|
## Dataset Summary |
|
|
|
A dataset for benchmarking keyphrase extraction and generation techniques from english scientific papers. For more details about the dataset please refer the original paper - [https://dl.acm.org/doi/abs/10.1145/313238.313437](https://dl.acm.org/doi/abs/10.1145/313238.313437) |
|
|
|
Original source of the data - []() |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
- **id**: unique identifier of the document. |
|
- **document**: Whitespace separated list of words in the document. |
|
- **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all. |
|
- **extractive_keyphrases**: List of all the present keyphrases. |
|
- **abstractive_keyphrase**: List of all the absent keyphrases. |
|
|
|
|
|
### Data Splits |
|
|
|
|Split| #datapoints | |
|
|--|--| |
|
| Train | 130 | |
|
| Test | 500 | |
|
|
|
|
|
## Usage |
|
|
|
### Full Dataset |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# get entire dataset |
|
dataset = load_dataset("midas/cstr", "raw") |
|
|
|
# sample from the train split |
|
print("Sample from train dataset split") |
|
test_sample = dataset["train"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
|
|
# sample from the test split |
|
print("Sample from test dataset split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
``` |
|
**Output** |
|
|
|
```bash |
|
|
|
``` |
|
|
|
### Keyphrase Extraction |
|
```python |
|
from datasets import load_dataset |
|
|
|
# get the dataset only for keyphrase extraction |
|
dataset = load_dataset("midas/cstr", "extraction") |
|
|
|
print("Samples for Keyphrase Extraction") |
|
|
|
# sample from the train split |
|
print("Sample from train data split") |
|
test_sample = dataset["train"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("\n-----------\n") |
|
|
|
# sample from the test split |
|
print("Sample from test data split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Document BIO Tags: ", test_sample["doc_bio_tags"]) |
|
print("\n-----------\n") |
|
``` |
|
|
|
### Keyphrase Generation |
|
```python |
|
# get the dataset only for keyphrase generation |
|
dataset = load_dataset("midas/cstr", "generation") |
|
|
|
print("Samples for Keyphrase Generation") |
|
|
|
# sample from the train split |
|
print("Sample from train data split") |
|
test_sample = dataset["train"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
|
|
# sample from the test split |
|
print("Sample from test data split") |
|
test_sample = dataset["test"][0] |
|
print("Fields in the sample: ", [key for key in test_sample.keys()]) |
|
print("Tokenized Document: ", test_sample["document"]) |
|
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) |
|
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) |
|
print("\n-----------\n") |
|
``` |
|
|
|
## Citation Information |
|
``` |
|
@inproceedings{10.1145/313238.313437, |
|
author = {Witten, Ian H. and Paynter, Gordon W. and Frank, Eibe and Gutwin, Carl and Nevill-Manning, Craig G.}, |
|
title = {KEA: Practical Automatic Keyphrase Extraction}, |
|
year = {1999}, |
|
isbn = {1581131453}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/313238.313437}, |
|
doi = {10.1145/313238.313437}, |
|
booktitle = {Proceedings of the Fourth ACM Conference on Digital Libraries}, |
|
pages = {254–255}, |
|
numpages = {2}, |
|
location = {Berkeley, California, USA}, |
|
series = {DL '99} |
|
} |
|
``` |
|
|
|
## Contributions |
|
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset |
|
|