rLen n mu a b == (a * b) * d % n) <: Type0))
{ "end_col": 46, "end_line": 522, "start_col": 40, "start_line": 514 }