title
stringlengths 3
86
| language
stringlengths 1
35
| task
stringlengths 41
8.77k
| solution
stringlengths 60
47.6k
|
---|---|---|---|
Roman numerals/Decode | Go | Create a function that takes a Roman numeral as its argument and returns its value as a numeric decimal integer.
You don't need to validate the form of the Roman numeral.
Modern Roman numerals are written by expressing each decimal digit of the number to be encoded separately,
starting with the leftmost decimal digit and skipping any '''0'''s (zeroes).
'''1990''' is rendered as '''MCMXC''' (1000 = M, 900 = CM, 90 = XC) and
'''2008''' is rendered as '''MMVIII''' (2000 = MM, 8 = VIII).
The Roman numeral for '''1666''', '''MDCLXVI''', uses each letter in descending order.
| package main
import (
"errors"
"fmt"
)
var m = map[rune]int{
'I': 1,
'V': 5,
'X': 10,
'L': 50,
'C': 100,
'D': 500,
'M': 1000,
}
func parseRoman(s string) (r int, err error) {
if s == "" {
return 0, errors.New("Empty string")
}
is := []rune(s) // easier to convert string up front
var c0 rune // c0: roman character last read
var cv0 int // cv0: value of cv
// the key to the algorithm is to process digits from right to left
for i := len(is) - 1; i >= 0; i-- {
// read roman digit
c := is[i]
k := c == '\u0305' // unicode overbar combining character
if k {
if i == 0 {
return 0, errors.New(
"Overbar combining character invalid at position 0")
}
i--
c = is[i]
}
cv := m[c]
if cv == 0 {
if c == 0x0305 {
return 0, fmt.Errorf(
"Overbar combining character invalid at position %d", i)
} else {
return 0, fmt.Errorf(
"Character unrecognized as Roman digit: %c", c)
}
}
if k {
c = -c // convention indicating overbar
cv *= 1000
}
// handle cases of new, same, subtractive, changed, in that order.
switch {
default: // case 4: digit change
fallthrough
case c0 == 0: // case 1: no previous digit
c0 = c
cv0 = cv
case c == c0: // case 2: same digit
case cv*5 == cv0 || cv*10 == cv0: // case 3: subtractive
// handle next digit as new.
// a subtractive digit doesn't count as a previous digit.
c0 = 0
r -= cv // subtract...
continue // ...instead of adding
}
r += cv // add, in all cases except subtractive
}
return r, nil
}
func main() {
// parse three numbers mentioned in task description
for _, r := range []string{"MCMXC", "MMVIII", "MDCLXVI"} {
v, err := parseRoman(r)
if err != nil {
fmt.Println(err)
} else {
fmt.Println(r, "==", v)
}
}
} |
Roman numerals/Encode | Go | Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero.
In Roman numerals:
* 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC
* 2008 is written as 2000=MM, 8=VIII; or MMVIII
* 1666 uses each Roman symbol in descending order: MDCLXVI
| package main
import "fmt"
var (
m0 = []string{"", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"}
m1 = []string{"", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC"}
m2 = []string{"", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM"}
m3 = []string{"", "M", "MM", "MMM", "I̅V̅",
"V̅", "V̅I̅", "V̅I̅I̅", "V̅I̅I̅I̅", "I̅X̅"}
m4 = []string{"", "X̅", "X̅X̅", "X̅X̅X̅", "X̅L̅",
"L̅", "L̅X̅", "L̅X̅X̅", "L̅X̅X̅X̅", "X̅C̅"}
m5 = []string{"", "C̅", "C̅C̅", "C̅C̅C̅", "C̅D̅",
"D̅", "D̅C̅", "D̅C̅C̅", "D̅C̅C̅C̅", "C̅M̅"}
m6 = []string{"", "M̅", "M̅M̅", "M̅M̅M̅"}
)
func formatRoman(n int) (string, bool) {
if n < 1 || n >= 4e6 {
return "", false
}
// this is efficient in Go. the seven operands are evaluated,
// then a single allocation is made of the exact size needed for the result.
return m6[n/1e6] + m5[n%1e6/1e5] + m4[n%1e5/1e4] + m3[n%1e4/1e3] +
m2[n%1e3/1e2] + m1[n%100/10] + m0[n%10],
true
}
func main() {
// show three numbers mentioned in task descriptions
for _, n := range []int{1990, 2008, 1666} {
r, ok := formatRoman(n)
if ok {
fmt.Println(n, "==", r)
} else {
fmt.Println(n, "not representable")
}
}
} |
Rosetta Code/Rank languages by number of users | Go | Sort most popular programming languages based on the number of users on Rosetta Code.
Show the languages with at least 100 users.
;A method to solve the task:
Users of a computer programming language '''X''' are those referenced in the page:
https://rosettacode.org/wiki/Category:X_User, or preferably:
https://rosettacode.org/mw/index.php?title=Category:X_User&redirect=no to avoid re-directions.
In order to find the list of such categories, it's possible to first parse the entries of:
http://rosettacode.org/mw/index.php?title=Special:Categories&limit=5000.
Then download and parse each computer language ''users'' category to find the number of users of that computer language.
Sample output on 18 February 2019:
Language Users
--------------------------
C 391
Java 276
C++ 275
Python 262
JavaScript 238
Perl 171
PHP 167
SQL 138
UNIX Shell 131
BASIC 120
C sharp 118
Pascal 116
Haskell 102
A Rosetta Code user usually declares using a language with the mylang template. This template is expected to appear on the User page. However, in some cases it appears in a user Talk page. It's not necessary to take this into account. For instance, among the 373 C users in the table above, 3 are actually declared in a Talk page.
| package main
import (
"fmt"
"io/ioutil"
"net/http"
"regexp"
"sort"
"strconv"
)
type Result struct {
lang string
users int
}
func main() {
const minimum = 25
ex := `"Category:(.+?)( User)?"(\}|,"categoryinfo":\{"size":(\d+),)`
re := regexp.MustCompile(ex)
page := "http://rosettacode.org/mw/api.php?"
action := "action=query"
format := "format=json"
fversion := "formatversion=2"
generator := "generator=categorymembers"
gcmTitle := "gcmtitle=Category:Language%20users"
gcmLimit := "gcmlimit=500"
prop := "prop=categoryinfo"
rawContinue := "rawcontinue="
page += fmt.Sprintf("%s&%s&%s&%s&%s&%s&%s&%s", action, format, fversion,
generator, gcmTitle, gcmLimit, prop, rawContinue)
resp, _ := http.Get(page)
body, _ := ioutil.ReadAll(resp.Body)
matches := re.FindAllStringSubmatch(string(body), -1)
resp.Body.Close()
var results []Result
for _, match := range matches {
if len(match) == 5 {
users, _ := strconv.Atoi(match[4])
if users >= minimum {
result := Result{match[1], users}
results = append(results, result)
}
}
}
sort.Slice(results, func(i, j int) bool {
return results[j].users < results[i].users
})
fmt.Println("Rank Users Language")
fmt.Println("---- ----- --------")
rank := 0
lastUsers := 0
lastRank := 0
for i, result := range results {
eq := " "
rank = i + 1
if lastUsers == result.users {
eq = "="
rank = lastRank
} else {
lastUsers = result.users
lastRank = rank
}
fmt.Printf(" %-2d%s %3d %s\n", rank, eq, result.users, result.lang)
}
} |
Runtime evaluation | Go | Demonstrate a language's ability for programs to execute code written in the language provided at runtime.
Show what kind of program fragments are permitted (e.g. expressions vs. statements), and how to get values in and out (e.g. environments, arguments, return values), if applicable what lexical/static environment the program is evaluated in, and what facilities for restricting (e.g. sandboxes, resource limits) or customizing (e.g. debugging facilities) the execution.
You may not invoke a separate evaluator program, or invoke a compiler and then its output, unless the interface of that program, and the syntax and means of executing it, are considered part of your language/library/platform.
For a more constrained task giving a specific program fragment to evaluate, see [[Eval in environment]].
| package main
import (
"fmt"
"bitbucket.org/binet/go-eval/pkg/eval"
"go/token"
)
func main() {
w := eval.NewWorld();
fset := token.NewFileSet();
code, err := w.Compile(fset, "1 + 2")
if err != nil {
fmt.Println("Compile error");
return
}
val, err := code.Run();
if err != nil {
fmt.Println("Run time error");
return;
}
fmt.Println("Return value:", val) //prints, well, 3
} |
Runtime evaluation/In an environment | Go | Given a program in the language (as a string or AST) with a free variable named x (or another name if that is not valid syntax), evaluate it with x bound to a provided value, then evaluate it again with x bound to another provided value, then subtract the result of the first from the second and return or print it.
Do so in a way which:
* does not involve string manipulation of the input source code
* is plausibly extensible to a runtime-chosen set of bindings rather than just x
* does not make x a ''global'' variable
or note that these are impossible.
;See also:
* For more general examples and language-specific details, see [[Eval]].
* [[Dynamic variable names]] is a similar task.
| package main
import (
"bitbucket.org/binet/go-eval/pkg/eval"
"fmt"
"go/parser"
"go/token"
)
func main() {
// an expression on x
squareExpr := "x*x"
// parse to abstract syntax tree
fset := token.NewFileSet()
squareAst, err := parser.ParseExpr(squareExpr)
if err != nil {
fmt.Println(err)
return
}
// create an environment or "world"
w := eval.NewWorld()
// allocate a variable
wVar := new(intV)
// bind the variable to the name x
err = w.DefineVar("x", eval.IntType, wVar)
if err != nil {
fmt.Println(err)
return
}
// bind the expression AST to the world
squareCode, err := w.CompileExpr(fset, squareAst)
if err != nil {
fmt.Println(err)
return
}
// directly manipulate value of variable within world
*wVar = 5
// evaluate
r0, err := squareCode.Run()
if err != nil {
fmt.Println(err)
return
}
// change value
*wVar--
// revaluate
r1, err := squareCode.Run()
if err != nil {
fmt.Println(err)
return
}
// print difference
fmt.Println(r0.(eval.IntValue).Get(nil) - r1.(eval.IntValue).Get(nil))
}
// int value implementation.
type intV int64
func (v *intV) String() string { return fmt.Sprint(*v) }
func (v *intV) Get(*eval.Thread) int64 { return int64(*v) }
func (v *intV) Set(_ *eval.Thread, x int64) { *v = intV(x) }
func (v *intV) Assign(t *eval.Thread, o eval.Value) {
*v = intV(o.(eval.IntValue).Get(t))
} |
SHA-1 | Go | '''SHA-1''' or '''SHA1''' is a one-way hash function;
it computes a 160-bit message digest.
SHA-1 often appears in security protocols; for example,
many HTTPS websites use RSA with SHA-1 to secure their connections.
BitTorrent uses SHA-1 to verify downloads.
Git and Mercurial use SHA-1 digests to identify commits.
A US government standard, FIPS 180-1, defines SHA-1.
Find the SHA-1 message digest for a string of [[octet]]s. You may either call a SHA-1 library, or implement SHA-1 in your language. Both approaches interest Rosetta Code.
{{alertbox|lightgray|'''Warning:''' SHA-1 has known weaknesses. Theoretical attacks may find a collision after 252 operations, or perhaps fewer.
This is much faster than a brute force attack of 280 operations. USgovernment deprecated SHA-1.
For production-grade cryptography, users may consider a stronger alternative, such as SHA-256 (from the SHA-2 family) or the upcoming SHA-3.}}
| package main
import (
"crypto/sha1"
"fmt"
)
func main() {
h := sha1.New()
h.Write([]byte("Rosetta Code"))
fmt.Printf("%x\n", h.Sum(nil))
} |
Sailors, coconuts and a monkey problem | Go from Kotlin | Five sailors are shipwrecked on an island and collect a large pile of coconuts during the day.
That night the first sailor wakes up and decides to take his first share early so tries to divide the pile of coconuts equally into five piles but finds that there is one coconut left over, so he tosses it to a monkey and then hides "his" one of the five equally sized piles of coconuts and pushes the other four piles together to form a single visible pile of coconuts again and goes to bed.
To cut a long story short, each of the sailors in turn gets up once during the night and performs the same actions of dividing the coconut pile into five, finding that one coconut is left over and giving that single remainder coconut to the monkey.
In the morning (after the surreptitious and separate action of each of the five sailors during the night), the remaining coconuts are divided into five equal piles for each of the sailors, whereupon it is found that the pile of coconuts divides equally amongst the sailors with no remainder. (Nothing for the monkey in the morning.)
;The task:
# Calculate the minimum possible size of the initial pile of coconuts collected during the first day.
# Use a method that assumes an answer is possible, and then applies the constraints of the tale to see if it is correct. (I.e. no applying some formula that generates the correct answer without integer divisions and remainders and tests on remainders; but constraint solvers ''are'' allowed.)
# Calculate the size of the initial pile of coconuts if six sailors were marooned and went through a similar process (but split into six piles instead of five of course).
# Show your answers here.
;Extra credit (optional):
* Give some indication of the number of coconuts each sailor hides during the night.
;Note:
* Of course the tale is told in a world where the collection of any amount of coconuts in a day and multiple divisions of the pile, etc can occur in time fitting the story line, so as not to affect the mathematics.
* The tale is also told in a version where the monkey also gets a coconut in the morning. This is ''not'' that tale!
;C.f:
* Monkeys and Coconuts - Numberphile (Video) Analytical solution.
* A002021: Pile of coconuts problem The On-Line Encyclopedia of Integer Sequences. (Although some of its references may use the alternate form of the tale).
| package main
import "fmt"
func main() {
coconuts := 11
outer:
for ns := 2; ns < 10; ns++ {
hidden := make([]int, ns)
coconuts = (coconuts/ns)*ns + 1
for {
nc := coconuts
for s := 1; s <= ns; s++ {
if nc%ns == 1 {
hidden[s-1] = nc / ns
nc -= hidden[s-1] + 1
if s == ns && nc%ns == 0 {
fmt.Println(ns, "sailors require a minimum of", coconuts, "coconuts")
for t := 1; t <= ns; t++ {
fmt.Println("\tSailor", t, "hides", hidden[t-1])
}
fmt.Println("\tThe monkey gets", ns)
fmt.Println("\tFinally, each sailor takes", nc/ns, "\b\n")
continue outer
}
} else {
break
}
}
coconuts += ns
}
}
} |
Same fringe | Go | Write a routine that will compare the leaves ("fringe") of two binary trees to determine whether they are the same list of leaves when visited left-to-right. The structure or balance of the trees does not matter; only the number, order, and value of the leaves is important.
Any solution is allowed here, but many computer scientists will consider it inelegant to collect either fringe in its entirety before starting to collect the other one. In fact, this problem is usually proposed in various forums as a way to show off various forms of concurrency (tree-rotation algorithms have also been used to get around the need to collect one tree first). Thinking of it a slightly different way, an elegant solution is one that can perform the minimum amount of work to falsify the equivalence of the fringes when they differ somewhere in the middle, short-circuiting the unnecessary additional traversals and comparisons.
Any representation of a binary tree is allowed, as long as the nodes are orderable, and only downward links are used (for example, you may not use parent or sibling pointers to avoid recursion).
| package main
import "fmt"
type node struct {
int
left, right *node
}
// function returns a channel that yields the leaves of the tree.
// the channel is closed after all leaves are received.
func leaves(t *node) chan int {
ch := make(chan int)
// recursive function to walk tree.
var f func(*node)
f = func(n *node) {
if n == nil {
return
}
// leaves are identified by having no children.
if n.left == nil && n.right == nil {
ch <- n.int
} else {
f(n.left)
f(n.right)
}
}
// goroutine runs concurrently with others.
// it walks the tree then closes the channel.
go func() {
f(t)
close(ch)
}()
return ch
}
func sameFringe(t1, t2 *node) bool {
f1 := leaves(t1)
f2 := leaves(t2)
for l1 := range f1 {
// both trees must yield a leaf, and the leaves must be equal.
if l2, ok := <-f2; !ok || l1 != l2 {
return false
}
}
// there must be nothing left in f2 after consuming all of f1.
_, ok := <-f2
return !ok
}
func main() {
// the different shapes of the trees is shown with indention.
// the leaves are easy to spot by the int: key.
t1 := &node{3,
&node{1,
&node{int: 1},
&node{int: 2}},
&node{8,
&node{int: 5},
&node{int: 13}}}
// t2 with negative values for internal nodes that can't possibly match
// positive values in t1, just to show that only leaves are being compared.
t2 := &node{-8,
&node{-3,
&node{-1,
&node{int: 1},
&node{int: 2}},
&node{int: 5}},
&node{int: 13}}
fmt.Println(sameFringe(t1, t2)) // prints true.
} |
Selectively replace multiple instances of a character within a string | Go from Wren | Task
This is admittedly a trivial task but I thought it would be interesting to see how succinctly (or otherwise) different languages can handle it.
Given the string: "abracadabra", replace programatically:
* the first 'a' with 'A'
* the second 'a' with 'B'
* the fourth 'a' with 'C'
* the fifth 'a' with 'D'
* the first 'b' with 'E'
* the second 'r' with 'F'
Note that there is no replacement for the third 'a', second 'b' or first 'r'.
The answer should, of course, be : "AErBcadCbFD".
| package main
import (
"fmt"
"strings"
)
func main() {
s := "abracadabra"
ss := []byte(s)
var ixs []int
for ix, c := range s {
if c == 'a' {
ixs = append(ixs, ix)
}
}
repl := "ABaCD"
for i := 0; i < 5; i++ {
ss[ixs[i]] = repl[i]
}
s = string(ss)
s = strings.Replace(s, "b", "E", 1)
s = strings.Replace(s, "r", "F", 2)
s = strings.Replace(s, "F", "r", 1)
fmt.Println(s)
} |
Self-describing numbers | Go | {{task}}There are several so-called "self-describing" or "self-descriptive" integers.
An integer is said to be "self-describing" if it has the property that, when digit positions are labeled 0 to N-1, the digit in each position is equal to the number of times that that digit appears in the number.
For example, '''2020''' is a four-digit self describing number:
* position 0 has value 2 and there are two 0s in the number;
* position 1 has value 0 and there are no 1s in the number;
* position 2 has value 2 and there are two 2s;
* position 3 has value 0 and there are zero 3s.
Self-describing numbers < 100.000.000 are: 1210, 2020, 21200, 3211000, 42101000.
;Task Description
# Write a function/routine/method/... that will check whether a given positive integer is self-describing.
# As an optional stretch goal - generate and display the set of self-describing numbers.
;Related tasks:
* [[Fours is the number of letters in the ...]]
* [[Look-and-say sequence]]
* [[Number names]]
* [[Self-referential sequence]]
* [[Spelling of ordinal numbers]]
| package main
import (
"fmt"
"strconv"
"strings"
"time"
)
func selfDesc(n uint64) bool {
if n >= 1e10 {
return false
}
s := strconv.FormatUint(n, 10)
for d, p := range s {
if int(p)-'0' != strings.Count(s, strconv.Itoa(d)) {
return false
}
}
return true
}
func main() {
start := time.Now()
fmt.Println("The self-describing numbers are:")
i := uint64(10) // self-describing number must end in 0
pw := uint64(10) // power of 10
fd := uint64(1) // first digit
sd := uint64(1) // second digit
dg := uint64(2) // number of digits
mx := uint64(11) // maximum for current batch
lim := uint64(9_100_000_001) // sum of digits can't be more than 10
for i < lim {
if selfDesc(i) {
secs := time.Since(start).Seconds()
fmt.Printf("%d (in %.1f secs)\n", i, secs)
}
i += 10
if i > mx {
fd++
sd--
if sd >= 0 {
i = fd * pw
} else {
pw *= 10
dg++
i = pw
fd = 1
sd = dg - 1
}
mx = i + sd*pw/10
}
}
osecs := time.Since(start).Seconds()
fmt.Printf("\nTook %.1f secs overall\n", osecs)
} |
Self numbers | Go | A number n is a self number if there is no number g such that g + the sum of g's digits = n. So 18 is not a self number because 9+9=18, 43 is not a self number because 35+5+3=43.
The task is:
Display the first 50 self numbers;
I believe that the 100000000th self number is 1022727208. You should either confirm or dispute my conjecture.
224036583-1 is a Mersenne prime, claimed to also be a self number. Extra credit to anyone proving it.
;See also:
;*OEIS: A003052 - Self numbers or Colombian numbers
;*Wikipedia: Self numbers
| package main
import (
"fmt"
"time"
)
func sumDigits(n int) int {
sum := 0
for n > 0 {
sum += n % 10
n /= 10
}
return sum
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
func main() {
st := time.Now()
count := 0
var selfs []int
i := 1
pow := 10
digits := 1
offset := 9
lastSelf := 0
for count < 1e8 {
isSelf := true
start := max(i-offset, 0)
sum := sumDigits(start)
for j := start; j < i; j++ {
if j+sum == i {
isSelf = false
break
}
if (j+1)%10 != 0 {
sum++
} else {
sum = sumDigits(j + 1)
}
}
if isSelf {
count++
lastSelf = i
if count <= 50 {
selfs = append(selfs, i)
if count == 50 {
fmt.Println("The first 50 self numbers are:")
fmt.Println(selfs)
}
}
}
i++
if i%pow == 0 {
pow *= 10
digits++
offset = digits * 9
}
}
fmt.Println("\nThe 100 millionth self number is", lastSelf)
fmt.Println("Took", time.Since(st))
} |
Self numbers | Go from Pascal | A number n is a self number if there is no number g such that g + the sum of g's digits = n. So 18 is not a self number because 9+9=18, 43 is not a self number because 35+5+3=43.
The task is:
Display the first 50 self numbers;
I believe that the 100000000th self number is 1022727208. You should either confirm or dispute my conjecture.
224036583-1 is a Mersenne prime, claimed to also be a self number. Extra credit to anyone proving it.
;See also:
;*OEIS: A003052 - Self numbers or Colombian numbers
;*Wikipedia: Self numbers
| package main
import (
"fmt"
"time"
)
const MAX_COUNT = 103*1e4*1e4 + 11*9 + 1
var sv = make([]bool, MAX_COUNT+1)
var digitSum = make([]int, 1e4)
func init() {
i := 9999
var s, t int
for a := 9; a >= 0; a-- {
for b := 9; b >= 0; b-- {
s = a + b
for c := 9; c >= 0; c-- {
t = s + c
for d := 9; d >= 0; d-- {
digitSum[i] = t + d
i--
}
}
}
}
}
func sieve() {
n := 0
for a := 0; a < 103; a++ {
for b := 0; b < 1e4; b++ {
s := digitSum[a] + digitSum[b] + n
for c := 0; c < 1e4; c++ {
sv[digitSum[c]+s] = true
s++
}
n += 1e4
}
}
}
func main() {
st := time.Now()
sieve()
fmt.Println("Sieving took", time.Since(st))
count := 0
fmt.Println("\nThe first 50 self numbers are:")
for i := 0; i < len(sv); i++ {
if !sv[i] {
count++
if count <= 50 {
fmt.Printf("%d ", i)
} else {
fmt.Println("\n\n Index Self number")
break
}
}
}
count = 0
limit := 1
for i := 0; i < len(sv); i++ {
if !sv[i] {
count++
if count == limit {
fmt.Printf("%10d %11d\n", count, i)
limit *= 10
if limit == 1e10 {
break
}
}
}
}
fmt.Println("\nOverall took", time.Since(st))
} |
Semordnilap | Go | A semordnilap is a word (or phrase) that spells a different word (or phrase) backward. "Semordnilap" is a word that itself is a semordnilap.
Example: ''lager'' and ''regal''
;Task
This task does not consider semordnilap phrases, only single words.
Using only words from this list, report the total number of unique semordnilap pairs, and print 5 examples.
Two matching semordnilaps, such as ''lager'' and ''regal'', should be counted as one unique pair.
(Note that the word "semordnilap" is not in the above dictionary.)
| package main
import (
"fmt"
"io/ioutil"
"log"
"strings"
)
func main() {
// read file into memory as one big block
data, err := ioutil.ReadFile("unixdict.txt")
if err != nil {
log.Fatal(err)
}
// copy the block, split it up into words
words := strings.Split(string(data), "\n")
// optional, free the first block for garbage collection
data = nil
// put words in a map, also determine length of longest word
m := make(map[string]bool)
longest := 0
for _, w := range words {
m[string(w)] = true
if len(w) > longest {
longest = len(w)
}
}
// allocate a buffer for reversing words
r := make([]byte, longest)
// iterate over word list
sem := 0
var five []string
for _, w := range words {
// first, delete from map. this prevents a palindrome from matching
// itself, and also prevents it's reversal from matching later.
delete(m, w)
// use buffer to reverse word
last := len(w) - 1
for i := 0; i < len(w); i++ {
r[i] = w[last-i]
}
rs := string(r[:len(w)])
// see if reversed word is in map, accumulate results
if m[rs] {
sem++
if len(five) < 5 {
five = append(five, w+"/"+rs)
}
}
}
// print results
fmt.Println(sem, "pairs")
fmt.Println("examples:")
for _, e := range five {
fmt.Println(" ", e)
}
} |
Sequence: nth number with exactly n divisors | Go | Calculate the sequence where each term an is the nth that has '''n''' divisors.
;Task
Show here, on this page, at least the first '''15''' terms of the sequence.
;See also
:*OEIS:A073916
;Related tasks
:*[[Sequence: smallest number greater than previous term with exactly n divisors]]
:*[[Sequence: smallest number with exactly n divisors]]
| package main
import (
"fmt"
"math"
"math/big"
)
var bi = new(big.Int)
func isPrime(n int) bool {
bi.SetUint64(uint64(n))
return bi.ProbablyPrime(0)
}
func generateSmallPrimes(n int) []int {
primes := make([]int, n)
primes[0] = 2
for i, count := 3, 1; count < n; i += 2 {
if isPrime(i) {
primes[count] = i
count++
}
}
return primes
}
func countDivisors(n int) int {
count := 1
for n%2 == 0 {
n >>= 1
count++
}
for d := 3; d*d <= n; d += 2 {
q, r := n/d, n%d
if r == 0 {
dc := 0
for r == 0 {
dc += count
n = q
q, r = n/d, n%d
}
count += dc
}
}
if n != 1 {
count *= 2
}
return count
}
func main() {
const max = 33
primes := generateSmallPrimes(max)
z := new(big.Int)
p := new(big.Int)
fmt.Println("The first", max, "terms in the sequence are:")
for i := 1; i <= max; i++ {
if isPrime(i) {
z.SetUint64(uint64(primes[i-1]))
p.SetUint64(uint64(i - 1))
z.Exp(z, p, nil)
fmt.Printf("%2d : %d\n", i, z)
} else {
count := 0
for j := 1; ; j++ {
if i%2 == 1 {
sq := int(math.Sqrt(float64(j)))
if sq*sq != j {
continue
}
}
if countDivisors(j) == i {
count++
if count == i {
fmt.Printf("%2d : %d\n", i, j)
break
}
}
}
}
}
} |
Sequence: smallest number greater than previous term with exactly n divisors | Go | Calculate the sequence where each term an is the '''smallest natural number''' greater than the previous term, that has exactly '''n''' divisors.
;Task
Show here, on this page, at least the first '''15''' terms of the sequence.
;See also
:* OEIS:A069654
;Related tasks
:* [[Sequence: smallest number with exactly n divisors]]
:* [[Sequence: nth number with exactly n divisors]]
| package main
import "fmt"
func countDivisors(n int) int {
count := 0
for i := 1; i*i <= n; i++ {
if n%i == 0 {
if i == n/i {
count++
} else {
count += 2
}
}
}
return count
}
func main() {
const max = 15
fmt.Println("The first", max, "terms of the sequence are:")
for i, next := 1, 1; next <= max; i++ {
if next == countDivisors(i) {
fmt.Printf("%d ", i)
next++
}
}
fmt.Println()
} |
Sequence: smallest number with exactly n divisors | Go | Calculate the sequence where each term an is the '''smallest natural number''' that has exactly '''n''' divisors.
;Task
Show here, on this page, at least the first '''15''' terms of the sequence.
;Related tasks:
:* [[Sequence: smallest number greater than previous term with exactly n divisors]]
:* [[Sequence: nth number with exactly n divisors]]
;See also:
:* OEIS:A005179
| package main
import "fmt"
func countDivisors(n int) int {
count := 0
for i := 1; i*i <= n; i++ {
if n%i == 0 {
if i == n/i {
count++
} else {
count += 2
}
}
}
return count
}
func main() {
const max = 15
seq := make([]int, max)
fmt.Println("The first", max, "terms of the sequence are:")
for i, n := 1, 0; n < max; i++ {
if k := countDivisors(i); k <= max && seq[k-1] == 0 {
seq[k-1] = i
n++
}
}
fmt.Println(seq)
} |
Set consolidation | Go from Python | Given two sets of items then if any item is common to any set then the result of applying ''consolidation'' to those sets is a set of sets whose contents is:
* The two input sets if no common item exists between the two input sets of items.
* The single set that is the union of the two input sets if they share a common item.
Given N sets of items where N>2 then the result is the same as repeatedly replacing all combinations of two sets by their consolidation until no further consolidation between set pairs is possible.
If N<2 then consolidation has no strict meaning and the input can be returned.
;'''Example 1:'''
:Given the two sets {A,B} and {C,D} then there is no common element between the sets and the result is the same as the input.
;'''Example 2:'''
:Given the two sets {A,B} and {B,D} then there is a common element B between the sets and the result is the single set {B,D,A}. (Note that order of items in a set is immaterial: {A,B,D} is the same as {B,D,A} and {D,A,B}, etc).
;'''Example 3:'''
:Given the three sets {A,B} and {C,D} and {D,B} then there is no common element between the sets {A,B} and {C,D} but the sets {A,B} and {D,B} do share a common element that consolidates to produce the result {B,D,A}. On examining this result with the remaining set, {C,D}, they share a common element and so consolidate to the final output of the single set {A,B,C,D}
;'''Example 4:'''
:The consolidation of the five sets:
::{H,I,K}, {A,B}, {C,D}, {D,B}, and {F,G,H}
:Is the two sets:
::{A, C, B, D}, and {G, F, I, H, K}
'''See also'''
* Connected component (graph theory)
* [[Range consolidation]]
| package main
import "fmt"
type set map[string]bool
var testCase = []set{
set{"H": true, "I": true, "K": true},
set{"A": true, "B": true},
set{"C": true, "D": true},
set{"D": true, "B": true},
set{"F": true, "G": true, "H": true},
}
func main() {
fmt.Println(consolidate(testCase))
}
func consolidate(sets []set) []set {
setlist := []set{}
for _, s := range sets {
if s != nil && len(s) > 0 {
setlist = append(setlist, s)
}
}
for i, s1 := range setlist {
if len(s1) > 0 {
for _, s2 := range setlist[i+1:] {
if s1.disjoint(s2) {
continue
}
for e := range s1 {
s2[e] = true
delete(s1, e)
}
s1 = s2
}
}
}
r := []set{}
for _, s := range setlist {
if len(s) > 0 {
r = append(r, s)
}
}
return r
}
func (s1 set) disjoint(s2 set) bool {
for e := range s2 {
if s1[e] {
return false
}
}
return true
} |
Set of real numbers | Go | All real numbers form the uncountable set R. Among its subsets, relatively simple are the convex sets, each expressed as a range between two real numbers ''a'' and ''b'' where ''a'' <= ''b''. There are actually four cases for the meaning of "between", depending on open or closed boundary:
* [''a'', ''b'']: {''x'' | ''a'' <= ''x'' and ''x'' <= ''b'' }
* (''a'', ''b''): {''x'' | ''a'' < ''x'' and ''x'' < ''b'' }
* [''a'', ''b''): {''x'' | ''a'' <= ''x'' and ''x'' < ''b'' }
* (''a'', ''b'']: {''x'' | ''a'' < ''x'' and ''x'' <= ''b'' }
Note that if ''a'' = ''b'', of the four only [''a'', ''a''] would be non-empty.
'''Task'''
* Devise a way to represent any set of real numbers, for the definition of 'any' in the implementation notes below.
* Provide methods for these common set operations (''x'' is a real number; ''A'' and ''B'' are sets):
:* ''x'' ''A'': determine if ''x'' is an element of ''A''
:: example: 1 is in [1, 2), while 2, 3, ... are not.
:* ''A'' ''B'': union of ''A'' and ''B'', i.e. {''x'' | ''x'' ''A'' or ''x'' ''B''}
:: example: [0, 2) (1, 3) = [0, 3); [0, 1) (2, 3] = well, [0, 1) (2, 3]
:* ''A'' ''B'': intersection of ''A'' and ''B'', i.e. {''x'' | ''x'' ''A'' and ''x'' ''B''}
:: example: [0, 2) (1, 3) = (1, 2); [0, 1) (2, 3] = empty set
:* ''A'' - ''B'': difference between ''A'' and ''B'', also written as ''A'' \ ''B'', i.e. {''x'' | ''x'' ''A'' and ''x'' ''B''}
:: example: [0, 2) - (1, 3) = [0, 1]
* Test your implementation by checking if numbers 0, 1, and 2 are in any of the following sets:
:* (0, 1] [0, 2)
:* [0, 2) (1, 2]
:* [0, 3) - (0, 1)
:* [0, 3) - [0, 1]
'''Implementation notes'''
* 'Any' real set means 'sets that can be expressed as the union of a finite number of convex real sets'. Cantor's set needs not apply.
* Infinities should be handled gracefully; indeterminate numbers (NaN) can be ignored.
* You can use your machine's native real number representation, which is probably IEEE floating point, and assume it's good enough (it usually is).
'''Optional work'''
* Create a function to determine if a given set is empty (contains no element).
* Define ''A'' = {''x'' | 0 < ''x'' < 10 and |sin(p ''x''2)| > 1/2 }, ''B'' = {''x'' | 0 < ''x'' < 10 and |sin(p ''x'')| > 1/2}, calculate the length of the real axis covered by the set ''A'' - ''B''. Note that
|sin(p ''x'')| > 1/2 is the same as ''n'' + 1/6 < ''x'' < ''n'' + 5/6 for all integers ''n''; your program does not need to derive this by itself.
| package main
import "fmt"
type Set func(float64) bool
func Union(a, b Set) Set { return func(x float64) bool { return a(x) || b(x) } }
func Inter(a, b Set) Set { return func(x float64) bool { return a(x) && b(x) } }
func Diff(a, b Set) Set { return func(x float64) bool { return a(x) && !b(x) } }
func open(a, b float64) Set { return func(x float64) bool { return a < x && x < b } }
func closed(a, b float64) Set { return func(x float64) bool { return a <= x && x <= b } }
func opCl(a, b float64) Set { return func(x float64) bool { return a < x && x <= b } }
func clOp(a, b float64) Set { return func(x float64) bool { return a <= x && x < b } }
func main() {
s := make([]Set, 4)
s[0] = Union(opCl(0, 1), clOp(0, 2)) // (0,1] ∪ [0,2)
s[1] = Inter(clOp(0, 2), opCl(1, 2)) // [0,2) ∩ (1,2]
s[2] = Diff(clOp(0, 3), open(0, 1)) // [0,3) − (0,1)
s[3] = Diff(clOp(0, 3), closed(0, 1)) // [0,3) − [0,1]
for i := range s {
for x := float64(0); x < 3; x++ {
fmt.Printf("%v ∈ s%d: %t\n", x, i, s[i](x))
}
fmt.Println()
}
} |
Set right-adjacent bits | Go from Wren | Given a left-to-right ordered collection of e bits, b, where 1 <= e <= 10000,
and a zero or more integer n :
* Output the result of setting the n bits to the right of any set bit in b
(if those bits are present in b and therefore also preserving the width, e).
'''Some examples:'''
Set of examples showing how one bit in a nibble gets changed:
n = 2; Width e = 4:
Input b: 1000
Result: 1110
Input b: 0100
Result: 0111
Input b: 0010
Result: 0011
Input b: 0000
Result: 0000
Set of examples with the same input with set bits of varying distance apart:
n = 0; Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result: 010000000000100000000010000000010000000100000010000010000100010010
n = 1; Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result: 011000000000110000000011000000011000000110000011000011000110011011
n = 2; Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result: 011100000000111000000011100000011100000111000011100011100111011111
n = 3; Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result: 011110000000111100000011110000011110000111100011110011110111111111
'''Task:'''
* Implement a routine to perform the setting of right-adjacent bits on representations of bits that will scale over the given range of input width e.
* Use it to show, here, the results for the input examples above.
* Print the output aligned in a way that allows easy checking by eye of the binary input vs output.
| package main
import (
"fmt"
"strings"
)
type test struct {
bs string
n int
}
func setRightBits(bits []byte, e, n int) []byte {
if e == 0 || n <= 0 {
return bits
}
bits2 := make([]byte, len(bits))
copy(bits2, bits)
for i := 0; i < e-1; i++ {
c := bits[i]
if c == 1 {
j := i + 1
for j <= i+n && j < e {
bits2[j] = 1
j++
}
}
}
return bits2
}
func main() {
b := "010000000000100000000010000000010000000100000010000010000100010010"
tests := []test{
test{"1000", 2}, test{"0100", 2}, test{"0010", 2}, test{"0000", 2},
test{b, 0}, test{b, 1}, test{b, 2}, test{b, 3},
}
for _, test := range tests {
bs := test.bs
e := len(bs)
n := test.n
fmt.Println("n =", n, "\b; Width e =", e, "\b:")
fmt.Println(" Input b:", bs)
bits := []byte(bs)
for i := 0; i < len(bits); i++ {
bits[i] = bits[i] - '0'
}
bits = setRightBits(bits, e, n)
var sb strings.Builder
for i := 0; i < len(bits); i++ {
sb.WriteByte(bits[i] + '0')
}
fmt.Println(" Result :", sb.String())
}
} |
Shoelace formula for polygonal area | Go | Given the n + 1 vertices x[0], y[0] .. x[N], y[N] of a simple polygon described in a clockwise direction, then the polygon's area can be calculated by:
abs( (sum(x[0]*y[1] + ... x[n-1]*y[n]) + x[N]*y[0]) -
(sum(x[1]*y[0] + ... x[n]*y[n-1]) + x[0]*y[N])
) / 2
(Where abs returns the absolute value)
;Task:
Write a function/method/routine to use the the Shoelace formula to calculate the area of the polygon described by the ordered points:
(3,4), (5,11), (12,8), (9,5), and (5,6)
Show the answer here, on this page.
| package main
import "fmt"
type point struct{ x, y float64 }
func shoelace(pts []point) float64 {
sum := 0.
p0 := pts[len(pts)-1]
for _, p1 := range pts {
sum += p0.y*p1.x - p0.x*p1.y
p0 = p1
}
return sum / 2
}
func main() {
fmt.Println(shoelace([]point{{3, 4}, {5, 11}, {12, 8}, {9, 5}, {5, 6}}))
} |
Shortest common supersequence | Go from Kotlin | The '''shortest common supersequence''' is a problem closely related to the [[longest common subsequence]], which you can use as an external function for this task.
;;Task:
Given two strings u and v, find the shortest possible sequence s, which is the shortest common super-sequence of u and v where both u and v are a subsequence of s. Defined as such, s is not necessarily unique.
Demonstrate this by printing s where u = "abcbdab" and v = "bdcaba".
;Also see:
* Wikipedia: shortest common supersequence
| package main
import (
"fmt"
"strings"
)
func lcs(x, y string) string {
xl, yl := len(x), len(y)
if xl == 0 || yl == 0 {
return ""
}
x1, y1 := x[:xl-1], y[:yl-1]
if x[xl-1] == y[yl-1] {
return fmt.Sprintf("%s%c", lcs(x1, y1), x[xl-1])
}
x2, y2 := lcs(x, y1), lcs(x1, y)
if len(x2) > len(y2) {
return x2
} else {
return y2
}
}
func scs(u, v string) string {
ul, vl := len(u), len(v)
lcs := lcs(u, v)
ui, vi := 0, 0
var sb strings.Builder
for i := 0; i < len(lcs); i++ {
for ui < ul && u[ui] != lcs[i] {
sb.WriteByte(u[ui])
ui++
}
for vi < vl && v[vi] != lcs[i] {
sb.WriteByte(v[vi])
vi++
}
sb.WriteByte(lcs[i])
ui++
vi++
}
if ui < ul {
sb.WriteString(u[ui:])
}
if vi < vl {
sb.WriteString(v[vi:])
}
return sb.String()
}
func main() {
u := "abcbdab"
v := "bdcaba"
fmt.Println(scs(u, v))
} |
Show ASCII table | Go | Show the ASCII character set from values '''32''' to '''127''' (decimal) in a table format.
| package main
import "fmt"
func main() {
for i := 0; i < 16; i++ {
for j := 32 + i; j < 128; j += 16 {
k := string(j)
switch j {
case 32:
k = "Spc"
case 127:
k = "Del"
}
fmt.Printf("%3d : %-3s ", j, k)
}
fmt.Println()
}
} |
Show the epoch | Go | Choose popular date libraries used by your language and show the epoch those libraries use.
A demonstration is preferable (e.g. setting the internal representation of the date to 0 ms/ns/etc., or another way that will still show the epoch even if it is changed behind the scenes by the implementers), but text from (with links to) documentation is also acceptable where a demonstration is impossible/impractical.
For consistency's sake, show the date in UTC time where possible.
;Related task:
* [[Date format]]
| package main
import ("fmt"; "time")
func main() {
fmt.Println(time.Time{})
} |
Sierpinski triangle/Graphical | Go from Icon and Unicon | Produce a graphical representation of a Sierpinski triangle of order N in any orientation.
An example of Sierpinski's triangle (order = 8) looks like this:
[[File:Sierpinski_Triangle_Unicon.PNG]]
| package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/png"
"os"
)
func main() {
const order = 8
const width = 1 << order
const margin = 10
bounds := image.Rect(-margin, -margin, width+2*margin, width+2*margin)
im := image.NewGray(bounds)
gBlack := color.Gray{0}
gWhite := color.Gray{255}
draw.Draw(im, bounds, image.NewUniform(gWhite), image.ZP, draw.Src)
for y := 0; y < width; y++ {
for x := 0; x < width; x++ {
if x&y == 0 {
im.SetGray(x, y, gBlack)
}
}
}
f, err := os.Create("sierpinski.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, im); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
} |
Smith numbers | Go from C | sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1.
By definition, all primes are ''excluded'' as they (naturally) satisfy this condition!
Smith numbers are also known as ''joke'' numbers.
;Example
Using the number '''166'''
Find the prime factors of '''166''' which are: '''2''' x '''83'''
Then, take those two prime factors and sum all their decimal digits: '''2 + 8 + 3''' which is '''13'''
Then, take the decimal digits of '''166''' and add their decimal digits: '''1 + 6 + 6''' which is '''13'''
Therefore, the number '''166''' is a Smith number.
;Task
Write a program to find all Smith numbers ''below'' 10000.
;See also
* from Wikipedia: [Smith number].
* from MathWorld: [Smith number].
* from OEIS A6753: [OEIS sequence A6753].
* from OEIS A104170: [Number of Smith numbers below 10^n].
* from The Prime pages: [Smith numbers].
| package main
import "fmt"
func numPrimeFactors(x uint) int {
var p uint = 2
var pf int
if x == 1 {
return 1
}
for {
if (x % p) == 0 {
pf++
x /= p
if x == 1 {
return pf
}
} else {
p++
}
}
}
func primeFactors(x uint, arr []uint) {
var p uint = 2
var pf int
if x == 1 {
arr[pf] = 1
return
}
for {
if (x % p) == 0 {
arr[pf] = p
pf++
x /= p
if x == 1 {
return
}
} else {
p++
}
}
}
func sumDigits(x uint) uint {
var sum uint
for x != 0 {
sum += x % 10
x /= 10
}
return sum
}
func sumFactors(arr []uint, size int) uint {
var sum uint
for a := 0; a < size; a++ {
sum += sumDigits(arr[a])
}
return sum
}
func listAllSmithNumbers(maxSmith uint) {
var arr []uint
var a uint
for a = 4; a < maxSmith; a++ {
numfactors := numPrimeFactors(a)
arr = make([]uint, numfactors)
if numfactors < 2 {
continue
}
primeFactors(a, arr)
if sumDigits(a) == sumFactors(arr, numfactors) {
fmt.Printf("%4d ", a)
}
}
}
func main() {
const maxSmith = 10000
fmt.Printf("All the Smith Numbers less than %d are:\n", maxSmith)
listAllSmithNumbers(maxSmith)
fmt.Println()
}
|
Solve a Hidato puzzle | Go from Java | The task is to write a program which solves Hidato (aka Hidoku) puzzles.
The rules are:
* You are given a grid with some numbers placed in it. The other squares in the grid will be blank.
** The grid is not necessarily rectangular.
** The grid may have holes in it.
** The grid is always connected.
** The number "1" is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique.
** It may be assumed that the difference between numbers present on the grid is not greater than lucky 13.
* The aim is to place a natural number in each blank square so that in the sequence of numbered squares from "1" upwards, each square is in the [[wp:Moore neighborhood]] of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints).
** Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order.
** A square may only contain one number.
* In a proper Hidato puzzle, the solution is unique.
For example the following problem
Sample Hidato problem, from Wikipedia
has the following solution, with path marked on it:
Solution to sample Hidato problem
;Related tasks:
* [[A* search algorithm]]
* [[N-queens problem]]
* [[Solve a Holy Knight's tour]]
* [[Solve a Knight's tour]]
* [[Solve a Hopido puzzle]]
* [[Solve a Numbrix puzzle]]
* [[Solve the no connection puzzle]];
| package main
import (
"fmt"
"sort"
"strconv"
"strings"
)
var board [][]int
var start, given []int
func setup(input []string) {
/* This task is not about input validation, so
we're going to trust the input to be valid */
puzzle := make([][]string, len(input))
for i := 0; i < len(input); i++ {
puzzle[i] = strings.Fields(input[i])
}
nCols := len(puzzle[0])
nRows := len(puzzle)
list := make([]int, nRows*nCols)
board = make([][]int, nRows+2)
for i := 0; i < nRows+2; i++ {
board[i] = make([]int, nCols+2)
for j := 0; j < nCols+2; j++ {
board[i][j] = -1
}
}
for r := 0; r < nRows; r++ {
row := puzzle[r]
for c := 0; c < nCols; c++ {
switch cell := row[c]; cell {
case "_":
board[r+1][c+1] = 0
case ".":
break
default:
val, _ := strconv.Atoi(cell)
board[r+1][c+1] = val
list = append(list, val)
if val == 1 {
start = append(start, r+1, c+1)
}
}
}
}
sort.Ints(list)
given = make([]int, len(list))
for i := 0; i < len(given); i++ {
given[i] = list[i]
}
}
func solve(r, c, n, next int) bool {
if n > given[len(given)-1] {
return true
}
back := board[r][c]
if back != 0 && back != n {
return false
}
if back == 0 && given[next] == n {
return false
}
if back == n {
next++
}
board[r][c] = n
for i := -1; i < 2; i++ {
for j := -1; j < 2; j++ {
if solve(r+i, c+j, n+1, next) {
return true
}
}
}
board[r][c] = back
return false
}
func printBoard() {
for _, row := range board {
for _, c := range row {
switch {
case c == -1:
fmt.Print(" . ")
case c > 0:
fmt.Printf("%2d ", c)
default:
fmt.Print("__ ")
}
}
fmt.Println()
}
}
func main() {
input := []string{
"_ 33 35 _ _ . . .",
"_ _ 24 22 _ . . .",
"_ _ _ 21 _ _ . .",
"_ 26 _ 13 40 11 . .",
"27 _ _ _ 9 _ 1 .",
". . _ _ 18 _ _ .",
". . . . _ 7 _ _",
". . . . . . 5 _",
}
setup(input)
printBoard()
fmt.Println("\nFound:")
solve(start[0], start[1], 1, 0)
printBoard()
} |
Solve a Holy Knight's tour | Go from Python | Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies.
This kind of knight's tour puzzle is similar to Hidato.
The present task is to produce a solution to such problems. At least demonstrate your program by solving the following:
;Example:
0 0 0
0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0 0 0
0 0 0
0 0 0
Note that the zeros represent the available squares, not the pennies.
Extra credit is available for other interesting examples.
;Related tasks:
* [[A* search algorithm]]
* [[Knight's tour]]
* [[N-queens problem]]
* [[Solve a Hidato puzzle]]
* [[Solve a Hopido puzzle]]
* [[Solve a Numbrix puzzle]]
* [[Solve the no connection puzzle]]
| package main
import "fmt"
var moves = [][2]int{
{-1, -2}, {1, -2}, {-1, 2}, {1, 2}, {-2, -1}, {-2, 1}, {2, -1}, {2, 1},
}
var board1 = " xxx " +
" x xx " +
" xxxxxxx" +
"xxx x x" +
"x x xxx" +
"sxxxxxx " +
" xx x " +
" xxx "
var board2 = ".....s.x....." +
".....x.x....." +
"....xxxxx...." +
".....xxx....." +
"..x..x.x..x.." +
"xxxxx...xxxxx" +
"..xx.....xx.." +
"xxxxx...xxxxx" +
"..x..x.x..x.." +
".....xxx....." +
"....xxxxx...." +
".....x.x....." +
".....x.x....."
func solve(pz [][]int, sz, sx, sy, idx, cnt int) bool {
if idx > cnt {
return true
}
for i := 0; i < len(moves); i++ {
x := sx + moves[i][0]
y := sy + moves[i][1]
if (x >= 0 && x < sz) && (y >= 0 && y < sz) && pz[x][y] == 0 {
pz[x][y] = idx
if solve(pz, sz, x, y, idx+1, cnt) {
return true
}
pz[x][y] = 0
}
}
return false
}
func findSolution(b string, sz int) {
pz := make([][]int, sz)
for i := 0; i < sz; i++ {
pz[i] = make([]int, sz)
for j := 0; j < sz; j++ {
pz[i][j] = -1
}
}
var x, y, idx, cnt int
for j := 0; j < sz; j++ {
for i := 0; i < sz; i++ {
switch b[idx] {
case 'x':
pz[i][j] = 0
cnt++
case 's':
pz[i][j] = 1
cnt++
x, y = i, j
}
idx++
}
}
if solve(pz, sz, x, y, 2, cnt) {
for j := 0; j < sz; j++ {
for i := 0; i < sz; i++ {
if pz[i][j] != -1 {
fmt.Printf("%02d ", pz[i][j])
} else {
fmt.Print("-- ")
}
}
fmt.Println()
}
} else {
fmt.Println("Cannot solve this puzzle!")
}
}
func main() {
findSolution(board1, 8)
fmt.Println()
findSolution(board2, 13)
} |
Solve a Hopido puzzle | Go from Java | Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following:
"Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7x7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!"
Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds.
Example:
. 0 0 . 0 0 .
0 0 0 0 0 0 0
0 0 0 0 0 0 0
. 0 0 0 0 0 .
. . 0 0 0 . .
. . . 0 . . .
Extra credits are available for other interesting designs.
;Related tasks:
* [[A* search algorithm]]
* [[Solve a Holy Knight's tour]]
* [[Knight's tour]]
* [[N-queens problem]]
* [[Solve a Hidato puzzle]]
* [[Solve a Holy Knight's tour]]
* [[Solve a Numbrix puzzle]]
* [[Solve the no connection puzzle]]
| package main
import (
"fmt"
"sort"
)
var board = []string{
".00.00.",
"0000000",
"0000000",
".00000.",
"..000..",
"...0...",
}
var moves = [][2]int{
{-3, 0}, {0, 3}, {3, 0}, {0, -3},
{2, 2}, {2, -2}, {-2, 2}, {-2, -2},
}
var grid [][]int
var totalToFill = 0
func solve(r, c, count int) bool {
if count > totalToFill {
return true
}
nbrs := neighbors(r, c)
if len(nbrs) == 0 && count != totalToFill {
return false
}
sort.Slice(nbrs, func(i, j int) bool {
return nbrs[i][2] < nbrs[j][2]
})
for _, nb := range nbrs {
r = nb[0]
c = nb[1]
grid[r][c] = count
if solve(r, c, count+1) {
return true
}
grid[r][c] = 0
}
return false
}
func neighbors(r, c int) (nbrs [][3]int) {
for _, m := range moves {
x := m[0]
y := m[1]
if grid[r+y][c+x] == 0 {
num := countNeighbors(r+y, c+x) - 1
nbrs = append(nbrs, [3]int{r + y, c + x, num})
}
}
return
}
func countNeighbors(r, c int) int {
num := 0
for _, m := range moves {
if grid[r+m[1]][c+m[0]] == 0 {
num++
}
}
return num
}
func printResult() {
for _, row := range grid {
for _, i := range row {
if i == -1 {
fmt.Print(" ")
} else {
fmt.Printf("%2d ", i)
}
}
fmt.Println()
}
}
func main() {
nRows := len(board) + 6
nCols := len(board[0]) + 6
grid = make([][]int, nRows)
for r := 0; r < nRows; r++ {
grid[r] = make([]int, nCols)
for c := 0; c < nCols; c++ {
grid[r][c] = -1
}
for c := 3; c < nCols-3; c++ {
if r >= 3 && r < nRows-3 {
if board[r-3][c-3] == '0' {
grid[r][c] = 0
totalToFill++
}
}
}
}
pos, r, c := -1, 0, 0
for {
for {
pos++
r = pos / nCols
c = pos % nCols
if grid[r][c] != -1 {
break
}
}
grid[r][c] = 1
if solve(r, c, 2) {
break
}
grid[r][c] = 0
if pos >= nRows*nCols {
break
}
}
printResult()
} |
Solve a Numbrix puzzle | Go from Kotlin | Numbrix puzzles are similar to Hidato.
The most important difference is that it is only possible to move 1 node left, right, up, or down (sometimes referred to as the Von Neumann neighborhood).
Published puzzles also tend not to have holes in the grid and may not always indicate the end node.
Two examples follow:
;Example 1
Problem.
0 0 0 0 0 0 0 0 0
0 0 46 45 0 55 74 0 0
0 38 0 0 43 0 0 78 0
0 35 0 0 0 0 0 71 0
0 0 33 0 0 0 59 0 0
0 17 0 0 0 0 0 67 0
0 18 0 0 11 0 0 64 0
0 0 24 21 0 1 2 0 0
0 0 0 0 0 0 0 0 0
Solution.
49 50 51 52 53 54 75 76 81
48 47 46 45 44 55 74 77 80
37 38 39 40 43 56 73 78 79
36 35 34 41 42 57 72 71 70
31 32 33 14 13 58 59 68 69
30 17 16 15 12 61 60 67 66
29 18 19 20 11 62 63 64 65
28 25 24 21 10 1 2 3 4
27 26 23 22 9 8 7 6 5
;Example 2
Problem.
0 0 0 0 0 0 0 0 0
0 11 12 15 18 21 62 61 0
0 6 0 0 0 0 0 60 0
0 33 0 0 0 0 0 57 0
0 32 0 0 0 0 0 56 0
0 37 0 1 0 0 0 73 0
0 38 0 0 0 0 0 72 0
0 43 44 47 48 51 76 77 0
0 0 0 0 0 0 0 0 0
Solution.
9 10 13 14 19 20 63 64 65
8 11 12 15 18 21 62 61 66
7 6 5 16 17 22 59 60 67
34 33 4 3 24 23 58 57 68
35 32 31 2 25 54 55 56 69
36 37 30 1 26 53 74 73 70
39 38 29 28 27 52 75 72 71
40 43 44 47 48 51 76 77 78
41 42 45 46 49 50 81 80 79
;Task
Write a program to solve puzzles of this ilk,
demonstrating your program by solving the above examples.
Extra credit for other interesting examples.
;Related tasks:
* [[A* search algorithm]]
* [[Solve a Holy Knight's tour]]
* [[Knight's tour]]
* [[N-queens problem]]
* [[Solve a Hidato puzzle]]
* [[Solve a Holy Knight's tour]]
* [[Solve a Hopido puzzle]]
* [[Solve the no connection puzzle]]
| package main
import (
"fmt"
"sort"
"strconv"
"strings"
)
var example1 = []string{
"00,00,00,00,00,00,00,00,00",
"00,00,46,45,00,55,74,00,00",
"00,38,00,00,43,00,00,78,00",
"00,35,00,00,00,00,00,71,00",
"00,00,33,00,00,00,59,00,00",
"00,17,00,00,00,00,00,67,00",
"00,18,00,00,11,00,00,64,00",
"00,00,24,21,00,01,02,00,00",
"00,00,00,00,00,00,00,00,00",
}
var example2 = []string{
"00,00,00,00,00,00,00,00,00",
"00,11,12,15,18,21,62,61,00",
"00,06,00,00,00,00,00,60,00",
"00,33,00,00,00,00,00,57,00",
"00,32,00,00,00,00,00,56,00",
"00,37,00,01,00,00,00,73,00",
"00,38,00,00,00,00,00,72,00",
"00,43,44,47,48,51,76,77,00",
"00,00,00,00,00,00,00,00,00",
}
var moves = [][2]int{{1, 0}, {0, 1}, {-1, 0}, {0, -1}}
var (
grid [][]int
clues []int
totalToFill = 0
)
func solve(r, c, count, nextClue int) bool {
if count > totalToFill {
return true
}
back := grid[r][c]
if back != 0 && back != count {
return false
}
if back == 0 && nextClue < len(clues) && clues[nextClue] == count {
return false
}
if back == count {
nextClue++
}
grid[r][c] = count
for _, move := range moves {
if solve(r+move[1], c+move[0], count+1, nextClue) {
return true
}
}
grid[r][c] = back
return false
}
func printResult(n int) {
fmt.Println("Solution for example", n, "\b:")
for _, row := range grid {
for _, i := range row {
if i == -1 {
continue
}
fmt.Printf("%2d ", i)
}
fmt.Println()
}
}
func main() {
for n, board := range [2][]string{example1, example2} {
nRows := len(board) + 2
nCols := len(strings.Split(board[0], ",")) + 2
startRow, startCol := 0, 0
grid = make([][]int, nRows)
totalToFill = (nRows - 2) * (nCols - 2)
var lst []int
for r := 0; r < nRows; r++ {
grid[r] = make([]int, nCols)
for c := 0; c < nCols; c++ {
grid[r][c] = -1
}
if r >= 1 && r < nRows-1 {
row := strings.Split(board[r-1], ",")
for c := 1; c < nCols-1; c++ {
val, _ := strconv.Atoi(row[c-1])
if val > 0 {
lst = append(lst, val)
}
if val == 1 {
startRow, startCol = r, c
}
grid[r][c] = val
}
}
}
sort.Ints(lst)
clues = lst
if solve(startRow, startCol, 1, 0) {
printResult(n + 1)
}
}
} |
Sort an outline at every level | Go from Wren | Write and test a function over an indented plain text outline which either:
# Returns a copy of the outline in which the sub-lists at every level of indentation are sorted, or
# reports that the indentation characters or widths are not consistent enough to make the outline structure clear.
Your code should detect and warn of at least two types of inconsistent indentation:
* inconsistent use of whitespace characters (e.g. mixed use of tabs and spaces)
* inconsistent indent widths. For example, an indentation with an odd number of spaces in an outline in which the unit indent appears to be 2 spaces, or 4 spaces.
Your code should be able to detect and handle both tab-indented, and space-indented (e.g. 4 space, 2 space etc) outlines, without being given any advance warning of the indent characters used, or the size of the indent units.
You should also be able to specify different types of sort, for example, as a minimum, both ascending and descending lexical sorts.
Your sort should not alter the type or size of the indentation units used in the input outline.
(For an application of Indent Respectful Sort, see the Sublime Text package of that name. The Python source text is available for inspection on Github).
'''Tests'''
* Sort every level of the (4 space indented) outline below lexically, once ascending and once descending.
zeta
beta
gamma
lambda
kappa
mu
delta
alpha
theta
iota
epsilon
* Do the same with a tab-indented equivalent of the same outline.
zeta
gamma
mu
lambda
kappa
delta
beta
alpha
theta
iota
epsilon
The output sequence of an ascending lexical sort of each level should be:
alpha
epsilon
iota
theta
zeta
beta
delta
gamma
kappa
lambda
mu
The output sequence of a descending lexical sort of each level should be:
zeta
gamma
mu
lambda
kappa
delta
beta
alpha
theta
iota
epsilon
* Attempt to separately sort each of the following two outlines, reporting any inconsistencies detected in their indentations by your validation code.
alpha
epsilon
iota
theta
zeta
beta
delta
gamma
kappa
lambda
mu
zeta
beta
gamma
lambda
kappa
mu
delta
alpha
theta
iota
epsilon
;Related tasks:
:* [[Functional_coverage_tree]
:* [[Display_an_outline_as_a_nested_table]]
| package main
import (
"fmt"
"math"
"sort"
"strings"
)
func sortedOutline(originalOutline []string, ascending bool) {
outline := make([]string, len(originalOutline))
copy(outline, originalOutline) // make copy in case we mutate it
indent := ""
del := "\x7f"
sep := "\x00"
var messages []string
if strings.TrimLeft(outline[0], " \t") != outline[0] {
fmt.Println(" outline structure is unclear")
return
}
for i := 1; i < len(outline); i++ {
line := outline[i]
lc := len(line)
if strings.HasPrefix(line, " ") || strings.HasPrefix(line, " \t") || line[0] == '\t' {
lc2 := len(strings.TrimLeft(line, " \t"))
currIndent := line[0 : lc-lc2]
if indent == "" {
indent = currIndent
} else {
correctionNeeded := false
if (strings.ContainsRune(currIndent, '\t') && !strings.ContainsRune(indent, '\t')) ||
(!strings.ContainsRune(currIndent, '\t') && strings.ContainsRune(indent, '\t')) {
m := fmt.Sprintf("corrected inconsistent whitespace use at line %q", line)
messages = append(messages, indent+m)
correctionNeeded = true
} else if len(currIndent)%len(indent) != 0 {
m := fmt.Sprintf("corrected inconsistent indent width at line %q", line)
messages = append(messages, indent+m)
correctionNeeded = true
}
if correctionNeeded {
mult := int(math.Round(float64(len(currIndent)) / float64(len(indent))))
outline[i] = strings.Repeat(indent, mult) + line[lc-lc2:]
}
}
}
}
levels := make([]int, len(outline))
levels[0] = 1
margin := ""
for level := 1; ; level++ {
allPos := true
for i := 1; i < len(levels); i++ {
if levels[i] == 0 {
allPos = false
break
}
}
if allPos {
break
}
mc := len(margin)
for i := 1; i < len(outline); i++ {
if levels[i] == 0 {
line := outline[i]
if strings.HasPrefix(line, margin) && line[mc] != ' ' && line[mc] != '\t' {
levels[i] = level
}
}
}
margin += indent
}
lines := make([]string, len(outline))
lines[0] = outline[0]
var nodes []string
for i := 1; i < len(outline); i++ {
if levels[i] > levels[i-1] {
if len(nodes) == 0 {
nodes = append(nodes, outline[i-1])
} else {
nodes = append(nodes, sep+outline[i-1])
}
} else if levels[i] < levels[i-1] {
j := levels[i-1] - levels[i]
nodes = nodes[0 : len(nodes)-j]
}
if len(nodes) > 0 {
lines[i] = strings.Join(nodes, "") + sep + outline[i]
} else {
lines[i] = outline[i]
}
}
if ascending {
sort.Strings(lines)
} else {
maxLen := len(lines[0])
for i := 1; i < len(lines); i++ {
if len(lines[i]) > maxLen {
maxLen = len(lines[i])
}
}
for i := 0; i < len(lines); i++ {
lines[i] = lines[i] + strings.Repeat(del, maxLen-len(lines[i]))
}
sort.Sort(sort.Reverse(sort.StringSlice(lines)))
}
for i := 0; i < len(lines); i++ {
s := strings.Split(lines[i], sep)
lines[i] = s[len(s)-1]
if !ascending {
lines[i] = strings.TrimRight(lines[i], del)
}
}
if len(messages) > 0 {
fmt.Println(strings.Join(messages, "\n"))
fmt.Println()
}
fmt.Println(strings.Join(lines, "\n"))
}
func main() {
outline := []string{
"zeta",
" beta",
" gamma",
" lambda",
" kappa",
" mu",
" delta",
"alpha",
" theta",
" iota",
" epsilon",
}
outline2 := make([]string, len(outline))
for i := 0; i < len(outline); i++ {
outline2[i] = strings.ReplaceAll(outline[i], " ", "\t")
}
outline3 := []string{
"alpha",
" epsilon",
" iota",
" theta",
"zeta",
" beta",
" delta",
" gamma",
" \t kappa", // same length but \t instead of space
" lambda",
" mu",
}
outline4 := []string{
"zeta",
" beta",
" gamma",
" lambda",
" kappa",
" mu",
" delta",
"alpha",
" theta",
" iota",
" epsilon",
}
fmt.Println("Four space indented outline, ascending sort:")
sortedOutline(outline, true)
fmt.Println("\nFour space indented outline, descending sort:")
sortedOutline(outline, false)
fmt.Println("\nTab indented outline, ascending sort:")
sortedOutline(outline2, true)
fmt.Println("\nTab indented outline, descending sort:")
sortedOutline(outline2, false)
fmt.Println("\nFirst unspecified outline, ascending sort:")
sortedOutline(outline3, true)
fmt.Println("\nFirst unspecified outline, descending sort:")
sortedOutline(outline3, false)
fmt.Println("\nSecond unspecified outline, ascending sort:")
sortedOutline(outline4, true)
fmt.Println("\nSecond unspecified outline, descending sort:")
sortedOutline(outline4, false)
} |
Sparkline in unicode | Go | A sparkline is a graph of successive values laid out horizontally
where the height of the line is proportional to the values in succession.
;Task:
Use the following series of Unicode characters to create a program
that takes a series of numbers separated by one or more whitespace or comma characters
and generates a sparkline-type bar graph of the values on a single line of output.
The eight characters: '########'
(Unicode values U+2581 through U+2588).
Use your program to show sparklines for the following input,
here on this page:
# 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
# 1.5, 0.5 3.5, 2.5 5.5, 4.5 7.5, 6.5
:(note the mix of separators in this second case)!
;Notes:
* A space is not part of the generated sparkline.
* The sparkline may be accompanied by simple statistics of the data such as its range.
* A suggestion emerging in later discussion (see Discussion page) is that the bounds between bins should ideally be set to yield the following results for two particular edge cases:
:: "0, 1, 19, 20" -> ####
:: (Aiming to use just two spark levels)
:: "0, 999, 4000, 4999, 7000, 7999" -> ######
:: (Aiming to use just three spark levels)
:: It may be helpful to include these cases in output tests.
* You may find that the unicode sparklines on this page are rendered less noisily by Google Chrome than by Firefox or Safari.
| package main
import (
"bufio"
"errors"
"fmt"
"math"
"os"
"regexp"
"strconv"
"strings"
)
func main() {
fmt.Println("Numbers please separated by space/commas:")
sc := bufio.NewScanner(os.Stdin)
sc.Scan()
s, n, min, max, err := spark(sc.Text())
if err != nil {
fmt.Println(err)
return
}
if n == 1 {
fmt.Println("1 value =", min)
} else {
fmt.Println(n, "values. Min:", min, "Max:", max)
}
fmt.Println(s)
}
var sep = regexp.MustCompile(`[\s,]+`)
func spark(s0 string) (sp string, n int, min, max float64, err error) {
ss := sep.Split(s0, -1)
n = len(ss)
vs := make([]float64, n)
var v float64
min = math.Inf(1)
max = math.Inf(-1)
for i, s := range ss {
switch v, err = strconv.ParseFloat(s, 64); {
case err != nil:
case math.IsNaN(v):
err = errors.New("NaN not supported.")
case math.IsInf(v, 0):
err = errors.New("Inf not supported.")
default:
if v < min {
min = v
}
if v > max {
max = v
}
vs[i] = v
continue
}
return
}
if min == max {
sp = strings.Repeat("▄", n)
} else {
rs := make([]rune, n)
f := 8 / (max - min)
for j, v := range vs {
i := rune(f * (v - min))
if i > 7 {
i = 7
}
rs[j] = '▁' + i
}
sp = string(rs)
}
return
} |
Spelling of ordinal numbers | Go | '''Ordinal numbers''' (as used in this Rosetta Code task), are numbers that describe the ''position'' of something in a list.
It is this context that ordinal numbers will be used, using an English-spelled name of an ordinal number.
The ordinal numbers are (at least, one form of them):
1st 2nd 3rd 4th 5th 6th 7th *** 99th 100th *** 1000000000th *** etc
sometimes expressed as:
1st 2nd 3rd 4th 5th 6th 7th *** 99th 100th *** 1000000000th ***
For this task, the following (English-spelled form) will be used:
first second third fourth fifth sixth seventh ninety-nineth one hundredth one billionth
Furthermore, the American version of numbers will be used here (as opposed to the British).
'''2,000,000,000''' is two billion, ''not'' two milliard.
;Task:
Write a driver and a function (subroutine/routine ***) that returns the English-spelled ordinal version of a specified number (a positive integer).
Optionally, try to support as many forms of an integer that can be expressed: '''123''' '''00123.0''' '''1.23e2''' all are forms of the same integer.
Show all output here.
;Test cases:
Use (at least) the test cases of:
1 2 3 4 5 11 65 100 101 272 23456 8007006005004003
;Related tasks:
* [[Number names]]
* [[N'th]]
| import (
"fmt"
"strings"
)
func main() {
for _, n := range []int64{
1, 2, 3, 4, 5, 11, 65, 100, 101, 272, 23456, 8007006005004003,
} {
fmt.Println(sayOrdinal(n))
}
}
var irregularOrdinals = map[string]string{
"one": "first",
"two": "second",
"three": "third",
"five": "fifth",
"eight": "eighth",
"nine": "ninth",
"twelve": "twelfth",
}
func sayOrdinal(n int64) string {
s := say(n)
i := strings.LastIndexAny(s, " -")
i++
// Now s[:i] is everything upto and including the space or hyphen
// and s[i:] is the last word; we modify s[i:] as required.
// Since LastIndex returns -1 if there was no space/hyphen,
// `i` will be zero and this will still be fine.
if x, ok := irregularOrdinals[s[i:]]; ok {
s = s[:i] + x
} else if s[len(s)-1] == 'y' {
s = s[:i] + s[i:len(s)-1] + "ieth"
} else {
s = s[:i] + s[i:] + "th"
}
return s
}
// Below is a copy of https://rosettacode.org/wiki/Number_names#Go
var small = [...]string{"zero", "one", "two", "three", "four", "five", "six",
"seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen",
"fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"}
var tens = [...]string{"", "", "twenty", "thirty", "forty",
"fifty", "sixty", "seventy", "eighty", "ninety"}
var illions = [...]string{"", " thousand", " million", " billion",
" trillion", " quadrillion", " quintillion"}
func say(n int64) string {
var t string
if n < 0 {
t = "negative "
// Note, for math.MinInt64 this leaves n negative.
n = -n
}
switch {
case n < 20:
t += small[n]
case n < 100:
t += tens[n/10]
s := n % 10
if s > 0 {
t += "-" + small[s]
}
case n < 1000:
t += small[n/100] + " hundred"
s := n % 100
if s > 0 {
t += " " + say(s)
}
default:
// work right-to-left
sx := ""
for i := 0; n > 0; i++ {
p := n % 1000
n /= 1000
if p > 0 {
ix := say(p) + illions[i]
if sx != "" {
ix += " " + sx
}
sx = ix
}
}
t += sx
}
return t
} |
Split a character string based on change of character | Go | Split a (character) string into comma (plus a blank) delimited
strings based on a change of character (left to right).
Show the output here (use the 1st example below).
Blanks should be treated as any other character (except
they are problematic to display clearly). The same applies
to commas.
For instance, the string:
gHHH5YY++///\
should be split and show:
g, HHH, 5, YY, ++, ///, \
| package main
import (
"fmt"
"strings"
)
func main() {
fmt.Println(scc(`gHHH5YY++///\`))
}
func scc(s string) string {
if len(s) < 2 {
return s
}
var b strings.Builder
p := s[0]
b.WriteByte(p)
for _, c := range []byte(s[1:]) {
if c != p {
b.WriteString(", ")
}
b.WriteByte(c)
p = c
}
return b.String()
} |
Square-free integers | Go | Write a function to test if a number is ''square-free''.
A ''square-free'' is an integer which is divisible by no perfect square other
than '''1''' (unity).
For this task, only positive square-free numbers will be used.
Show here (on this page) all square-free integers (in a horizontal format) that are between:
::* '''1''' ---> '''145''' (inclusive)
::* '''1''' trillion ---> '''1''' trillion + '''145''' (inclusive)
(One trillion = 1,000,000,000,000)
Show here (on this page) the count of square-free integers from:
::* '''1''' ---> one hundred (inclusive)
::* '''1''' ---> one thousand (inclusive)
::* '''1''' ---> ten thousand (inclusive)
::* '''1''' ---> one hundred thousand (inclusive)
::* '''1''' ---> one million (inclusive)
;See also:
:* the Wikipedia entry: square-free integer
| package main
import (
"fmt"
"math"
)
func sieve(limit uint64) []uint64 {
primes := []uint64{2}
c := make([]bool, limit+1) // composite = true
// no need to process even numbers > 2
p := uint64(3)
for {
p2 := p * p
if p2 > limit {
break
}
for i := p2; i <= limit; i += 2 * p {
c[i] = true
}
for {
p += 2
if !c[p] {
break
}
}
}
for i := uint64(3); i <= limit; i += 2 {
if !c[i] {
primes = append(primes, i)
}
}
return primes
}
func squareFree(from, to uint64) (results []uint64) {
limit := uint64(math.Sqrt(float64(to)))
primes := sieve(limit)
outer:
for i := from; i <= to; i++ {
for _, p := range primes {
p2 := p * p
if p2 > i {
break
}
if i%p2 == 0 {
continue outer
}
}
results = append(results, i)
}
return
}
const trillion uint64 = 1000000000000
func main() {
fmt.Println("Square-free integers from 1 to 145:")
sf := squareFree(1, 145)
for i := 0; i < len(sf); i++ {
if i > 0 && i%20 == 0 {
fmt.Println()
}
fmt.Printf("%4d", sf[i])
}
fmt.Printf("\n\nSquare-free integers from %d to %d:\n", trillion, trillion+145)
sf = squareFree(trillion, trillion+145)
for i := 0; i < len(sf); i++ {
if i > 0 && i%5 == 0 {
fmt.Println()
}
fmt.Printf("%14d", sf[i])
}
fmt.Println("\n\nNumber of square-free integers:\n")
a := [...]uint64{100, 1000, 10000, 100000, 1000000}
for _, n := range a {
fmt.Printf(" from %d to %d = %d\n", 1, n, len(squareFree(1, n)))
}
} |
Square but not cube | Go | Show the first '''30''' positive integers which are squares but not cubes of such integers.
Optionally, show also the first '''3''' positive integers which are both squares and cubes, and mark them as such.
| package main
import (
"fmt"
"math"
)
func main() {
for n, count := 1, 0; count < 30; n++ {
sq := n * n
cr := int(math.Cbrt(float64(sq)))
if cr*cr*cr != sq {
count++
fmt.Println(sq)
} else {
fmt.Println(sq, "is square and cube")
}
}
} |
Start from a main routine | Go | Some languages (like Gambas and Visual Basic) support two startup modes. Applications written in these languages start with an open window that waits for events, and it is necessary to do some trickery to cause a main procedure to run instead. Data driven or event driven languages may also require similar trickery to force a startup procedure to run.
;Task:
Demonstrate the steps involved in causing the application to run a main procedure, rather than an event driven window at startup.
Languages that always run from main() can be omitted from this task.
| package main
import "fmt"
var count = 0
func foo() {
fmt.Println("foo called")
}
func init() {
fmt.Println("first init called")
foo()
}
func init() {
fmt.Println("second init called")
main()
}
func main() {
count++
fmt.Println("main called when count is", count)
} |
Statistics/Normal distribution | Go | The derive normally distributed random numbers from a uniform generator.
;The task:
# Take a uniform random number generator and create a large (you decide how large) set of numbers that follow a normal (Gaussian) distribution. Calculate the dataset's mean and standard deviation, and show a histogram of the data.
# Mention any native language support for the generation of normally distributed random numbers.
;Reference:
* You may refer to code in [[Statistics/Basic]] if available.
| package main
import (
"fmt"
"math"
"math/rand"
"strings"
)
// Box-Muller
func norm2() (s, c float64) {
r := math.Sqrt(-2 * math.Log(rand.Float64()))
s, c = math.Sincos(2 * math.Pi * rand.Float64())
return s * r, c * r
}
func main() {
const (
n = 10000
bins = 12
sig = 3
scale = 100
)
var sum, sumSq float64
h := make([]int, bins)
for i, accum := 0, func(v float64) {
sum += v
sumSq += v * v
b := int((v + sig) * bins / sig / 2)
if b >= 0 && b < bins {
h[b]++
}
}; i < n/2; i++ {
v1, v2 := norm2()
accum(v1)
accum(v2)
}
m := sum / n
fmt.Println("mean:", m)
fmt.Println("stddev:", math.Sqrt(sumSq/float64(n)-m*m))
for _, p := range h {
fmt.Println(strings.Repeat("*", p/scale))
}
} |
Stern-Brocot sequence | Go | For this task, the Stern-Brocot sequence is to be generated by an algorithm similar to that employed in generating the [[Fibonacci sequence]].
# The first and second members of the sequence are both 1:
#* 1, 1
# Start by considering the second member of the sequence
# Sum the considered member of the sequence and its precedent, (1 + 1) = 2, and append it to the end of the sequence:
#* 1, 1, 2
# Append the considered member of the sequence to the end of the sequence:
#* 1, 1, 2, 1
# Consider the next member of the series, (the third member i.e. 2)
# GOTO 3
#*
#* --- Expanding another loop we get: ---
#*
# Sum the considered member of the sequence and its precedent, (2 + 1) = 3, and append it to the end of the sequence:
#* 1, 1, 2, 1, 3
# Append the considered member of the sequence to the end of the sequence:
#* 1, 1, 2, 1, 3, 2
# Consider the next member of the series, (the fourth member i.e. 1)
;The task is to:
* Create a function/method/subroutine/procedure/... to generate the Stern-Brocot sequence of integers using the method outlined above.
* Show the first fifteen members of the sequence. (This should be: 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4)
* Show the (1-based) index of where the numbers 1-to-10 first appear in the sequence.
* Show the (1-based) index of where the number 100 first appears in the sequence.
* Check that the greatest common divisor of all the two consecutive members of the series up to the 1000th member, is always one.
Show your output on this page.
;Related tasks:
:* [[Fusc sequence]].
:* [[Continued fraction/Arithmetic]]
;Ref:
* Infinite Fractions - Numberphile (Video).
* Trees, Teeth, and Time: The mathematics of clock making.
* A002487 The On-Line Encyclopedia of Integer Sequences.
| // SB implements the Stern-Brocot sequence.
//
// Generator() satisfies RC Task 1. For remaining tasks, Generator could be
// used but FirstN(), and Find() are simpler methods for specific stopping
// criteria. FirstN and Find might also be considered to satisfy Task 1,
// in which case Generator would not really be needed. Anyway, there it is.
package sb
// Seq represents an even number of terms of a Stern-Brocot sequence.
//
// Terms are stored in a slice. Terms start with 1.
// (Specifically, the zeroth term, 0, given in OEIS A002487 is not represented.)
// Term 1 (== 1) is stored at slice index 0.
//
// Methods on Seq rely on Seq always containing an even number of terms.
type Seq []int
// New returns a Seq with the two base terms.
func New() *Seq {
return &Seq{1, 1} // Step 1 of the RC task.
}
// TwoMore appends two more terms to p.
// It's the body of the loop in the RC algorithm.
// Generate(), FirstN(), and Find() wrap this body in different ways.
func (p *Seq) TwoMore() {
s := *p
n := len(s) / 2 // Steps 2 and 5 of the RC task.
c := s[n]
*p = append(s, c+s[n-1], c) // Steps 3 and 4 of the RC task.
}
// Generator returns a generator function that returns successive terms
// (until overflow.)
func Generator() func() int {
n := 0
p := New()
return func() int {
if len(*p) == n {
p.TwoMore()
}
t := (*p)[n]
n++
return t
}
}
// FirstN lazily extends p as needed so that it has at least n terms.
// FirstN then returns a list of the first n terms.
func (p *Seq) FirstN(n int) []int {
for len(*p) < n {
p.TwoMore()
}
return []int((*p)[:n])
}
// Find lazily extends p as needed until it contains the value x
// Find then returns the slice index of x in p.
func (p *Seq) Find(x int) int {
for n, f := range *p {
if f == x {
return n
}
}
for {
p.TwoMore()
switch x {
case (*p)[len(*p)-2]:
return len(*p) - 2
case (*p)[len(*p)-1]:
return len(*p) - 1
}
}
} |
Stirling numbers of the first kind | Go | Stirling numbers of the first kind, or Stirling cycle numbers, count permutations according to their number
of cycles (counting fixed points as cycles of length one).
They may be defined directly to be the number of permutations of '''n'''
elements with '''k''' disjoint cycles.
Stirling numbers of the first kind express coefficients of polynomial expansions of falling or rising factorials.
Depending on the application, Stirling numbers of the first kind may be "signed"
or "unsigned". Signed Stirling numbers of the first kind arise when the
polynomial expansion is expressed in terms of falling factorials; unsigned when
expressed in terms of rising factorials. The only substantial difference is that,
for signed Stirling numbers of the first kind, values of S1(n, k) are negative
when n + k is odd.
Stirling numbers of the first kind follow the simple identities:
S1(0, 0) = 1
S1(n, 0) = 0 if n > 0
S1(n, k) = 0 if k > n
S1(n, k) = S1(n - 1, k - 1) + (n - 1) * S1(n - 1, k) # For unsigned
''or''
S1(n, k) = S1(n - 1, k - 1) - (n - 1) * S1(n - 1, k) # For signed
;Task:
:* Write a routine (function, procedure, whatever) to find '''Stirling numbers of the first kind'''. There are several methods to generate Stirling numbers of the first kind. You are free to choose the most appropriate for your language. If your language has a built-in, or easily, publicly available library implementation, it is acceptable to use that.
:* Using the routine, generate and show here, on this page, a table (or triangle) showing the Stirling numbers of the first kind, '''S1(n, k)''', up to '''S1(12, 12)'''. it is optional to show the row / column for n == 0 and k == 0. It is optional to show places where S1(n, k) == 0 (when k > n). You may choose to show signed or unsigned Stirling numbers of the first kind, just make a note of which was chosen.
:* If your language supports large integers, find and show here, on this page, the maximum value of '''S1(n, k)''' where '''n == 100'''.
;See also:
:* '''Wikipedia - Stirling numbers of the first kind'''
:* '''OEIS:A008275 - Signed Stirling numbers of the first kind'''
:* '''OEIS:A130534 - Unsigned Stirling numbers of the first kind'''
;Related Tasks:
:* '''Stirling numbers of the second kind'''
:* '''Lah numbers'''
| package main
import (
"fmt"
"math/big"
)
func main() {
limit := 100
last := 12
unsigned := true
s1 := make([][]*big.Int, limit+1)
for n := 0; n <= limit; n++ {
s1[n] = make([]*big.Int, limit+1)
for k := 0; k <= limit; k++ {
s1[n][k] = new(big.Int)
}
}
s1[0][0].SetInt64(int64(1))
var t big.Int
for n := 1; n <= limit; n++ {
for k := 1; k <= n; k++ {
t.SetInt64(int64(n - 1))
t.Mul(&t, s1[n-1][k])
if unsigned {
s1[n][k].Add(s1[n-1][k-1], &t)
} else {
s1[n][k].Sub(s1[n-1][k-1], &t)
}
}
}
fmt.Println("Unsigned Stirling numbers of the first kind: S1(n, k):")
fmt.Printf("n/k")
for i := 0; i <= last; i++ {
fmt.Printf("%9d ", i)
}
fmt.Printf("\n--")
for i := 0; i <= last; i++ {
fmt.Printf("----------")
}
fmt.Println()
for n := 0; n <= last; n++ {
fmt.Printf("%2d ", n)
for k := 0; k <= n; k++ {
fmt.Printf("%9d ", s1[n][k])
}
fmt.Println()
}
fmt.Println("\nMaximum value from the S1(100, *) row:")
max := new(big.Int).Set(s1[limit][0])
for k := 1; k <= limit; k++ {
if s1[limit][k].Cmp(max) > 0 {
max.Set(s1[limit][k])
}
}
fmt.Println(max)
fmt.Printf("which has %d digits.\n", len(max.String()))
} |
Stirling numbers of the second kind | Go | Stirling numbers of the second kind, or Stirling partition numbers, are the
number of ways to partition a set of n objects into k non-empty subsets. They are
closely related to [[Bell numbers]], and may be derived from them.
Stirling numbers of the second kind obey the recurrence relation:
S2(n, 0) and S2(0, k) = 0 # for n, k > 0
S2(n, n) = 1
S2(n + 1, k) = k * S2(n, k) + S2(n, k - 1)
;Task:
:* Write a routine (function, procedure, whatever) to find '''Stirling numbers of the second kind'''. There are several methods to generate Stirling numbers of the second kind. You are free to choose the most appropriate for your language. If your language has a built-in, or easily, publicly available library implementation, it is acceptable to use that.
:* Using the routine, generate and show here, on this page, a table (or triangle) showing the Stirling numbers of the second kind, '''S2(n, k)''', up to '''S2(12, 12)'''. it is optional to show the row / column for n == 0 and k == 0. It is optional to show places where S2(n, k) == 0 (when k > n).
:* If your language supports large integers, find and show here, on this page, the maximum value of '''S2(n, k)''' where '''n == 100'''.
;See also:
:* '''Wikipedia - Stirling numbers of the second kind'''
:* '''OEIS:A008277 - Stirling numbers of the second kind'''
;Related Tasks:
:* '''Stirling numbers of the first kind'''
:* '''Bell numbers'''
:* '''Lah numbers'''
| package main
import (
"fmt"
"math/big"
)
func main() {
limit := 100
last := 12
s2 := make([][]*big.Int, limit+1)
for n := 0; n <= limit; n++ {
s2[n] = make([]*big.Int, limit+1)
for k := 0; k <= limit; k++ {
s2[n][k] = new(big.Int)
}
s2[n][n].SetInt64(int64(1))
}
var t big.Int
for n := 1; n <= limit; n++ {
for k := 1; k <= n; k++ {
t.SetInt64(int64(k))
t.Mul(&t, s2[n-1][k])
s2[n][k].Add(&t, s2[n-1][k-1])
}
}
fmt.Println("Stirling numbers of the second kind: S2(n, k):")
fmt.Printf("n/k")
for i := 0; i <= last; i++ {
fmt.Printf("%9d ", i)
}
fmt.Printf("\n--")
for i := 0; i <= last; i++ {
fmt.Printf("----------")
}
fmt.Println()
for n := 0; n <= last; n++ {
fmt.Printf("%2d ", n)
for k := 0; k <= n; k++ {
fmt.Printf("%9d ", s2[n][k])
}
fmt.Println()
}
fmt.Println("\nMaximum value from the S2(100, *) row:")
max := new(big.Int).Set(s2[limit][0])
for k := 1; k <= limit; k++ {
if s2[limit][k].Cmp(max) > 0 {
max.Set(s2[limit][k])
}
}
fmt.Println(max)
fmt.Printf("which has %d digits.\n", len(max.String()))
} |
Strassen's algorithm | Go from Wren | Description
In linear algebra, the Strassen algorithm (named after Volker Strassen), is an algorithm for matrix multiplication.
It is faster than the standard matrix multiplication algorithm and is useful in practice for large matrices, but would be slower than the fastest known algorithms for extremely large matrices.
;Task
Write a routine, function, procedure etc. in your language to implement the Strassen algorithm for matrix multiplication.
While practical implementations of Strassen's algorithm usually switch to standard methods of matrix multiplication for small enough sub-matrices (currently anything less than 512x512 according to Wikipedia), for the purposes of this task you should not switch until reaching a size of 1 or 2.
;Related task
:* [[Matrix multiplication]]
;See also
:* Wikipedia article
| package main
import (
"fmt"
"log"
"math"
)
type Matrix [][]float64
func (m Matrix) rows() int { return len(m) }
func (m Matrix) cols() int { return len(m[0]) }
func (m Matrix) add(m2 Matrix) Matrix {
if m.rows() != m2.rows() || m.cols() != m2.cols() {
log.Fatal("Matrices must have the same dimensions.")
}
c := make(Matrix, m.rows())
for i := 0; i < m.rows(); i++ {
c[i] = make([]float64, m.cols())
for j := 0; j < m.cols(); j++ {
c[i][j] = m[i][j] + m2[i][j]
}
}
return c
}
func (m Matrix) sub(m2 Matrix) Matrix {
if m.rows() != m2.rows() || m.cols() != m2.cols() {
log.Fatal("Matrices must have the same dimensions.")
}
c := make(Matrix, m.rows())
for i := 0; i < m.rows(); i++ {
c[i] = make([]float64, m.cols())
for j := 0; j < m.cols(); j++ {
c[i][j] = m[i][j] - m2[i][j]
}
}
return c
}
func (m Matrix) mul(m2 Matrix) Matrix {
if m.cols() != m2.rows() {
log.Fatal("Cannot multiply these matrices.")
}
c := make(Matrix, m.rows())
for i := 0; i < m.rows(); i++ {
c[i] = make([]float64, m2.cols())
for j := 0; j < m2.cols(); j++ {
for k := 0; k < m2.rows(); k++ {
c[i][j] += m[i][k] * m2[k][j]
}
}
}
return c
}
func (m Matrix) toString(p int) string {
s := make([]string, m.rows())
pow := math.Pow(10, float64(p))
for i := 0; i < m.rows(); i++ {
t := make([]string, m.cols())
for j := 0; j < m.cols(); j++ {
r := math.Round(m[i][j]*pow) / pow
t[j] = fmt.Sprintf("%g", r)
if t[j] == "-0" {
t[j] = "0"
}
}
s[i] = fmt.Sprintf("%v", t)
}
return fmt.Sprintf("%v", s)
}
func params(r, c int) [4][6]int {
return [4][6]int{
{0, r, 0, c, 0, 0},
{0, r, c, 2 * c, 0, c},
{r, 2 * r, 0, c, r, 0},
{r, 2 * r, c, 2 * c, r, c},
}
}
func toQuarters(m Matrix) [4]Matrix {
r := m.rows() / 2
c := m.cols() / 2
p := params(r, c)
var quarters [4]Matrix
for k := 0; k < 4; k++ {
q := make(Matrix, r)
for i := p[k][0]; i < p[k][1]; i++ {
q[i-p[k][4]] = make([]float64, c)
for j := p[k][2]; j < p[k][3]; j++ {
q[i-p[k][4]][j-p[k][5]] = m[i][j]
}
}
quarters[k] = q
}
return quarters
}
func fromQuarters(q [4]Matrix) Matrix {
r := q[0].rows()
c := q[0].cols()
p := params(r, c)
r *= 2
c *= 2
m := make(Matrix, r)
for i := 0; i < c; i++ {
m[i] = make([]float64, c)
}
for k := 0; k < 4; k++ {
for i := p[k][0]; i < p[k][1]; i++ {
for j := p[k][2]; j < p[k][3]; j++ {
m[i][j] = q[k][i-p[k][4]][j-p[k][5]]
}
}
}
return m
}
func strassen(a, b Matrix) Matrix {
if a.rows() != a.cols() || b.rows() != b.cols() || a.rows() != b.rows() {
log.Fatal("Matrices must be square and of equal size.")
}
if a.rows() == 0 || (a.rows()&(a.rows()-1)) != 0 {
log.Fatal("Size of matrices must be a power of two.")
}
if a.rows() == 1 {
return a.mul(b)
}
qa := toQuarters(a)
qb := toQuarters(b)
p1 := strassen(qa[1].sub(qa[3]), qb[2].add(qb[3]))
p2 := strassen(qa[0].add(qa[3]), qb[0].add(qb[3]))
p3 := strassen(qa[0].sub(qa[2]), qb[0].add(qb[1]))
p4 := strassen(qa[0].add(qa[1]), qb[3])
p5 := strassen(qa[0], qb[1].sub(qb[3]))
p6 := strassen(qa[3], qb[2].sub(qb[0]))
p7 := strassen(qa[2].add(qa[3]), qb[0])
var q [4]Matrix
q[0] = p1.add(p2).sub(p4).add(p6)
q[1] = p4.add(p5)
q[2] = p6.add(p7)
q[3] = p2.sub(p3).add(p5).sub(p7)
return fromQuarters(q)
}
func main() {
a := Matrix{{1, 2}, {3, 4}}
b := Matrix{{5, 6}, {7, 8}}
c := Matrix{{1, 1, 1, 1}, {2, 4, 8, 16}, {3, 9, 27, 81}, {4, 16, 64, 256}}
d := Matrix{{4, -3, 4.0 / 3, -1.0 / 4}, {-13.0 / 3, 19.0 / 4, -7.0 / 3, 11.0 / 24},
{3.0 / 2, -2, 7.0 / 6, -1.0 / 4}, {-1.0 / 6, 1.0 / 4, -1.0 / 6, 1.0 / 24}}
e := Matrix{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}
f := Matrix{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}
fmt.Println("Using 'normal' matrix multiplication:")
fmt.Printf(" a * b = %v\n", a.mul(b))
fmt.Printf(" c * d = %v\n", c.mul(d).toString(6))
fmt.Printf(" e * f = %v\n", e.mul(f))
fmt.Println("\nUsing 'Strassen' matrix multiplication:")
fmt.Printf(" a * b = %v\n", strassen(a, b))
fmt.Printf(" c * d = %v\n", strassen(c, d).toString(6))
fmt.Printf(" e * f = %v\n", strassen(e, f))
} |
Stream merge | Go | 2-stream merge
: Read two sorted streams of items from external source (e.g. disk, or network), and write one stream of sorted items to external sink.
: Common algorithm: keep 1 buffered item from each source, select minimal of them, write it, fetch another item from that stream from which the written item was.
; ''N''-stream merge
: The same as above, but reading from ''N'' sources.
: Common algorithm: same as above, but keep buffered items and their source descriptors in a [[heap]].
Assume streams are very big. You must not suck them whole in the memory, but read them as streams.
| package main
import (
"container/heap"
"fmt"
"io"
"log"
"os"
"strings"
)
var s1 = "3 14 15"
var s2 = "2 17 18"
var s3 = ""
var s4 = "2 3 5 7"
func main() {
fmt.Print("merge2: ")
merge2(
os.Stdout,
strings.NewReader(s1),
strings.NewReader(s2))
fmt.Println()
fmt.Print("mergeN: ")
mergeN(
os.Stdout,
strings.NewReader(s1),
strings.NewReader(s2),
strings.NewReader(s3),
strings.NewReader(s4))
fmt.Println()
}
func r1(r io.Reader) (v int, ok bool) {
switch _, err := fmt.Fscan(r, &v); {
case err == nil:
return v, true
case err != io.EOF:
log.Fatal(err)
}
return
}
func merge2(m io.Writer, s1, s2 io.Reader) {
v1, d1 := r1(s1)
v2, d2 := r1(s2)
var v int
for d1 || d2 {
if !d2 || d1 && v1 < v2 {
v = v1
v1, d1 = r1(s1)
} else {
v = v2
v2, d2 = r1(s2)
}
fmt.Fprint(m, v, " ")
}
}
type sv struct {
s io.Reader
v int
}
type sh []sv
func (s sh) Len() int { return len(s) }
func (s sh) Less(i, j int) bool { return s[i].v < s[j].v }
func (s sh) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (p *sh) Push(x interface{}) { *p = append(*p, x.(sv)) }
func (p *sh) Pop() interface{} {
s := *p
last := len(s) - 1
v := s[last]
*p = s[:last]
return v
}
func mergeN(m io.Writer, s ...io.Reader) {
var h sh
for _, s := range s {
if v, d := r1(s); d {
h = append(h, sv{s, v})
}
}
heap.Init(&h)
for len(h) > 0 {
p := heap.Pop(&h).(sv)
fmt.Fprint(m, p.v, " ")
if v, d := r1(p.s); d {
heap.Push(&h, sv{p.s, v})
}
}
} |
Strip control codes and extended characters from a string | Go | Strip control codes and extended characters from a string.
The solution should demonstrate how to achieve each of the following results:
:* a string with control codes stripped (but extended characters not stripped)
:* a string with control codes and extended characters stripped
In ASCII, the control codes have decimal codes 0 through to 31 and 127.
On an ASCII based system, if the control codes are stripped, the resultant string would have all of its characters within the range of 32 to 126 decimal on the ASCII table.
On a non-ASCII based system, we consider characters that do not have a corresponding glyph on the ASCII table (within the ASCII range of 32 to 126 decimal) to be an extended character for the purpose of this task.
| package main
import (
"golang.org/x/text/transform"
"golang.org/x/text/unicode/norm"
"fmt"
"strings"
)
// two byte-oriented functions identical except for operator comparing c to 127.
func stripCtlFromBytes(str string) string {
b := make([]byte, len(str))
var bl int
for i := 0; i < len(str); i++ {
c := str[i]
if c >= 32 && c != 127 {
b[bl] = c
bl++
}
}
return string(b[:bl])
}
func stripCtlAndExtFromBytes(str string) string {
b := make([]byte, len(str))
var bl int
for i := 0; i < len(str); i++ {
c := str[i]
if c >= 32 && c < 127 {
b[bl] = c
bl++
}
}
return string(b[:bl])
}
// two UTF-8 functions identical except for operator comparing c to 127
func stripCtlFromUTF8(str string) string {
return strings.Map(func(r rune) rune {
if r >= 32 && r != 127 {
return r
}
return -1
}, str)
}
func stripCtlAndExtFromUTF8(str string) string {
return strings.Map(func(r rune) rune {
if r >= 32 && r < 127 {
return r
}
return -1
}, str)
}
// Advanced Unicode normalization and filtering,
// see http://blog.golang.org/normalization and
// http://godoc.org/golang.org/x/text/unicode/norm for more
// details.
func stripCtlAndExtFromUnicode(str string) string {
isOk := func(r rune) bool {
return r < 32 || r >= 127
}
// The isOk filter is such that there is no need to chain to norm.NFC
t := transform.Chain(norm.NFKD, transform.RemoveFunc(isOk))
// This Transformer could also trivially be applied as an io.Reader
// or io.Writer filter to automatically do such filtering when reading
// or writing data anywhere.
str, _, _ = transform.String(t, str)
return str
}
const src = "déjà vu" + // precomposed unicode
"\n\000\037 \041\176\177\200\377\n" + // various boundary cases
"as⃝df̅" // unicode combining characters
func main() {
fmt.Println("source text:")
fmt.Println(src)
fmt.Println("\nas bytes, stripped of control codes:")
fmt.Println(stripCtlFromBytes(src))
fmt.Println("\nas bytes, stripped of control codes and extended characters:")
fmt.Println(stripCtlAndExtFromBytes(src))
fmt.Println("\nas UTF-8, stripped of control codes:")
fmt.Println(stripCtlFromUTF8(src))
fmt.Println("\nas UTF-8, stripped of control codes and extended characters:")
fmt.Println(stripCtlAndExtFromUTF8(src))
fmt.Println("\nas decomposed and stripped Unicode:")
fmt.Println(stripCtlAndExtFromUnicode(src))
} |
Subleq | Go | One-Instruction Set Computer (OISC).
It is named after its only instruction, which is '''SU'''btract and '''B'''ranch if '''L'''ess than or '''EQ'''ual to zero.
;Task
Your task is to create an interpreter which emulates a SUBLEQ machine.
The machine's memory consists of an array of signed integers. These integers may be interpreted in three ways:
::::* simple numeric values
::::* memory addresses
::::* characters for input or output
Any reasonable word size that accommodates all three of the above uses is fine.
The program should load the initial contents of the emulated machine's memory, set the instruction pointer to the first address (which is defined to be address 0), and begin emulating the machine, which works as follows:
:# Let '''A''' be the value in the memory location identified by the instruction pointer; let '''B''' and '''C''' be the values stored in the next two consecutive addresses in memory.
:# Advance the instruction pointer three words, to point at the address ''after'' the address containing '''C'''.
:# If '''A''' is '''-1''' (negative unity), then a character is read from the machine's input and its numeric value stored in the address given by '''B'''. '''C''' is unused.
:# If '''B''' is '''-1''' (negative unity), then the number contained in the address given by '''A''' is interpreted as a character and written to the machine's output. '''C''' is unused.
:# Otherwise, both '''A''' and '''B''' are treated as addresses. The number contained in address '''A''' is subtracted from the number in address '''B''' (and the difference left in address '''B'''). If the result is positive, execution continues uninterrupted; if the result is zero or negative, the number in '''C''' becomes the new instruction pointer.
:# If the instruction pointer becomes negative, execution halts.
Your solution may initialize the emulated machine's memory in any convenient manner, but if you accept it as input, it should be a separate input stream from the one fed to the emulated machine once it is running. And if fed as text input, it should be in the form of raw subleq "machine code" - whitespace-separated decimal numbers, with no symbolic names or other assembly-level extensions, to be loaded into memory starting at address '''0''' (zero).
For purposes of this task, show the output of your solution when fed the below "Hello, world!" program.
As written, this example assumes ASCII or a superset of it, such as any of the Latin-N character sets or Unicode; you may translate the numbers representing characters (starting with 72=ASCII 'H') into another character set if your implementation runs in a non-ASCII-compatible environment. If 0 is not an appropriate terminator in your character set, the program logic will need some adjustment as well.
15 17 -1 17 -1 -1 16 1 -1 16 3 -1 15 15 0 0 -1 72 101 108 108 111 44 32 119 111 114 108 100 33 10 0
The above "machine code" corresponds to something like this in a hypothetical assembler language for a signed 8-bit version of the machine:
start:
0f 11 ff subleq (zero), (message), -1
11 ff ff subleq (message), -1, -1 ; output character at message
10 01 ff subleq (neg1), (start+1), -1
10 03 ff subleq (neg1), (start+3), -1
0f 0f 00 subleq (zero), (zero), start
; useful constants
zero:
00 .data 0
neg1:
ff .data -1
; the message to print
message: .data "Hello, world!\n\0"
48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21 0a 00
| package main
import (
"io"
"log"
"os"
)
func main() {
var mem = []int{
15, 17, -1, 17, -1, -1, 16, 1, -1, 16, 3, -1, 15, 15, 0, 0, -1,
//'H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', '\n',
72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33, 10,
0,
}
for ip := 0; ip >= 0; {
switch {
case mem[ip] == -1:
mem[mem[ip+1]] = readbyte()
case mem[ip+1] == -1:
writebyte(mem[mem[ip]])
default:
b := mem[ip+1]
v := mem[b] - mem[mem[ip]]
mem[b] = v
if v <= 0 {
ip = mem[ip+2]
continue
}
}
ip += 3
}
}
func readbyte() int {
var b [1]byte
if _, err := io.ReadFull(os.Stdin, b[:]); err != nil {
log.Fatalln("read:", err)
}
return int(b[0])
}
func writebyte(b int) {
if _, err := os.Stdout.Write([]byte{byte(b)}); err != nil {
log.Fatalln("write:", err)
}
} |
Substring/Top and tail | Go | The task is to demonstrate how to remove the first and last characters from a string.
The solution should demonstrate how to obtain the following results:
* String with first character removed
* String with last character removed
* String with both the first and last characters removed
If the program uses UTF-8 or UTF-16, it must work on any valid Unicode code point, whether in the Basic Multilingual Plane or above it.
The program must reference logical characters (code points), not 8-bit code units for UTF-8 or 16-bit code units for UTF-16.
Programs for other encodings (such as 8-bit ASCII, or EUC-JP) are not required to handle all Unicode characters.
| package main
import (
"fmt"
"unicode/utf8"
)
func main() {
// ASCII contents: Interpreting "characters" as bytes.
s := "ASCII"
fmt.Println("String: ", s)
fmt.Println("First byte removed: ", s[1:])
fmt.Println("Last byte removed: ", s[:len(s)-1])
fmt.Println("First and last removed:", s[1:len(s)-1])
// UTF-8 contents: "Characters" as runes (unicode code points)
u := "Δημοτική"
fmt.Println("String: ", u)
_, sizeFirst := utf8.DecodeRuneInString(u)
fmt.Println("First rune removed: ", u[sizeFirst:])
_, sizeLast := utf8.DecodeLastRuneInString(u)
fmt.Println("Last rune removed: ", u[:len(u)-sizeLast])
fmt.Println("First and last removed:", u[sizeFirst:len(u)-sizeLast])
} |
Suffixation of decimal numbers | Go | '''Suffixation''': a letter or a group of letters added to the end of a word to change its meaning.
::::::: ----- or, as used herein -----
'''Suffixation''': the addition of a metric or "binary" metric suffix to a number, with/without rounding.
;Task:
Write a function(s) to append (if possible) a metric or a "binary" metric suffix to a
number (displayed in decimal).
The number may be rounded (as per user specification) (via shortening of the number when the number of
digits past the decimal point are to be used).
;Task requirements:
::* write a function (or functions) to add (if possible) a suffix to a number
::* the function(s) should be able to express the number (possibly with a suffix) in as many decimal digits as specified
::* the sign should be preserved (if present)
::* the number may have commas within the number (the commas need not be preserved)
::* the number may have a decimal point and/or an exponent as in: -123.7e-01
::* the suffix that might be appended should be in uppercase; however, the '''i''' should be in lowercase
::* support:
::::* the metric suffixes: '''K M G T P E Z Y X W V U'''
::::* the binary metric suffixes: '''Ki Mi Gi Ti Pi Ei Zi Yi Xi Wi Vi Ui'''
::::* the (full name) suffix: '''googol''' (lowercase) (equal to '''1e100''') (optional)
::::* a number of decimal digits past the decimal point (with rounding). The default is to display all significant digits
::* validation of the (supplied/specified) arguments is optional but recommended
::* display (with identifying text):
::::* the original number (with identifying text)
::::* the number of digits past the decimal point being used (or none, if not specified)
::::* the type of suffix being used (metric or "binary" metric)
::::* the (new) number with the appropriate (if any) suffix
::::* all output here on this page
;Metric suffixes to be supported (whether or not they're officially sanctioned):
'''K''' multiply the number by '''10^3''' kilo (1,000)
'''M''' multiply the number by '''10^6''' mega (1,000,000)
'''G''' multiply the number by '''10^9''' giga (1,000,000,000)
'''T''' multiply the number by '''10^12''' tera (1,000,000,000,000)
'''P''' multiply the number by '''10^15''' peta (1,000,000,000,000,000)
'''E''' multiply the number by '''10^18''' exa (1,000,000,000,000,000,000)
'''Z''' multiply the number by '''10^21''' zetta (1,000,000,000,000,000,000,000)
'''Y''' multiply the number by '''10^24''' yotta (1,000,000,000,000,000,000,000,000)
'''X''' multiply the number by '''10^27''' xenta (1,000,000,000,000,000,000,000,000,000)
'''W''' multiply the number by '''10^30''' wekta (1,000,000,000,000,000,000,000,000,000,000)
'''V''' multiply the number by '''10^33''' vendeka (1,000,000,000,000,000,000,000,000,000,000,000)
'''U''' multiply the number by '''10^36''' udekta (1,000,000,000,000,000,000,000,000,000,000,000,000)
;"Binary" suffixes to be supported (whether or not they're officially sanctioned):
'''Ki''' multiply the number by '''2^10''' kibi (1,024)
'''Mi''' multiply the number by '''2^20''' mebi (1,048,576)
'''Gi''' multiply the number by '''2^30''' gibi (1,073,741,824)
'''Ti''' multiply the number by '''2^40''' tebi (1,099,571,627,776)
'''Pi''' multiply the number by '''2^50''' pebi (1,125,899,906,884,629)
'''Ei''' multiply the number by '''2^60''' exbi (1,152,921,504,606,846,976)
'''Zi''' multiply the number by '''2^70''' zebi (1,180,591,620,717,411,303,424)
'''Yi''' multiply the number by '''2^80''' yobi (1,208,925,819,614,629,174,706,176)
'''Xi''' multiply the number by '''2^90''' xebi (1,237,940,039,285,380,274,899,124,224)
'''Wi''' multiply the number by '''2^100''' webi (1,267,650,600,228,229,401,496,703,205,376)
'''Vi''' multiply the number by '''2^110''' vebi (1,298,074,214,633,706,907,132,624,082,305,024)
'''Ui''' multiply the number by '''2^120''' uebi (1,329,227,995,784,915,872,903,807,060,280,344,576)
;For instance, with this pseudo-code:
/* 1st arg: the number to be transformed.*/
/* 2nd arg: # digits past the dec. point.*/
/* 3rd arg: the type of suffix to use. */
/* 2 indicates "binary" suffix.*/
/* 10 indicates decimal suffix.*/
a = '456,789,100,000,000' /* "A" has eight trailing zeros. */
say ' aa=' suffize(a) /* Display a suffized number to terminal.*/
/* The "1" below shows one decimal ****/
/* digit past the decimal point. */
n = suffize(a, 1) /* SUFFIZE is the function name. */
n = suffize(a, 1, 10) /* (identical to the above statement.) */
say ' n=' n /* Display value of N to terminal. */
/* Note the rounding that occurs. */
f = suffize(a, 1, 2) /* SUFFIZE with one fractional digit */
say ' f=' f /* Display value of F to terminal. */
/* Display value in "binary" metric. */
bin = suffize(a, 5, 2) /* SUFFIZE with binary metric suffix. */
say 'bin=' bin /* Display value of BIN to terminal. */
win = suffize(a, 0, 2) /* SUFFIZE with binary metric suffix. */
say 'win=' win /* Display value of WIN to terminal. */
xvi = ' +16777216 ' /* this used to be a big computer *** */
big = suffize(xvi, , 2) /* SUFFIZE with binary metric suffix. */
say 'big=' big /* Display value of BIG to terminal. */
would display:
aa= 456.7891T
n= 456.8T
f= 415.4Ti
bin= 415.44727Ti
win= 415Ti
big= 16Mi
;Use these test cases:
87,654,321
-998,877,665,544,332,211,000 3
+112,233 0
16,777,216 1
456,789,100,000,000 2
456,789,100,000,000 2 10
456,789,100,000,000 5 2
456,789,100,000.000e+00 0 10
+16777216 , 2
1.2e101
(your primary disk free space) 1 <####### optional
Use whatever parameterizing your computer language supports, and it's permitted to create as many
separate functions as are needed (if needed) if function arguments aren't allowed to
be omitted or varied.
| package main
import (
"fmt"
"math/big"
"strconv"
"strings"
)
var suffixes = " KMGTPEZYXWVU"
var ggl = googol()
func googol() *big.Float {
g1 := new(big.Float).SetPrec(500)
g1.SetInt64(10000000000)
g := new(big.Float)
g.Set(g1)
for i := 2; i <= 10; i++ {
g.Mul(g, g1)
}
return g
}
func suffize(arg string) {
fields := strings.Fields(arg)
a := fields[0]
if a == "" {
a = "0"
}
var places, base int
var frac, radix string
switch len(fields) {
case 1:
places = -1
base = 10
case 2:
places, _ = strconv.Atoi(fields[1])
base = 10
frac = strconv.Itoa(places)
case 3:
if fields[1] == "," {
places = 0
frac = ","
} else {
places, _ = strconv.Atoi(fields[1])
frac = strconv.Itoa(places)
}
base, _ = strconv.Atoi(fields[2])
if base != 2 && base != 10 {
base = 10
}
radix = strconv.Itoa(base)
}
a = strings.Replace(a, ",", "", -1) // get rid of any commas
sign := ""
if a[0] == '+' || a[0] == '-' {
sign = string(a[0])
a = a[1:] // remove any sign after storing it
}
b := new(big.Float).SetPrec(500)
d := new(big.Float).SetPrec(500)
b.SetString(a)
g := false
if b.Cmp(ggl) >= 0 {
g = true
}
if !g && base == 2 {
d.SetUint64(1024)
} else if !g && base == 10 {
d.SetUint64(1000)
} else {
d.Set(ggl)
}
c := 0
for b.Cmp(d) >= 0 && c < 12 { // allow b >= 1K if c would otherwise exceed 12
b.Quo(b, d)
c++
}
var suffix string
if !g {
suffix = string(suffixes[c])
} else {
suffix = "googol"
}
if base == 2 {
suffix += "i"
}
fmt.Println(" input number =", fields[0])
fmt.Println(" fraction digs =", frac)
fmt.Println("specified radix =", radix)
fmt.Print(" new number = ")
if places >= 0 {
fmt.Printf("%s%.*f%s\n", sign, places, b, suffix)
} else {
fmt.Printf("%s%s%s\n", sign, b.Text('g', 50), suffix)
}
fmt.Println()
}
func main() {
tests := []string{
"87,654,321",
"-998,877,665,544,332,211,000 3",
"+112,233 0",
"16,777,216 1",
"456,789,100,000,000",
"456,789,100,000,000 2 10",
"456,789,100,000,000 5 2",
"456,789,100,000.000e+00 0 10",
"+16777216 , 2",
"1.2e101",
"446,835,273,728 1",
"1e36",
"1e39", // there isn't a big enough suffix for this one but it's less than googol
}
for _, test := range tests {
suffize(test)
}
} |
Sum and product puzzle | Go | * Wikipedia: Sum and Product Puzzle
| package main
import "fmt"
type pair struct{ x, y int }
func main() {
//const max = 100
// Use 1685 (the highest with a unique answer) instead
// of 100 just to make it work a little harder :).
const max = 1685
var all []pair
for a := 2; a < max; a++ {
for b := a + 1; b < max-a; b++ {
all = append(all, pair{a, b})
}
}
fmt.Println("There are", len(all), "pairs where a+b <", max, "(and a<b)")
products := countProducts(all)
// Those for which no sum decomposition has unique product to are
// S mathimatician's possible pairs.
var sPairs []pair
pairs:
for _, p := range all {
s := p.x + p.y
// foreach a+b=s (a<b)
for a := 2; a < s/2+s&1; a++ {
b := s - a
if products[a*b] == 1 {
// Excluded because P would have a unique product
continue pairs
}
}
sPairs = append(sPairs, p)
}
fmt.Println("S starts with", len(sPairs), "possible pairs.")
//fmt.Println("S pairs:", sPairs)
sProducts := countProducts(sPairs)
// Look in sPairs for those with a unique product to get
// P mathimatician's possible pairs.
var pPairs []pair
for _, p := range sPairs {
if sProducts[p.x*p.y] == 1 {
pPairs = append(pPairs, p)
}
}
fmt.Println("P then has", len(pPairs), "possible pairs.")
//fmt.Println("P pairs:", pPairs)
pSums := countSums(pPairs)
// Finally, look in pPairs for those with a unique sum
var final []pair
for _, p := range pPairs {
if pSums[p.x+p.y] == 1 {
final = append(final, p)
}
}
// Nicely show any answers.
switch len(final) {
case 1:
fmt.Println("Answer:", final[0].x, "and", final[0].y)
case 0:
fmt.Println("No possible answer.")
default:
fmt.Println(len(final), "possible answers:", final)
}
}
func countProducts(list []pair) map[int]int {
m := make(map[int]int)
for _, p := range list {
m[p.x*p.y]++
}
return m
}
func countSums(list []pair) map[int]int {
m := make(map[int]int)
for _, p := range list {
m[p.x+p.y]++
}
return m
}
// not used, manually inlined above
func decomposeSum(s int) []pair {
pairs := make([]pair, 0, s/2)
for a := 2; a < s/2+s&1; a++ {
pairs = append(pairs, pair{a, s - a})
}
return pairs
} |
Sum digits of an integer | Go | Take a Natural Number in a given base and return the sum of its digits:
:* '''1'''10 sums to '''1'''
:* '''1234'''10 sums to '''10'''
:* '''fe'''16 sums to '''29'''
:* '''f0e'''16 sums to '''29'''
| // File digit_test.go
package digit
import "testing"
type testCase struct {
n string
base int
dSum int
}
var testData = []testCase{
{"1", 10, 1},
{"1234", 10, 10},
{"fe", 16, 29},
{"f0e", 16, 29},
{"18446744073709551615", 10, 87},
{"abcdefghijklmnopqrstuvwzuz0123456789", 36, 628},
}
func TestSumString(t *testing.T) {
for _, tc := range testData {
ds, err := SumString(tc.n, tc.base)
if err != nil {
t.Error("test case", tc, err)
continue
}
if ds != tc.dSum {
t.Error("test case", tc, "got", ds, "expected", tc.dSum)
}
}
}
func TestErrors(t *testing.T) {
for _, tc := range []struct {
n string
base int
}{
{"1234", 37},
{"0", 1},
{"1234", 4},
{"-123", 10},
} {
_, err := SumString(tc.n, tc.base)
if err == nil {
t.Error("expected error for", tc)
}
t.Log("got expected error:", err)
}
} |
Sum multiples of 3 and 5 | Go | The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below ''n''.
Show output for ''n'' = 1000.
This is is the same as Project Euler problem 1.
'''Extra credit:''' do this efficiently for ''n'' = 1e20 or higher.
| package main
import "fmt"
func main() {
fmt.Println(s35(1000))
}
func s35(n int) int {
n--
threes := n / 3
fives := n / 5
fifteen := n / 15
threes = 3 * threes * (threes + 1)
fives = 5 * fives * (fives + 1)
fifteen = 15 * fifteen * (fifteen + 1)
n = (threes + fives - fifteen) / 2
return n
} |
Sum of elements below main diagonal of matrix | Go | Find and display the sum of elements that are below the main diagonal of a matrix.
The matrix should be a square matrix.
::: --- Matrix to be used: ---
[[1,3,7,8,10],
[2,4,16,14,4],
[3,1,9,18,11],
[12,14,17,18,20],
[7,1,3,9,5]]
| package main
import (
"fmt"
"log"
)
func main() {
m := [][]int{
{1, 3, 7, 8, 10},
{2, 4, 16, 14, 4},
{3, 1, 9, 18, 11},
{12, 14, 17, 18, 20},
{7, 1, 3, 9, 5},
}
if len(m) != len(m[0]) {
log.Fatal("Matrix must be square.")
}
sum := 0
for i := 1; i < len(m); i++ {
for j := 0; j < i; j++ {
sum = sum + m[i][j]
}
}
fmt.Println("Sum of elements below main diagonal is", sum)
} |
Sum to 100 | Go from C | Find solutions to the ''sum to one hundred'' puzzle.
Add (insert) the mathematical
operators '''+''' or '''-''' (plus
or minus) before any of the digits in the
decimal numeric string '''123456789''' such that the
resulting mathematical expression adds up to a
particular sum (in this iconic case, '''100''').
Example:
123 + 4 - 5 + 67 - 89 = 100
Show all output here.
:* Show all solutions that sum to '''100'''
:* Show the sum that has the maximum ''number'' of solutions (from zero to infinity++)
:* Show the lowest positive sum that ''can't'' be expressed (has no solutions), using the rules for this task
:* Show the ten highest numbers that can be expressed using the rules for this task (extra credit)
++ (where ''infinity'' would be a relatively small 123,456,789)
An example of a sum that can't be expressed (within the rules of this task) is: '''5074'''
(which, of course, isn't the lowest positive sum that can't be expressed).
| package main
import (
"fmt"
"sort"
)
const pow3_8 = 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 // 3^8
const pow3_9 = 3 * pow3_8 // 3^9
const maxExprs = 2 * pow3_8 // not 3^9 since first op can't be Join
type op uint8
const (
Add op = iota // insert a "+"
Sub // or a "-"
Join // or just join together
)
// code is an encoding of [9]op, the nine "operations"
// we do on each each digit. The op for 1 is in
// the highest bits, the op for 9 in the lowest.
type code uint16
// evaluate 123456789 with + - or "" prepended to each as indicated by `c`.
func (c code) evaluate() (sum int) {
num, pow := 0, 1
for k := 9; k >= 1; k-- {
num += pow * k
switch op(c % 3) {
case Add:
sum += num
num, pow = 0, 1
case Sub:
sum -= num
num, pow = 0, 1
case Join:
pow *= 10
}
c /= 3
}
return sum
}
func (c code) String() string {
buf := make([]byte, 0, 18)
a, b := code(pow3_9), code(pow3_8)
for k := 1; k <= 9; k++ {
switch op((c % a) / b) {
case Add:
if k > 1 {
buf = append(buf, '+')
}
case Sub:
buf = append(buf, '-')
}
buf = append(buf, '0'+byte(k))
a, b = b, b/3
}
return string(buf)
}
type sumCode struct {
sum int
code code
}
type sumCodes []sumCode
type sumCount struct {
sum int
count int
}
type sumCounts []sumCount
// For sorting (could also use sort.Slice with just Less).
func (p sumCodes) Len() int { return len(p) }
func (p sumCodes) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p sumCodes) Less(i, j int) bool { return p[i].sum < p[j].sum }
func (p sumCounts) Len() int { return len(p) }
func (p sumCounts) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p sumCounts) Less(i, j int) bool { return p[i].count > p[j].count }
// For printing.
func (sc sumCode) String() string {
return fmt.Sprintf("% 10d = %v", sc.sum, sc.code)
}
func (sc sumCount) String() string {
return fmt.Sprintf("% 10d has %d solutions", sc.sum, sc.count)
}
func main() {
// Evaluate all expressions.
expressions := make(sumCodes, 0, maxExprs/2)
counts := make(sumCounts, 0, 1715)
for c := code(0); c < maxExprs; c++ {
// All negative sums are exactly like their positive
// counterpart with all +/- switched, we don't need to
// keep track of them.
sum := c.evaluate()
if sum >= 0 {
expressions = append(expressions, sumCode{sum, c})
}
}
sort.Sort(expressions)
// Count all unique sums
sc := sumCount{expressions[0].sum, 1}
for _, e := range expressions[1:] {
if e.sum == sc.sum {
sc.count++
} else {
counts = append(counts, sc)
sc = sumCount{e.sum, 1}
}
}
counts = append(counts, sc)
sort.Sort(counts)
// Extract required results
fmt.Println("All solutions that sum to 100:")
i := sort.Search(len(expressions), func(i int) bool {
return expressions[i].sum >= 100
})
for _, e := range expressions[i:] {
if e.sum != 100 {
break
}
fmt.Println(e)
}
fmt.Println("\nThe positive sum with maximum number of solutions:")
fmt.Println(counts[0])
fmt.Println("\nThe lowest positive number that can't be expressed:")
s := 1
for _, e := range expressions {
if e.sum == s {
s++
} else if e.sum > s {
fmt.Printf("% 10d\n", s)
break
}
}
fmt.Println("\nThe ten highest numbers that can be expressed:")
for _, e := range expressions[len(expressions)-10:] {
fmt.Println(e)
}
} |
Summarize and say sequence | Go | There are several ways to generate a self-referential sequence. One very common one (the [[Look-and-say sequence]]) is to start with a positive integer, then generate the next term by concatenating enumerated groups of adjacent alike digits:
0, 10, 1110, 3110, 132110, 1113122110, 311311222110 ...
The terms generated grow in length geometrically and never converge.
Another way to generate a self-referential sequence is to summarize the previous term.
Count how many of each alike digit there is, then concatenate the sum and digit for each of the sorted enumerated digits. Note that the first five terms are the same as for the previous sequence.
0, 10, 1110, 3110, 132110, 13123110, 23124110 ...
Sort the digits largest to smallest. Do not include counts of digits that do not appear in the previous term.
Depending on the seed value, series generated this way always either converge to a stable value or to a short cyclical pattern. (For our purposes, I'll use converge to mean an element matches a previously seen element.) The sequence shown, with a seed value of 0, converges to a stable value of 1433223110 after 11 iterations. The seed value that converges most quickly is 22. It goes stable after the first element. (The next element is 22, which has been seen before.)
;Task:
Find all the positive integer seed values under 1000000, for the above convergent self-referential sequence, that takes the largest number of iterations before converging. Then print out the number of iterations and the sequence they return. Note that different permutations of the digits of the seed will yield the same sequence. For this task, assume leading zeros are not permitted.
Seed Value(s): 9009 9090 9900
Iterations: 21
Sequence: (same for all three seeds except for first element)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
;Related tasks:
* [[Fours is the number of letters in the ...]]
* [[Look-and-say sequence]]
* [[Number names]]
* [[Self-describing numbers]]
* [[Spelling of ordinal numbers]]
;Also see:
* The On-Line Encyclopedia of Integer Sequences.
| package main
import (
"fmt"
"strconv"
)
func main() {
var maxLen int
var seqMaxLen [][]string
for n := 1; n < 1e6; n++ {
switch s := seq(n); {
case len(s) == maxLen:
seqMaxLen = append(seqMaxLen, s)
case len(s) > maxLen:
maxLen = len(s)
seqMaxLen = [][]string{s}
}
}
fmt.Println("Max sequence length:", maxLen)
fmt.Println("Sequences:", len(seqMaxLen))
for _, seq := range seqMaxLen {
fmt.Println("Sequence:")
for _, t := range seq {
fmt.Println(t)
}
}
}
func seq(n int) []string {
s := strconv.Itoa(n)
ss := []string{s}
for {
dSeq := sortD(s)
d := dSeq[0]
nd := 1
s = ""
for i := 1; ; i++ {
if i == len(dSeq) {
s = fmt.Sprintf("%s%d%c", s, nd, d)
break
}
if dSeq[i] == d {
nd++
} else {
s = fmt.Sprintf("%s%d%c", s, nd, d)
d = dSeq[i]
nd = 1
}
}
for _, s0 := range ss {
if s == s0 {
return ss
}
}
ss = append(ss, s)
}
panic("unreachable")
}
func sortD(s string) []rune {
r := make([]rune, len(s))
for i, d := range s {
j := 0
for ; j < i; j++ {
if d > r[j] {
copy(r[j+1:], r[j:i])
break
}
}
r[j] = d
}
return r
} |
Super-d numbers | Go | A super-d number is a positive, decimal (base ten) integer '''n''' such that '''d x nd''' has at least '''d''' consecutive digits '''d''' where
2 <= d <= 9
For instance, 753 is a super-3 number because 3 x 7533 = 1280873331.
'''Super-d''' numbers are also shown on '''MathWorld'''(tm) as '''super-''d'' ''' or '''super-''d'''''.
;Task:
:* Write a function/procedure/routine to find super-d numbers.
:* For '''d=2''' through '''d=6''', use the routine to show the first '''10''' super-d numbers.
;Extra credit:
:* Show the first '''10''' super-7, super-8, and/or super-9 numbers (optional).
;See also:
:* Wolfram MathWorld - Super-d Number.
:* OEIS: A014569 - Super-3 Numbers.
| package main
import (
"fmt"
"math/big"
"strings"
"time"
)
func main() {
start := time.Now()
rd := []string{"22", "333", "4444", "55555", "666666", "7777777", "88888888", "999999999"}
one := big.NewInt(1)
nine := big.NewInt(9)
for i := big.NewInt(2); i.Cmp(nine) <= 0; i.Add(i, one) {
fmt.Printf("First 10 super-%d numbers:\n", i)
ii := i.Uint64()
k := new(big.Int)
count := 0
inner:
for j := big.NewInt(3); ; j.Add(j, one) {
k.Exp(j, i, nil)
k.Mul(i, k)
ix := strings.Index(k.String(), rd[ii-2])
if ix >= 0 {
count++
fmt.Printf("%d ", j)
if count == 10 {
fmt.Printf("\nfound in %d ms\n\n", time.Since(start).Milliseconds())
break inner
}
}
}
}
} |
Superpermutation minimisation | Go from C | A superpermutation of N different characters is a string consisting of an arrangement of multiple copies of those N different characters in which every permutation of those characters can be found as a substring.
For example, representing the characters as A..Z, using N=2 we choose to use the first two characters 'AB'.
The permutations of 'AB' are the two, (i.e. two-factorial), strings: 'AB' and 'BA'.
A too obvious method of generating a superpermutation is to just join all the permutations together forming 'ABBA'.
A little thought will produce the shorter (in fact the shortest) superpermutation of 'ABA' - it contains 'AB' at the beginning and contains 'BA' from the middle to the end.
The "too obvious" method of creation generates a string of length N!*N. Using this as a yardstick, the task is to investigate other methods of generating superpermutations of N from 1-to-7 characters, that never generate larger superpermutations.
Show descriptions and comparisons of algorithms used here, and select the "Best" algorithm as being the one generating shorter superpermutations.
The problem of generating the shortest superpermutation for each N ''might'' be NP complete, although the minimal strings for small values of N have been found by brute -force searches.
;Reference:
* The Minimal Superpermutation Problem. by Nathaniel Johnston.
* oeis A180632 gives 0-5 as 0, 1, 3, 9, 33, 153. 6 is thought to be 872.
* Superpermutations - Numberphile. A video
* Superpermutations: the maths problem solved by 4chan - Standupmaths. A video of recent (2018) mathematical progress.
* New Superpermutations Discovered! Standupmaths & Numberphile.
| package main
import "fmt"
const max = 12
var (
super []byte
pos int
cnt [max]int
)
// 1! + 2! + ... + n!
func factSum(n int) int {
s := 0
for x, f := 0, 1; x < n; {
x++
f *= x
s += f
}
return s
}
func r(n int) bool {
if n == 0 {
return false
}
c := super[pos-n]
cnt[n]--
if cnt[n] == 0 {
cnt[n] = n
if !r(n - 1) {
return false
}
}
super[pos] = c
pos++
return true
}
func superperm(n int) {
pos = n
le := factSum(n)
super = make([]byte, le)
for i := 0; i <= n; i++ {
cnt[i] = i
}
for i := 1; i <= n; i++ {
super[i-1] = byte(i) + '0'
}
for r(n) {
}
}
func main() {
for n := 0; n < max; n++ {
fmt.Printf("superperm(%2d) ", n)
superperm(n)
fmt.Printf("len = %d\n", len(super))
}
} |
Sylvester's sequence | Go from Wren | {{Wikipedia|Sylvester's sequence}}
In number theory, '''Sylvester's sequence''' is an integer sequence in which each term of the sequence is the product of the previous terms, plus one.
Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to '''1''' more rapidly than any other series of unit fractions with the same number of terms.
Further, the sum of the first '''k''' terms of the infinite series of reciprocals provides the closest possible underestimate of '''1''' by any k-term Egyptian fraction.
;Task:
* Write a routine (function, procedure, generator, whatever) to calculate '''Sylvester's sequence'''.
* Use that routine to show the values of the first '''10''' elements in the sequence.
* Show the sum of the reciprocals of the first '''10''' elements on the sequence, ideally as an exact fraction.
;Related tasks:
* [[Egyptian fractions]]
* [[Harmonic series]]
;See also:
* OEIS A000058 - Sylvester's sequence
| package main
import (
"fmt"
"math/big"
)
func main() {
one := big.NewInt(1)
two := big.NewInt(2)
next := new(big.Int)
sylvester := []*big.Int{two}
prod := new(big.Int).Set(two)
count := 1
for count < 10 {
next.Add(prod, one)
sylvester = append(sylvester, new(big.Int).Set(next))
count++
prod.Mul(prod, next)
}
fmt.Println("The first 10 terms in the Sylvester sequence are:")
for i := 0; i < 10; i++ {
fmt.Println(sylvester[i])
}
sumRecip := new(big.Rat)
for _, s := range sylvester {
sumRecip.Add(sumRecip, new(big.Rat).SetFrac(one, s))
}
fmt.Println("\nThe sum of their reciprocals as a rational number is:")
fmt.Println(sumRecip)
fmt.Println("\nThe sum of their reciprocals as a decimal number (to 211 places) is:")
fmt.Println(sumRecip.FloatString(211))
} |
Tarjan | Go | {{wikipedia|Graph}}
Tarjan's algorithm is an algorithm in graph theory for finding the strongly connected components of a graph.
It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm.
Tarjan's Algorithm is named for its discoverer, Robert Tarjan.
;References:
* The article on Wikipedia.
See also: [[Kosaraju]]
| package main
import (
"fmt"
"math/big"
)
// (same data as zkl example)
var g = [][]int{
0: {1},
2: {0},
5: {2, 6},
6: {5},
1: {2},
3: {1, 2, 4},
4: {5, 3},
7: {4, 7, 6},
}
func main() {
tarjan(g, func(c []int) { fmt.Println(c) })
}
// the function calls the emit argument for each component identified.
// each component is a list of nodes.
func tarjan(g [][]int, emit func([]int)) {
var indexed, stacked big.Int
index := make([]int, len(g))
lowlink := make([]int, len(g))
x := 0
var S []int
var sc func(int) bool
sc = func(n int) bool {
index[n] = x
indexed.SetBit(&indexed, n, 1)
lowlink[n] = x
x++
S = append(S, n)
stacked.SetBit(&stacked, n, 1)
for _, nb := range g[n] {
if indexed.Bit(nb) == 0 {
if !sc(nb) {
return false
}
if lowlink[nb] < lowlink[n] {
lowlink[n] = lowlink[nb]
}
} else if stacked.Bit(nb) == 1 {
if index[nb] < lowlink[n] {
lowlink[n] = index[nb]
}
}
}
if lowlink[n] == index[n] {
var c []int
for {
last := len(S) - 1
w := S[last]
S = S[:last]
stacked.SetBit(&stacked, w, 0)
c = append(c, w)
if w == n {
emit(c)
break
}
}
}
return true
}
for n := range g {
if indexed.Bit(n) == 0 && !sc(n) {
return
}
}
} |
Tau function | Go | Given a positive integer, count the number of its positive divisors.
;Task
Show the result for the first '''100''' positive integers.
;Related task
* [[Tau number]]
| package main
import "fmt"
func countDivisors(n int) int {
count := 0
i := 1
k := 2
if n%2 == 0 {
k = 1
}
for i*i <= n {
if n%i == 0 {
count++
j := n / i
if j != i {
count++
}
}
i += k
}
return count
}
func main() {
fmt.Println("The tau functions for the first 100 positive integers are:")
for i := 1; i <= 100; i++ {
fmt.Printf("%2d ", countDivisors(i))
if i%20 == 0 {
fmt.Println()
}
}
} |
Teacup rim text | Go | On a set of coasters we have, there's a picture of a teacup. On the rim of the teacup the word '''TEA''' appears a number of times separated by bullet characters (*).
It occurred to me that if the bullet were removed and the words run together, you could start at any letter and still end up with a meaningful three-letter word.
So start at the '''T''' and read '''TEA'''. Start at the '''E''' and read '''EAT''', or start at the '''A''' and read '''ATE'''.
That got me thinking that maybe there are other words that could be used rather that '''TEA'''. And that's just English. What about Italian or Greek or ... um ... Telugu.
For English, we will use the unixdict (now) located at: unixdict.txt.
(This will maintain continuity with other Rosetta Code tasks that also use it.)
;Task:
Search for a set of words that could be printed around the edge of a teacup. The words in each set are to be of the same length, that length being greater than two (thus precluding '''AH''' and '''HA''', for example.)
Having listed a set, for example ['''ate tea eat'''], refrain from displaying permutations of that set, e.g.: ['''eat tea ate'''] etc.
The words should also be made of more than one letter (thus precluding '''III''' and '''OOO''' etc.)
The relationship between these words is (using ATE as an example) that the first letter of the first becomes the last letter of the second. The first letter of the second becomes the last letter of the third. So '''ATE''' becomes '''TEA''' and '''TEA''' becomes '''EAT'''.
All of the possible permutations, using this particular permutation technique, must be words in the list.
The set you generate for '''ATE''' will never included the word '''ETA''' as that cannot be reached via the first-to-last movement method.
Display one line for each set of teacup rim words.
| package main
import (
"bufio"
"fmt"
"log"
"os"
"sort"
"strings"
)
func check(err error) {
if err != nil {
log.Fatal(err)
}
}
func readWords(fileName string) []string {
file, err := os.Open(fileName)
check(err)
defer file.Close()
var words []string
scanner := bufio.NewScanner(file)
for scanner.Scan() {
word := strings.ToLower(strings.TrimSpace(scanner.Text()))
if len(word) >= 3 {
words = append(words, word)
}
}
check(scanner.Err())
return words
}
func rotate(runes []rune) {
first := runes[0]
copy(runes, runes[1:])
runes[len(runes)-1] = first
}
func main() {
dicts := []string{"mit_10000.txt", "unixdict.txt"} // local copies
for _, dict := range dicts {
fmt.Printf("Using %s:\n\n", dict)
words := readWords(dict)
n := len(words)
used := make(map[string]bool)
outer:
for _, word := range words {
runes := []rune(word)
variants := []string{word}
for i := 0; i < len(runes)-1; i++ {
rotate(runes)
word2 := string(runes)
if word == word2 || used[word2] {
continue outer
}
ix := sort.SearchStrings(words, word2)
if ix == n || words[ix] != word2 {
continue outer
}
variants = append(variants, word2)
}
for _, variant := range variants {
used[variant] = true
}
fmt.Println(variants)
}
fmt.Println()
}
} |
Temperature conversion | Go | There are quite a number of temperature scales. For this task we will concentrate on four of the perhaps best-known ones:
Rankine.
The Celsius and Kelvin scales have the same magnitude, but different null points.
: 0 degrees Celsius corresponds to 273.15 kelvin.
: 0 kelvin is absolute zero.
The Fahrenheit and Rankine scales also have the same magnitude, but different null points.
: 0 degrees Fahrenheit corresponds to 459.67 degrees Rankine.
: 0 degrees Rankine is absolute zero.
The Celsius/Kelvin and Fahrenheit/Rankine scales have a ratio of 5 : 9.
;Task
Write code that accepts a value of kelvin, converts it to values of the three other scales, and prints the result.
;Example:
K 21.00
C -252.15
F -421.87
R 37.80
| package main
import (
"fmt"
"os"
"strconv"
)
func main() {
if len(os.Args) != 2 {
fmt.Println("Usage: k <Kelvin>")
return
}
k, err := strconv.ParseFloat(os.Args[1], 64)
if err != nil {
fmt.Println(err)
return
}
if k < 0 {
fmt.Println("Kelvin must be >= 0.")
return
}
fmt.Printf("K %.2f\n", k)
fmt.Printf("C %.2f\n", k-273.15)
fmt.Printf("F %.2f\n", k*9/5-459.67)
fmt.Printf("R %.2f\n", k*9/5)
} |
Terminal control/Coloured text | Go | Display a word in various colours on the terminal.
The system palette, or colours such as Red, Green, Blue, Magenta, Cyan, and Yellow can be used.
Optionally demonstrate:
* How the system should determine if the terminal supports colour
* Setting of the background colour
* How to cause blinking or flashing (if supported by the terminal)
| package main
import (
"fmt"
"log"
"os"
"os/exec"
)
func main() {
// set background color to blue, log error message if impossible.
if err := tput("setb", blue); err != nil {
log.Fatal("no color capability")
}
// clearing the screen will fill screen with background color
// on most terminals.
tput("clear")
tput("blink") // set blink attribute
tput("setb", red) // new background color
fmt.Println(" Blinking Red ")
tput("sgr0") // clear blink (and all other attributes)
}
const (
blue = "1"
green = "2"
red = "4"
)
func tput(args ...string) error {
cmd := exec.Command("tput", args...)
cmd.Stdout = os.Stdout
return cmd.Run()
} |
Test integerness | Go | {| class="wikitable"
|-
! colspan=2 | Input
! colspan=2 | Output
! rowspan=2 | Comment
|-
! Type
! Value
! exact
! tolerance = 0.00001
|-
| rowspan=3 | decimal
| 25.000000
| colspan=2 | true
|
|-
| 24.999999
| false
| true
|
|-
| 25.000100
| colspan=2 | false
|
|-
| rowspan=4 | floating-point
| -2.1e120
| colspan=2 | true
| This one is tricky, because in most languages it is too large to fit into a native integer type.It is, nonetheless, mathematically an integer, and your code should identify it as such.
|-
| -5e-2
| colspan=2 | false
|
|-
| NaN
| colspan=2 | false
|
|-
| Inf
| colspan=2 | false
| This one is debatable. If your code considers it an integer, that's okay too.
|-
| rowspan=2 | complex
| 5.0+0.0i
| colspan=2 | true
|
|-
| 5-5i
| colspan=2 | false
|
|}
(The types and notations shown in these tables are merely examples - you should use the native data types and number literals of your programming language and standard library. Use a different set of test-cases, if this one doesn't demonstrate all relevant behavior.)
| package main
import (
"fmt"
"math"
"math/big"
"reflect"
"strings"
"unsafe"
)
// Go provides an integerness test only for the big.Rat and big.Float types
// in the standard library.
// The fundamental piece of code needed for built-in floating point types
// is a test on the float64 type:
func Float64IsInt(f float64) bool {
_, frac := math.Modf(f)
return frac == 0
}
// Other built-in or stanadard library numeric types are either always
// integer or can be easily tested using Float64IsInt.
func Float32IsInt(f float32) bool {
return Float64IsInt(float64(f))
}
func Complex128IsInt(c complex128) bool {
return imag(c) == 0 && Float64IsInt(real(c))
}
func Complex64IsInt(c complex64) bool {
return imag(c) == 0 && Float64IsInt(float64(real(c)))
}
// Usually just the above statically typed functions would be all that is used,
// but if it is desired to have a single function that can test any arbitrary
// type, including the standard math/big types, user defined types based on
// an integer, float, or complex builtin types, or user defined types that
// have an IsInt() method, then reflection can be used.
type hasIsInt interface {
IsInt() bool
}
var bigIntT = reflect.TypeOf((*big.Int)(nil))
func IsInt(i interface{}) bool {
if ci, ok := i.(hasIsInt); ok {
// Handles things like *big.Rat
return ci.IsInt()
}
switch v := reflect.ValueOf(i); v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16,
reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64, reflect.Uintptr:
// Built-in types and any custom type based on them
return true
case reflect.Float32, reflect.Float64:
// Built-in floats and anything based on them
return Float64IsInt(v.Float())
case reflect.Complex64, reflect.Complex128:
// Built-in complexes and anything based on them
return Complex128IsInt(v.Complex())
case reflect.String:
// Could also do strconv.ParseFloat then FloatIsInt but
// big.Rat handles everything ParseFloat can plus more.
// Note, there is no strconv.ParseComplex.
if r, ok := new(big.Rat).SetString(v.String()); ok {
return r.IsInt()
}
case reflect.Ptr:
// Special case for math/big.Int
if v.Type() == bigIntT {
return true
}
}
return false
}
// The rest is just demonstration and display
type intbased int16
type complexbased complex64
type customIntegerType struct {
// Anything that stores or represents a sub-set
// of integer values in any way desired.
}
func (customIntegerType) IsInt() bool { return true }
func (customIntegerType) String() string { return "<…>" }
func main() {
hdr := fmt.Sprintf("%27s %-6s %s\n", "Input", "IsInt", "Type")
show2 := func(t bool, i interface{}, args ...interface{}) {
istr := fmt.Sprint(i)
fmt.Printf("%27s %-6t %T ", istr, t, i)
fmt.Println(args...)
}
show := func(i interface{}, args ...interface{}) {
show2(IsInt(i), i, args...)
}
fmt.Print("Using Float64IsInt with float64:\n", hdr)
neg1 := -1.
for _, f := range []float64{
0, neg1 * 0, -2, -2.000000000000001, 10. / 2, 22. / 3,
math.Pi,
math.MinInt64, math.MaxUint64,
math.SmallestNonzeroFloat64, math.MaxFloat64,
math.NaN(), math.Inf(1), math.Inf(-1),
} {
show2(Float64IsInt(f), f)
}
fmt.Print("\nUsing Complex128IsInt with complex128:\n", hdr)
for _, c := range []complex128{
3, 1i, 0i, 3.4,
} {
show2(Complex128IsInt(c), c)
}
fmt.Println("\nUsing reflection:")
fmt.Print(hdr)
show("hello")
show(math.MaxFloat64)
show("9e100")
f := new(big.Float)
show(f)
f.SetString("1e-3000")
show(f)
show("(4+0i)", "(complex strings not parsed)")
show(4 + 0i)
show(rune('§'), "or rune")
show(byte('A'), "or byte")
var t1 intbased = 5200
var t2a, t2b complexbased = 5 + 0i, 5 + 1i
show(t1)
show(t2a)
show(t2b)
x := uintptr(unsafe.Pointer(&t2b))
show(x)
show(math.MinInt32)
show(uint64(math.MaxUint64))
b, _ := new(big.Int).SetString(strings.Repeat("9", 25), 0)
show(b)
r := new(big.Rat)
show(r)
r.SetString("2/3")
show(r)
show(r.SetFrac(b, new(big.Int).SetInt64(9)))
show("12345/5")
show(new(customIntegerType))
} |
Textonyms | Go | When entering text on a phone's digital pad it is possible that a particular combination of digits corresponds to more than one word. Such are called textonyms.
Assuming the digit keys are mapped to letters as follows:
2 -> ABC
3 -> DEF
4 -> GHI
5 -> JKL
6 -> MNO
7 -> PQRS
8 -> TUV
9 -> WXYZ
;Task:
Write a program that finds textonyms in a list of words such as
[[Textonyms/wordlist]] or
unixdict.txt.
The task should produce a report:
There are #{0} words in #{1} which can be represented by the digit key mapping.
They require #{2} digit combinations to represent them.
#{3} digit combinations represent Textonyms.
Where:
#{0} is the number of words in the list which can be represented by the digit key mapping.
#{1} is the URL of the wordlist being used.
#{2} is the number of digit combinations required to represent the words in #{0}.
#{3} is the number of #{2} which represent more than one word.
At your discretion show a couple of examples of your solution displaying Textonyms.
E.G.:
2748424767 -> "Briticisms", "criticisms"
;Extra credit:
Use a word list and keypad mapping other than English.
| package main
import (
"bufio"
"flag"
"fmt"
"io"
"log"
"os"
"strings"
"unicode"
)
func main() {
log.SetFlags(0)
log.SetPrefix("textonyms: ")
wordlist := flag.String("wordlist", "wordlist", "file containing the list of words to check")
flag.Parse()
if flag.NArg() != 0 {
flag.Usage()
os.Exit(2)
}
t := NewTextonym(phoneMap)
_, err := ReadFromFile(t, *wordlist)
if err != nil {
log.Fatal(err)
}
t.Report(os.Stdout, *wordlist)
}
// phoneMap is the digit to letter mapping of a typical phone.
var phoneMap = map[byte][]rune{
'2': []rune("ABC"),
'3': []rune("DEF"),
'4': []rune("GHI"),
'5': []rune("JKL"),
'6': []rune("MNO"),
'7': []rune("PQRS"),
'8': []rune("TUV"),
'9': []rune("WXYZ"),
}
// ReadFromFile is a generic convience function that allows the use of a
// filename with an io.ReaderFrom and handles errors related to open and
// closing the file.
func ReadFromFile(r io.ReaderFrom, filename string) (int64, error) {
f, err := os.Open(filename)
if err != nil {
return 0, err
}
n, err := r.ReadFrom(f)
if cerr := f.Close(); err == nil && cerr != nil {
err = cerr
}
return n, err
}
type Textonym struct {
numberMap map[string][]string // map numeric string into words
letterMap map[rune]byte // map letter to digit
count int // total number of words in numberMap
textonyms int // number of numeric strings with >1 words
}
func NewTextonym(dm map[byte][]rune) *Textonym {
lm := make(map[rune]byte, 26)
for d, ll := range dm {
for _, l := range ll {
lm[l] = d
}
}
return &Textonym{letterMap: lm}
}
func (t *Textonym) ReadFrom(r io.Reader) (n int64, err error) {
t.numberMap = make(map[string][]string)
buf := make([]byte, 0, 32)
sc := bufio.NewScanner(r)
sc.Split(bufio.ScanWords)
scan:
for sc.Scan() {
buf = buf[:0]
word := sc.Text()
// XXX we only bother approximating the number of bytes
// consumed. This isn't used in the calling code and was
// only included to match the io.ReaderFrom interface.
n += int64(len(word)) + 1
for _, r := range word {
d, ok := t.letterMap[unicode.ToUpper(r)]
if !ok {
//log.Printf("ignoring %q\n", word)
continue scan
}
buf = append(buf, d)
}
//log.Printf("scanned %q\n", word)
num := string(buf)
t.numberMap[num] = append(t.numberMap[num], word)
t.count++
if len(t.numberMap[num]) == 2 {
t.textonyms++
}
//log.Printf("%q → %v\t→ %v\n", word, num, t.numberMap[num])
}
return n, sc.Err()
}
func (t *Textonym) Most() (most int, subset map[string][]string) {
for k, v := range t.numberMap {
switch {
case len(v) > most:
subset = make(map[string][]string)
most = len(v)
fallthrough
case len(v) == most:
subset[k] = v
}
}
return most, subset
}
func (t *Textonym) Report(w io.Writer, name string) {
// Could be fancy and use text/template package but fmt is sufficient
fmt.Fprintf(w, `
There are %v words in %q which can be represented by the digit key mapping.
They require %v digit combinations to represent them.
%v digit combinations represent Textonyms.
`,
t.count, name, len(t.numberMap), t.textonyms)
n, sub := t.Most()
fmt.Fprintln(w, "\nThe numbers mapping to the most words map to",
n, "words each:")
for k, v := range sub {
fmt.Fprintln(w, "\t", k, "maps to:", strings.Join(v, ", "))
}
} |
The Name Game | Go from Kotlin | Write a program that accepts a name as input and outputs the lyrics to the Shirley Ellis song "The Name Game".
The regular verse
Unless your name begins with a vowel (A, E, I, O, U), 'B', 'F' or 'M' you don't have to care about special rules.
The verse for the name 'Gary' would be like this:
Gary, Gary, bo-bary
Banana-fana fo-fary
Fee-fi-mo-mary
Gary!
At the end of every line, the name gets repeated without the first letter: Gary becomes ary
If we take (X) as the full name (Gary) and (Y) as the name without the first letter (ary) the verse would look like this:
(X), (X), bo-b(Y)
Banana-fana fo-f(Y)
Fee-fi-mo-m(Y)
(X)!
Vowel as first letter of the name
If you have a vowel as the first letter of your name (e.g. Earl) you do not truncate the name.
The verse looks like this:
Earl, Earl, bo-bearl
Banana-fana fo-fearl
Fee-fi-mo-mearl
Earl!
'B', 'F' or 'M' as first letter of the name
In case of a 'B', an 'F' or an 'M' (e.g. Billy, Felix, Mary) there is a special rule.
The line which would 'rebuild' the name (e.g. bo-billy) is sung without the first letter of the name.
The verse for the name Billy looks like this:
Billy, Billy, bo-illy
Banana-fana fo-filly
Fee-fi-mo-milly
Billy!
For the name 'Felix', this would be right:
Felix, Felix, bo-belix
Banana-fana fo-elix
Fee-fi-mo-melix
Felix!
| package main
import (
"fmt"
"strings"
)
func printVerse(name string) {
x := strings.Title(strings.ToLower(name))
y := x[1:]
if strings.Contains("AEIOU", x[:1]) {
y = strings.ToLower(x)
}
b := "b" + y
f := "f" + y
m := "m" + y
switch x[0] {
case 'B':
b = y
case 'F':
f = y
case 'M':
m = y
}
fmt.Printf("%s, %s, bo-%s\n", x, x, b)
fmt.Printf("Banana-fana fo-%s\n", f)
fmt.Printf("Fee-fi-mo-%s\n", m)
fmt.Printf("%s!\n\n", x)
}
func main() {
names := [6]string{"gARY", "Earl", "Billy", "Felix", "Mary", "SHIRley"}
for _, name := range names {
printVerse(name)
}
} |
The Twelve Days of Christmas | Go | Write a program that outputs the lyrics of the Christmas carol ''The Twelve Days of Christmas''.
The lyrics can be found here.
(You must reproduce the words in the correct order, but case, format, and punctuation are left to your discretion.)
| package main
import (
"fmt"
)
func main() {
days := []string{"first", "second", "third", "fourth", "fifth", "sixth",
"seventh", "eighth", "ninth", "tenth", "eleventh", "twelfth"}
gifts := []string{"A Partridge in a Pear Tree", "Two Turtle Doves and", "Three French Hens",
"Four Calling Birds", "Five Gold Rings", "Six Geese a-Laying",
"Seven Swans a-Swimming", "Eight Maids a-Milking", "Nine Ladies Dancing",
"Ten Lords a-Leaping", "Eleven Pipers Piping", "Twelve Drummers Drumming"}
for i := 0; i < 12; i++ {
fmt.Printf("On the %s day of Christmas,\n", days[i])
fmt.Println("My true love sent to me:")
for j := i; j >= 0; j-- {
fmt.Println(gifts[j])
}
fmt.Println()
}
}
|
Thue-Morse | Go | Create a Thue-Morse sequence.
;See also
* YouTube entry: The Fairest Sharing Sequence Ever
* YouTube entry: Math and OCD - My story with the Thue-Morse sequence
* Task: [[Fairshare between two and more]]
| // prints the first few members of the Thue-Morse sequence
package main
import (
"fmt"
"bytes"
)
// sets tmBuffer to the next member of the Thue-Morse sequence
// tmBuffer must contain a valid Thue-Morse sequence member before the call
func nextTMSequenceMember( tmBuffer * bytes.Buffer ) {
// "flip" the bytes, adding them to the buffer
for b, currLength, currBytes := 0, tmBuffer.Len(), tmBuffer.Bytes() ; b < currLength; b ++ {
if currBytes[ b ] == '1' {
tmBuffer.WriteByte( '0' )
} else {
tmBuffer.WriteByte( '1' )
}
}
}
func main() {
var tmBuffer bytes.Buffer
// initial sequence member is "0"
tmBuffer.WriteByte( '0' )
fmt.Println( tmBuffer.String() )
for i := 2; i <= 7; i ++ {
nextTMSequenceMember( & tmBuffer )
fmt.Println( tmBuffer.String() )
}
} |
Tonelli-Shanks algorithm | Go | {{wikipedia}}
In computational number theory, the Tonelli-Shanks algorithm is a technique for solving for '''x''' in a congruence of the form:
:: x2 n (mod p)
where '''n''' is an integer which is a quadratic residue (mod p), '''p''' is an odd prime, and '''x,n Fp''' where Fp = {0, 1, ..., p - 1}.
It is used in cryptography techniques.
To apply the algorithm, we need the Legendre symbol:
The Legendre symbol '''(a | p)''' denotes the value of a(p-1)/2 (mod p).
* '''(a | p) 1''' if '''a''' is a square (mod p)
* '''(a | p) -1''' if '''a''' is not a square (mod p)
* '''(a | p) 0''' if '''a''' 0 (mod p)
;Algorithm pseudo-code:
All are taken to mean (mod p) unless stated otherwise.
* Input: '''p''' an odd prime, and an integer '''n''' .
* Step 0: Check that '''n''' is indeed a square: (n | p) must be 1 .
* Step 1: By factoring out powers of 2 from p - 1, find '''q''' and '''s''' such that p - 1 = q2s with '''q''' odd .
** If p 3 (mod 4) (i.e. s = 1), output the two solutions r +- n(p+1)/4 .
* Step 2: Select a non-square '''z''' such that (z | p) -1 and set c zq .
* Step 3: Set r n(q+1)/2, t nq, m = s .
* Step 4: Loop the following:
** If t 1, output '''r''' and '''p - r''' .
** Otherwise find, by repeated squaring, the lowest '''i''', 0 < i < m , such that t2i 1 .
** Let b c2(m - i - 1), and set r rb, t tb2, c b2 and m = i .
;Task:
Implement the above algorithm.
Find solutions (if any) for
* n = 10 p = 13
* n = 56 p = 101
* n = 1030 p = 10009
* n = 1032 p = 10009
* n = 44402 p = 100049
;Extra credit:
* n = 665820697 p = 1000000009
* n = 881398088036 p = 1000000000039
* n = 41660815127637347468140745042827704103445750172002 p = 10^50 + 577
;See also:
* [[Modular exponentiation]]
* [[Cipolla's algorithm]]
| package main
import "fmt"
// Arguments n, p as described in WP
// If Legendre symbol != 1, ok return is false. Otherwise ok return is true,
// R1 is WP return value R and for convenience R2 is p-R1.
func ts(n, p int) (R1, R2 int, ok bool) {
// a^e mod p
powModP := func(a, e int) int {
s := 1
for ; e > 0; e-- {
s = s * a % p
}
return s
}
// Legendre symbol, returns 1, 0, or -1 mod p -- that's 1, 0, or p-1.
ls := func(a int) int {
return powModP(a, (p-1)/2)
}
// argument validation
if ls(n) != 1 {
return 0, 0, false
}
// WP step 1, factor out powers two.
// variables Q, S named as at WP.
Q := p - 1
S := 0
for Q&1 == 0 {
S++
Q >>= 1
}
// WP step 1, direct solution
if S == 1 {
R1 = powModP(n, (p+1)/4)
return R1, p - R1, true
}
// WP step 2, select z, assign c
z := 2
for ; ls(z) != p-1; z++ {
}
c := powModP(z, Q)
// WP step 3, assign R, t, M
R := powModP(n, (Q+1)/2)
t := powModP(n, Q)
M := S
// WP step 4, loop
for {
// WP step 4.1, termination condition
if t == 1 {
return R, p - R, true
}
// WP step 4.2, find lowest i...
i := 0
for z := t; z != 1 && i < M-1; {
z = z * z % p
i++
}
// WP step 4.3, using a variable b, assign new values of R, t, c, M
b := c
for e := M - i - 1; e > 0; e-- {
b = b * b % p
}
R = R * b % p
c = b * b % p // more convenient to compute c before t
t = t * c % p
M = i
}
}
func main() {
fmt.Println(ts(10, 13))
fmt.Println(ts(56, 101))
fmt.Println(ts(1030, 10009))
fmt.Println(ts(1032, 10009))
fmt.Println(ts(44402, 100049))
} |
Top rank per group | Go | Find the top ''N'' salaries in each department, where ''N'' is provided as a parameter.
Use this data as a formatted internal data structure (adapt it to your language-native idioms, rather than parse at runtime), or identify your external data source:
Employee Name,Employee ID,Salary,Department
Tyler Bennett,E10297,32000,D101
John Rappl,E21437,47000,D050
George Woltman,E00127,53500,D101
Adam Smith,E63535,18000,D202
Claire Buckman,E39876,27800,D202
David McClellan,E04242,41500,D101
Rich Holcomb,E01234,49500,D202
Nathan Adams,E41298,21900,D050
Richard Potter,E43128,15900,D101
David Motsinger,E27002,19250,D202
Tim Sampair,E03033,27000,D101
Kim Arlich,E10001,57000,D190
Timothy Grove,E16398,29900,D190
| package main
import (
"fmt"
"sort"
)
// language-native data description
type Employee struct {
Name, ID string
Salary int
Dept string
}
type EmployeeList []*Employee
var data = EmployeeList{
{"Tyler Bennett", "E10297", 32000, "D101"},
{"John Rappl", "E21437", 47000, "D050"},
{"George Woltman", "E00127", 53500, "D101"},
{"Adam Smith", "E63535", 18000, "D202"},
{"Claire Buckman", "E39876", 27800, "D202"},
{"David McClellan", "E04242", 41500, "D101"},
{"Rich Holcomb", "E01234", 49500, "D202"},
{"Nathan Adams", "E41298", 21900, "D050"},
{"Richard Potter", "E43128", 15900, "D101"},
{"David Motsinger", "E27002", 19250, "D202"},
{"Tim Sampair", "E03033", 27000, "D101"},
{"Kim Arlich", "E10001", 57000, "D190"},
{"Timothy Grove", "E16398", 29900, "D190"},
// Extra data to demonstrate ties
{"Tie A", "E16399", 29900, "D190"},
{"Tie B", "E16400", 29900, "D190"},
{"No Tie", "E16401", 29899, "D190"},
}
// We only need one type of ordering/grouping for this task so we could directly
// implement sort.Interface on EmployeeList (or a byDeptSalary alias type) with
// the appropriate Less method.
//
// Instead, we'll add a bit here that makes it easier to use arbitrary orderings.
// This is like the "SortKeys" Planet sorting example in the sort package
// documentation, see https://golang.org/pkg/sort
type By func(e1, e2 *Employee) bool
type employeeSorter struct {
list EmployeeList
by func(e1, e2 *Employee) bool
}
func (by By) Sort(list EmployeeList) { sort.Sort(&employeeSorter{list, by}) }
func (s *employeeSorter) Len() int { return len(s.list) }
func (s *employeeSorter) Swap(i, j int) { s.list[i], s.list[j] = s.list[j], s.list[i] }
func (s *employeeSorter) Less(i, j int) bool { return s.by(s.list[i], s.list[j]) }
// For this specific task we could just write the data to an io.Writer
// but in general it's better to return the data in a usable form (for
// example, perhaps other code want's to do something like compare the
// averages of the top N by department).
//
// So we go through the extra effort of returning an []EmployeeList, a
// list of employee lists, one per deparment. The lists are trimmed to
// to the top 'n', which can be larger than n if there are ties for the
// nth salary (callers that don't care about ties could just trim more.)
func (el EmployeeList) TopSalariesByDept(n int) []EmployeeList {
if n <= 0 || len(el) == 0 {
return nil
}
deptSalary := func(e1, e2 *Employee) bool {
if e1.Dept != e2.Dept {
return e1.Dept < e2.Dept
}
if e1.Salary != e2.Salary {
return e1.Salary > e2.Salary
}
// Always have some unique field as the last one in a sort list
return e1.ID < e2.ID
}
// We could just sort the data in place for this task. But
// perhaps messing with the order is undesirable or there is
// other concurrent access. So we'll make a copy and sort that.
// It's just pointers so the amount to copy is relatively small.
sorted := make(EmployeeList, len(el))
copy(sorted, el)
By(deptSalary).Sort(sorted)
perDept := []EmployeeList{}
var lastDept string
var lastSalary int
for _, e := range sorted {
if e.Dept != lastDept || len(perDept) == 0 {
lastDept = e.Dept
perDept = append(perDept, EmployeeList{e})
} else {
i := len(perDept) - 1
if len(perDept[i]) >= n && e.Salary != lastSalary {
continue
}
perDept[i] = append(perDept[i], e)
lastSalary = e.Salary
}
}
return perDept
}
func main() {
const n = 3
top := data.TopSalariesByDept(n)
if len(top) == 0 {
fmt.Println("Nothing to show.")
return
}
fmt.Printf("Top %d salaries per department\n", n)
for _, list := range top {
fmt.Println(list[0].Dept)
for _, e := range list {
fmt.Printf(" %s %16s %7d\n", e.ID, e.Name, e.Salary)
}
}
} |
Topic variable | Go | Several programming languages offer syntax shortcuts to deal with the notion of "current" or "topic" variable.
A topic variable is a special variable with a very short name which can also often be omitted.
Demonstrate the utilization and behaviour of the topic variable within the language and explain or demonstrate how the topic variable behaves under different levels of nesting or scope, if this applies, within the language.
For instance you can (but you don't have to) show how the topic variable can be used by assigning the number 3 to it and then computing its square and square root.
| package main
import (
"math"
"os"
"strconv"
"text/template"
)
func sqr(x string) string {
f, err := strconv.ParseFloat(x, 64)
if err != nil {
return "NA"
}
return strconv.FormatFloat(f*f, 'f', -1, 64)
}
func sqrt(x string) string {
f, err := strconv.ParseFloat(x, 64)
if err != nil {
return "NA"
}
return strconv.FormatFloat(math.Sqrt(f), 'f', -1, 64)
}
func main() {
f := template.FuncMap{"sqr": sqr, "sqrt": sqrt}
t := template.Must(template.New("").Funcs(f).Parse(`. = {{.}}
square: {{sqr .}}
square root: {{sqrt .}}
`))
t.Execute(os.Stdout, "3")
} |
Topswops | Go | Topswops is a card game created by John Conway in the 1970's.
Assume you have a particular permutation of a set of n cards numbered 1..n on both of their faces, for example the arrangement of four cards given by [2, 4, 1, 3] where the leftmost card is on top.
A round is composed of reversing the first m cards where m is the value of the topmost card.
Rounds are repeated until the topmost card is the number 1 and the number of swaps is recorded.
For our example the swaps produce:
[2, 4, 1, 3] # Initial shuffle
[4, 2, 1, 3]
[3, 1, 2, 4]
[2, 1, 3, 4]
[1, 2, 3, 4]
For a total of four swaps from the initial ordering to produce the terminating case where 1 is on top.
For a particular number n of cards, topswops(n) is the maximum swaps needed for any starting permutation of the n cards.
;Task:
The task is to generate and show here a table of n vs topswops(n) for n in the range 1..10 inclusive.
;Note:
Topswops is also known as Fannkuch from the German word ''Pfannkuchen'' meaning pancake.
;Related tasks:
* [[Number reversal game]]
* [[Sorting algorithms/Pancake sort]]
| // Adapted from http://www-cs-faculty.stanford.edu/~uno/programs/topswops.w
// at Donald Knuth's web site. Algorithm credited there to Pepperdine
// and referenced to Mathematical Gazette 73 (1989), 131-133.
package main
import "fmt"
const ( // array sizes
maxn = 10 // max number of cards
maxl = 50 // upper bound for number of steps
)
func main() {
for i := 1; i <= maxn; i++ {
fmt.Printf("%d: %d\n", i, steps(i))
}
}
func steps(n int) int {
var a, b [maxl][maxn + 1]int
var x [maxl]int
a[0][0] = 1
var m int
for l := 0; ; {
x[l]++
k := int(x[l])
if k >= n {
if l <= 0 {
break
}
l--
continue
}
if a[l][k] == 0 {
if b[l][k+1] != 0 {
continue
}
} else if a[l][k] != k+1 {
continue
}
a[l+1] = a[l]
for j := 1; j <= k; j++ {
a[l+1][j] = a[l][k-j]
}
b[l+1] = b[l]
a[l+1][0] = k + 1
b[l+1][k+1] = 1
if l > m-1 {
m = l + 1
}
l++
x[l] = 0
}
return m
} |
Total circles area | Go from Raku | Example circles
Example circles filtered
Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.
One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity. This means keeping both slower and faster solutions for a language (like C) is welcome.
To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the '''x''' and '''y''' coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):
xc yc radius
1.6417233788 1.6121789534 0.0848270516
-1.4944608174 1.2077959613 1.1039549836
0.6110294452 -0.6907087527 0.9089162485
0.3844862411 0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
1.7813504266 1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812 1.4104420482 0.7886291537
0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
1.7952608455 0.6281269104 0.2727652452
1.4168575317 1.0683357171 1.1016025378
1.4637371396 0.9463877418 1.1846214562
-0.5263668798 1.7315156631 1.4428514068
-1.2197352481 0.9144146579 1.0727263474
-0.1389358881 0.1092805780 0.7350208828
1.5293954595 0.0030278255 1.2472867347
-0.5258728625 1.3782633069 1.3495508831
-0.1403562064 0.2437382535 1.3804956588
0.8055826339 -0.0482092025 0.3327165165
-0.6311979224 0.7184578971 0.2491045282
1.4685857879 -0.8347049536 1.3670667538
-0.6855727502 1.6465021616 1.0593087096
0.0152957411 0.0638919221 0.9771215985
The result is 21.56503660... .
;Related task:
* [[Circles of given radius through two points]].
;See also:
* http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/
* http://stackoverflow.com/a/1667789/10562
| package main
import (
"flag"
"fmt"
"math"
"runtime"
"sort"
)
// Note, the standard "image" package has Point and Rectangle but we
// can't use them here since they're defined using int rather than
// float64.
type Circle struct{ X, Y, R, rsq float64 }
func NewCircle(x, y, r float64) Circle {
// We pre-calculate r² as an optimization
return Circle{x, y, r, r * r}
}
func (c Circle) ContainsPt(x, y float64) bool {
return distSq(x, y, c.X, c.Y) <= c.rsq
}
func (c Circle) ContainsC(c2 Circle) bool {
return distSq(c.X, c.Y, c2.X, c2.Y) <= (c.R-c2.R)*(c.R-c2.R)
}
func (c Circle) ContainsR(r Rect) (full, corner bool) {
nw := c.ContainsPt(r.NW())
ne := c.ContainsPt(r.NE())
sw := c.ContainsPt(r.SW())
se := c.ContainsPt(r.SE())
return nw && ne && sw && se, nw || ne || sw || se
}
func (c Circle) North() (float64, float64) { return c.X, c.Y + c.R }
func (c Circle) South() (float64, float64) { return c.X, c.Y - c.R }
func (c Circle) West() (float64, float64) { return c.X - c.R, c.Y }
func (c Circle) East() (float64, float64) { return c.X + c.R, c.Y }
type Rect struct{ X1, Y1, X2, Y2 float64 }
func (r Rect) Area() float64 { return (r.X2 - r.X1) * (r.Y2 - r.Y1) }
func (r Rect) NW() (float64, float64) { return r.X1, r.Y2 }
func (r Rect) NE() (float64, float64) { return r.X2, r.Y2 }
func (r Rect) SW() (float64, float64) { return r.X1, r.Y1 }
func (r Rect) SE() (float64, float64) { return r.X2, r.Y1 }
func (r Rect) Centre() (float64, float64) {
return (r.X1 + r.X2) / 2.0, (r.Y1 + r.Y2) / 2.0
}
func (r Rect) ContainsPt(x, y float64) bool {
return r.X1 <= x && x < r.X2 &&
r.Y1 <= y && y < r.Y2
}
func (r Rect) ContainsPC(c Circle) bool { // only N,W,E,S points of circle
return r.ContainsPt(c.North()) ||
r.ContainsPt(c.South()) ||
r.ContainsPt(c.West()) ||
r.ContainsPt(c.East())
}
func (r Rect) MinSide() float64 {
return math.Min(r.X2-r.X1, r.Y2-r.Y1)
}
func distSq(x1, y1, x2, y2 float64) float64 {
Δx, Δy := x2-x1, y2-y1
return (Δx * Δx) + (Δy * Δy)
}
type CircleSet []Circle
// sort.Interface for sorting by radius big to small:
func (s CircleSet) Len() int { return len(s) }
func (s CircleSet) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s CircleSet) Less(i, j int) bool { return s[i].R > s[j].R }
func (sp *CircleSet) RemoveContainedC() {
s := *sp
sort.Sort(s)
for i := 0; i < len(s); i++ {
for j := i + 1; j < len(s); {
if s[i].ContainsC(s[j]) {
s[j], s[len(s)-1] = s[len(s)-1], s[j]
s = s[:len(s)-1]
} else {
j++
}
}
}
*sp = s
}
func (s CircleSet) Bounds() Rect {
x1 := s[0].X - s[0].R
x2 := s[0].X + s[0].R
y1 := s[0].Y - s[0].R
y2 := s[0].Y + s[0].R
for _, c := range s[1:] {
x1 = math.Min(x1, c.X-c.R)
x2 = math.Max(x2, c.X+c.R)
y1 = math.Min(y1, c.Y-c.R)
y2 = math.Max(y2, c.Y+c.R)
}
return Rect{x1, y1, x2, y2}
}
var nWorkers = 4
func (s CircleSet) UnionArea(ε float64) (min, max float64) {
sort.Sort(s)
stop := make(chan bool)
inside := make(chan Rect)
outside := make(chan Rect)
unknown := make(chan Rect, 5e7) // XXX
for i := 0; i < nWorkers; i++ {
go s.worker(stop, unknown, inside, outside)
}
r := s.Bounds()
max = r.Area()
unknown <- r
for max-min > ε {
select {
case r = <-inside:
min += r.Area()
case r = <-outside:
max -= r.Area()
}
}
close(stop)
return min, max
}
func (s CircleSet) worker(stop <-chan bool, unk chan Rect, in, out chan<- Rect) {
for {
select {
case <-stop:
return
case r := <-unk:
inside, outside := s.CategorizeR(r)
switch {
case inside:
in <- r
case outside:
out <- r
default:
// Split
midX, midY := r.Centre()
unk <- Rect{r.X1, r.Y1, midX, midY}
unk <- Rect{midX, r.Y1, r.X2, midY}
unk <- Rect{r.X1, midY, midX, r.Y2}
unk <- Rect{midX, midY, r.X2, r.Y2}
}
}
}
}
func (s CircleSet) CategorizeR(r Rect) (inside, outside bool) {
anyCorner := false
for _, c := range s {
full, corner := c.ContainsR(r)
if full {
return true, false // inside
}
anyCorner = anyCorner || corner
}
if anyCorner {
return false, false // uncertain
}
for _, c := range s {
if r.ContainsPC(c) {
return false, false // uncertain
}
}
return false, true // outside
}
func main() {
flag.IntVar(&nWorkers, "workers", nWorkers, "how many worker go routines to use")
maxproc := flag.Int("cpu", runtime.NumCPU(), "GOMAXPROCS setting")
flag.Parse()
if *maxproc > 0 {
runtime.GOMAXPROCS(*maxproc)
} else {
*maxproc = runtime.GOMAXPROCS(0)
}
circles := CircleSet{
NewCircle(1.6417233788, 1.6121789534, 0.0848270516),
NewCircle(-1.4944608174, 1.2077959613, 1.1039549836),
NewCircle(0.6110294452, -0.6907087527, 0.9089162485),
NewCircle(0.3844862411, 0.2923344616, 0.2375743054),
NewCircle(-0.2495892950, -0.3832854473, 1.0845181219),
NewCircle(1.7813504266, 1.6178237031, 0.8162655711),
NewCircle(-0.1985249206, -0.8343333301, 0.0538864941),
NewCircle(-1.7011985145, -0.1263820964, 0.4776976918),
NewCircle(-0.4319462812, 1.4104420482, 0.7886291537),
NewCircle(0.2178372997, -0.9499557344, 0.0357871187),
NewCircle(-0.6294854565, -1.3078893852, 0.7653357688),
NewCircle(1.7952608455, 0.6281269104, 0.2727652452),
NewCircle(1.4168575317, 1.0683357171, 1.1016025378),
NewCircle(1.4637371396, 0.9463877418, 1.1846214562),
NewCircle(-0.5263668798, 1.7315156631, 1.4428514068),
NewCircle(-1.2197352481, 0.9144146579, 1.0727263474),
NewCircle(-0.1389358881, 0.1092805780, 0.7350208828),
NewCircle(1.5293954595, 0.0030278255, 1.2472867347),
NewCircle(-0.5258728625, 1.3782633069, 1.3495508831),
NewCircle(-0.1403562064, 0.2437382535, 1.3804956588),
NewCircle(0.8055826339, -0.0482092025, 0.3327165165),
NewCircle(-0.6311979224, 0.7184578971, 0.2491045282),
NewCircle(1.4685857879, -0.8347049536, 1.3670667538),
NewCircle(-0.6855727502, 1.6465021616, 1.0593087096),
NewCircle(0.0152957411, 0.0638919221, 0.9771215985),
}
fmt.Println("Starting with", len(circles), "circles.")
circles.RemoveContainedC()
fmt.Println("Removing redundant ones leaves", len(circles), "circles.")
fmt.Println("Using", nWorkers, "workers with maxprocs =", *maxproc)
const ε = 0.0001
min, max := circles.UnionArea(ε)
avg := (min + max) / 2.0
rng := max - min
fmt.Printf("Area = %v±%v\n", avg, rng)
fmt.Printf("Area ≈ %.*f\n", 5, avg)
} |
Trabb Pardo–Knuth algorithm | Go | The TPK algorithm is an early example of a programming chrestomathy.
It was used in Donald Knuth and Luis Trabb Pardo's Stanford tech report The Early Development of Programming Languages.
The report traces the early history of work in developing computer languages in the 1940s and 1950s, giving several translations of the algorithm.
From the wikipedia entry:
'''ask''' for 11 numbers to be read into a sequence ''S''
'''reverse''' sequence ''S''
'''for each''' ''item'' '''in''' sequence ''S''
''result'' ''':=''' '''call''' a function to do an ''operation''
'''if''' ''result'' overflows
'''alert''' user
'''else'''
'''print''' ''result''
The task is to implement the algorithm:
# Use the function: f(x) = |x|^{0.5} + 5x^3
# The overflow condition is an answer of greater than 400.
# The 'user alert' should not stop processing of other items of the sequence.
# Print a prompt before accepting '''eleven''', textual, numeric inputs.
# You may optionally print the item as well as its associated result, but the results must be in reverse order of input.
# The sequence ''' ''S'' ''' may be 'implied' and so not shown explicitly.
# ''Print and show the program in action from a typical run here''. (If the output is graphical rather than text then either add a screendump or describe textually what is displayed).
| package main
import (
"fmt"
"log"
"math"
)
func main() {
// prompt
fmt.Print("Enter 11 numbers: ")
// accept sequence
var s [11]float64
for i := 0; i < 11; {
if n, _ := fmt.Scan(&s[i]); n > 0 {
i++
}
}
// reverse sequence
for i, item := range s[:5] {
s[i], s[10-i] = s[10-i], item
}
// iterate
for _, item := range s {
if result, overflow := f(item); overflow {
// send alerts to stderr
log.Printf("f(%g) overflow", item)
} else {
// send normal results to stdout
fmt.Printf("f(%g) = %g\n", item, result)
}
}
}
func f(x float64) (float64, bool) {
result := math.Sqrt(math.Abs(x)) + 5*x*x*x
return result, result > 400
} |
Tree datastructures | Go | The following shows a tree of data with nesting denoted by visual levels of indentation:
RosettaCode
rocks
code
comparison
wiki
mocks
trolling
A common datastructure for trees is to define node structures having a name and a, (possibly empty), list of child nodes. The nesting of nodes captures the indentation of the tree. Lets call this '''the nest form'''.
# E.g. if child nodes are surrounded by brackets
# and separated by commas then:
RosettaCode(rocks(code, ...), ...)
# But only an _example_
Another datastructure for trees is to construct from the root an ordered list of the nodes level of indentation and the name of that node. The indentation for the root node is zero; node 'rocks is indented by one level from the left, and so on. Lets call this '''the indent form'''.
0 RosettaCode
1 rocks
2 code
...
;Task:
# Create/use a nest datastructure format and textual representation for arbitrary trees.
# Create/use an indent datastructure format and textual representation for arbitrary trees.
# Create methods/classes/proceedures/routines etc to:
## Change from a nest tree datastructure to an indent one.
## Change from an indent tree datastructure to a nest one
# Use the above to encode the example at the start into the nest format, and show it.
# transform the initial nest format to indent format and show it.
# transform the indent format to final nest format and show it.
# Compare initial and final nest formats which should be the same.
;Note:
* It's all about showing aspects of the contrasting datastructures as they hold the tree.
* Comparing nested datastructures is secondary - saving formatted output as a string then a string compare would suffice for this task, if its easier.
Show all output on this page.
| package main
import (
"fmt"
"io"
"os"
"strings"
)
type nNode struct {
name string
children []nNode
}
type iNode struct {
level int
name string
}
func printNest(n nNode, level int, w io.Writer) {
if level == 0 {
fmt.Fprintln(w, "\n==Nest form==\n")
}
fmt.Fprintf(w, "%s%s\n", strings.Repeat(" ", level), n.name)
for _, c := range n.children {
fmt.Fprintf(w, "%s", strings.Repeat(" ", level+1))
printNest(c, level+1, w)
}
}
func toNest(iNodes []iNode, start, level int, n *nNode) {
if level == 0 {
n.name = iNodes[0].name
}
for i := start + 1; i < len(iNodes); i++ {
if iNodes[i].level == level+1 {
c := nNode{iNodes[i].name, nil}
toNest(iNodes, i, level+1, &c)
n.children = append(n.children, c)
} else if iNodes[i].level <= level {
return
}
}
}
func printIndent(iNodes []iNode, w io.Writer) {
fmt.Fprintln(w, "\n==Indent form==\n")
for _, n := range iNodes {
fmt.Fprintf(w, "%d %s\n", n.level, n.name)
}
}
func toIndent(n nNode, level int, iNodes *[]iNode) {
*iNodes = append(*iNodes, iNode{level, n.name})
for _, c := range n.children {
toIndent(c, level+1, iNodes)
}
}
func main() {
n1 := nNode{"RosettaCode", nil}
n2 := nNode{"rocks", []nNode{{"code", nil}, {"comparison", nil}, {"wiki", nil}}}
n3 := nNode{"mocks", []nNode{{"trolling", nil}}}
n1.children = append(n1.children, n2, n3)
var sb strings.Builder
printNest(n1, 0, &sb)
s1 := sb.String()
fmt.Print(s1)
var iNodes []iNode
toIndent(n1, 0, &iNodes)
printIndent(iNodes, os.Stdout)
var n nNode
toNest(iNodes, 0, 0, &n)
sb.Reset()
printNest(n, 0, &sb)
s2 := sb.String()
fmt.Print(s2)
fmt.Println("\nRound trip test satisfied? ", s1 == s2)
} |
Tree from nesting levels | Go from Python | Given a flat list of integers greater than zero, representing object nesting
levels, e.g. [1, 2, 4],
generate a tree formed from nested lists of those nesting level integers where:
* Every int appears, in order, at its depth of nesting.
* If the next level int is greater than the previous then it appears in a sub-list of the list containing the previous item
The generated tree data structure should ideally be in a languages nested list format that can
be used for further calculations rather than something just calculated for printing.
An input of [1, 2, 4] should produce the equivalent of: [1, [2, [[4]]]]
where 1 is at depth1, 2 is two deep and 4 is nested 4 deep.
[1, 2, 4, 2, 2, 1] should produce [1, [2, [[4]], 2, 2], 1].
All the nesting integers are in the same order but at the correct nesting
levels.
Similarly [3, 1, 3, 1] should generate [[[3]], 1, [[3]], 1]
;Task:
Generate and show here the results for the following inputs:
:* []
:* [1, 2, 4]
:* [3, 1, 3, 1]
:* [1, 2, 3, 1]
:* [3, 2, 1, 3]
:* [3, 3, 3, 1, 1, 3, 3, 3]
| package main
import "fmt"
type any = interface{}
func toTree(list []int, index, depth int) (int, []any) {
var soFar []any
for index < len(list) {
t := list[index]
if t == depth {
soFar = append(soFar, t)
} else if t > depth {
var deeper []any
index, deeper = toTree(list, index, depth+1)
soFar = append(soFar, deeper)
} else {
index = index - 1
break
}
index = index + 1
}
if depth > 1 {
return index, soFar
}
return -1, soFar
}
func main() {
tests := [][]int{
{},
{1, 2, 4},
{3, 1, 3, 1},
{1, 2, 3, 1},
{3, 2, 1, 3},
{3, 3, 3, 1, 1, 3, 3, 3},
}
for _, test := range tests {
_, nest := toTree(test, 0, 1)
fmt.Printf("%17s => %v\n", fmt.Sprintf("%v", test), nest)
}
} |
Tropical algebra overloading | Go from Wren | In algebra, a max tropical semiring (also called a max-plus algebra) is the semiring
(R -Inf, , ) containing the ring of real numbers R augmented by negative infinity,
the max function (returns the greater of two real numbers), and addition.
In max tropical algebra, x y = max(x, y) and x y = x + y. The identity for
is -Inf (the max of any number with -infinity is that number), and the identity for is 0.
;Task:
* Define functions or, if the language supports the symbols as operators, operators for and that fit the above description. If the language does not support and as operators but allows overloading operators for a new object type, you may instead overload + and * for a new min tropical albrbraic type. If you cannot overload operators in the language used, define ordinary functions for the purpose.
Show that 2 -2 is 0, -0.001 -Inf is -0.001, 0 -Inf is -Inf, 1.5 -1 is 1.5, and -0.5 0 is -0.5.
* Define exponentiation as serial , and in general that a to the power of b is a * b, where a is a real number and b must be a positive integer. Use either | or similar up arrow or the carat ^, as an exponentiation operator if this can be used to overload such "exponentiation" in the language being used. Calculate 5 | 7 using this definition.
* Max tropical algebra is distributive, so that
a (b c) equals a b b c,
where has precedence over . Demonstrate that 5 (8 7) equals 5 8 5 7.
* If the language used does not support operator overloading, you may use ordinary function names such as tropicalAdd(x, y) and tropicalMul(x, y).
;See also
:;*[Tropical algebra]
:;*[Tropical geometry review article]
:;*[Operator overloading]
| package main
import (
"fmt"
"log"
"math"
)
var MinusInf = math.Inf(-1)
type MaxTropical struct{ r float64 }
func newMaxTropical(r float64) MaxTropical {
if math.IsInf(r, 1) || math.IsNaN(r) {
log.Fatal("Argument must be a real number or negative infinity.")
}
return MaxTropical{r}
}
func (t MaxTropical) eq(other MaxTropical) bool {
return t.r == other.r
}
// equivalent to ⊕ operator
func (t MaxTropical) add(other MaxTropical) MaxTropical {
if t.r == MinusInf {
return other
}
if other.r == MinusInf {
return t
}
return newMaxTropical(math.Max(t.r, other.r))
}
// equivalent to ⊗ operator
func (t MaxTropical) mul(other MaxTropical) MaxTropical {
if t.r == 0 {
return other
}
if other.r == 0 {
return t
}
return newMaxTropical(t.r + other.r)
}
// exponentiation function
func (t MaxTropical) pow(e int) MaxTropical {
if e < 1 {
log.Fatal("Exponent must be a positive integer.")
}
if e == 1 {
return t
}
p := t
for i := 2; i <= e; i++ {
p = p.mul(t)
}
return p
}
func (t MaxTropical) String() string {
return fmt.Sprintf("%g", t.r)
}
func main() {
// 0 denotes ⊕ and 1 denotes ⊗
data := [][]float64{
{2, -2, 1},
{-0.001, MinusInf, 0},
{0, MinusInf, 1},
{1.5, -1, 0},
{-0.5, 0, 1},
}
for _, d := range data {
a := newMaxTropical(d[0])
b := newMaxTropical(d[1])
if d[2] == 0 {
fmt.Printf("%s ⊕ %s = %s\n", a, b, a.add(b))
} else {
fmt.Printf("%s ⊗ %s = %s\n", a, b, a.mul(b))
}
}
c := newMaxTropical(5)
fmt.Printf("%s ^ 7 = %s\n", c, c.pow(7))
d := newMaxTropical(8)
e := newMaxTropical(7)
f := c.mul(d.add(e))
g := c.mul(d).add(c.mul(e))
fmt.Printf("%s ⊗ (%s ⊕ %s) = %s\n", c, d, e, f)
fmt.Printf("%s ⊗ %s ⊕ %s ⊗ %s = %s\n", c, d, c, e, g)
fmt.Printf("%s ⊗ (%s ⊕ %s) == %s ⊗ %s ⊕ %s ⊗ %s is %t\n", c, d, e, c, d, c, e, f.eq(g))
} |
Truncate a file | Go | Truncate a file to a specific length. This should be implemented as a routine that takes two parameters: the filename and the required file length (in bytes).
Truncation can be achieved using system or library calls intended for such a task, if such methods exist, or by creating a temporary file of a reduced size and renaming it, after first deleting the original file, if no other method is available. The file may contain non human readable binary data in an unspecified format, so the routine should be "binary safe", leaving the contents of the untruncated part of the file unchanged.
If the specified filename does not exist, or the provided length is not less than the current file length, then the routine should raise an appropriate error condition.
On some systems, the provided file truncation facilities might not change the file or may extend the file, if the specified length is greater than the current length of the file.
This task permits the use of such facilities. However, such behaviour should be noted, or optionally a warning message relating to an non change or increase in file size may be implemented.
| import (
"fmt"
"os"
)
if err := os.Truncate("filename", newSize); err != nil {
fmt.Println(err)
} |
Truth table | Go | A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.
;Task:
# Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function. (One can assume that the user input is correct).
# Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
# Either reverse-polish or infix notation expressions are allowed.
;Related tasks:
* [[Boolean values]]
* [[Ternary logic]]
;See also:
* Wolfram MathWorld entry on truth tables.
* some "truth table" examples from Google.
| package main
import (
"bufio"
"errors"
"fmt"
"go/ast"
"go/parser"
"go/token"
"os"
"reflect"
)
func main() {
in := bufio.NewScanner(os.Stdin)
for {
fmt.Print("Expr: ")
in.Scan()
if err := in.Err(); err != nil {
fmt.Println(err)
return
}
if !tt(in.Text()) {
return
}
}
}
func tt(expr string) bool {
// call library parser
tree, err := parser.ParseExpr(expr)
if err != nil {
fmt.Println(err)
return false
}
// create handy object to pass around
e := &evaluator{nil, map[string]bool{}, tree}
// library tree traversal function calls e.Visit for each node.
// use this to collect variables of the expression.
ast.Walk(e, tree)
// print headings for truth table
for _, n := range e.names {
fmt.Printf("%-6s", n)
}
fmt.Println(" ", expr)
// start recursive table generation function on first variable
e.evalVar(0)
return true
}
type evaluator struct {
names []string // variables, in order of appearance
val map[string]bool // map variables to boolean values
tree ast.Expr // parsed expression as ast
}
// visitor function called by library Walk function.
// builds a list of unique variable names.
func (e *evaluator) Visit(n ast.Node) ast.Visitor {
if id, ok := n.(*ast.Ident); ok {
if !e.val[id.Name] {
e.names = append(e.names, id.Name)
e.val[id.Name] = true
}
}
return e
}
// method recurses for each variable of the truth table, assigning it to
// false, then true. At bottom of recursion, when all variables are
// assigned, it evaluates the expression and outputs one line of the
// truth table
func (e *evaluator) evalVar(nx int) bool {
if nx == len(e.names) {
// base case
v, err := evalNode(e.tree, e.val)
if err != nil {
fmt.Println(" ", err)
return false
}
// print variable values
for _, n := range e.names {
fmt.Printf("%-6t", e.val[n])
}
// print expression value
fmt.Println(" ", v)
return true
}
// recursive case
for _, v := range []bool{false, true} {
e.val[e.names[nx]] = v
if !e.evalVar(nx + 1) {
return false
}
}
return true
}
// recursively evaluate ast
func evalNode(nd ast.Node, val map[string]bool) (bool, error) {
switch n := nd.(type) {
case *ast.Ident:
return val[n.Name], nil
case *ast.BinaryExpr:
x, err := evalNode(n.X, val)
if err != nil {
return false, err
}
y, err := evalNode(n.Y, val)
if err != nil {
return false, err
}
switch n.Op {
case token.AND:
return x && y, nil
case token.OR:
return x || y, nil
case token.XOR:
return x != y, nil
default:
return unsup(n.Op)
}
case *ast.UnaryExpr:
x, err := evalNode(n.X, val)
if err != nil {
return false, err
}
switch n.Op {
case token.XOR:
return !x, nil
default:
return unsup(n.Op)
}
case *ast.ParenExpr:
return evalNode(n.X, val)
}
return unsup(reflect.TypeOf(nd))
}
func unsup(i interface{}) (bool, error) {
return false, errors.New(fmt.Sprintf("%v unsupported", i))
}
|
Two bullet roulette | Go from Wren | The following is supposedly a question given to mathematics graduates seeking jobs on Wall Street:
A revolver handgun has a revolving cylinder with six chambers for bullets.
It is loaded with the following procedure:
1. Check the first chamber to the right of the trigger for a bullet. If a bullet
is seen, the cylinder is rotated one chamber clockwise and the next chamber
checked until an empty chamber is found.
2. A cartridge containing a bullet is placed in the empty chamber.
3. The cylinder is then rotated one chamber clockwise.
To randomize the cylinder's position, the cylinder is spun, which causes the cylinder to take
a random position from 1 to 6 chamber rotations clockwise from its starting position.
When the trigger is pulled the gun will fire if there is a bullet in position 0, which is just
counterclockwise from the loading position.
The gun is unloaded by removing all cartridges from the cylinder.
According to the legend, a suicidal Russian imperial military officer plays a game of Russian
roulette by putting two bullets in a six-chamber cylinder and pulls the trigger twice.
If the gun fires with a trigger pull, this is considered a successful suicide.
The cylinder is always spun before the first shot, but it may or may not be spun after putting
in the first bullet and may or may not be spun after taking the first shot.
Which of the following situations produces the highest probability of suicide?
A. Spinning the cylinder after loading the first bullet, and spinning again after the first shot.
B. Spinning the cylinder after loading the first bullet only.
C. Spinning the cylinder after firing the first shot only.
D. Not spinning the cylinder either after loading the first bullet or after the first shot.
E. The probability is the same for all cases.
;Task:
# Run a repeated simulation of each of the above scenario, calculating the percentage of suicide with a randomization of the four spinning, loading and firing order scenarios.
# Show the results as a percentage of deaths for each type of scenario.
# The hand calculated probabilities are 5/9, 7/12, 5/9, and 1/2. A correct program should produce results close enough to those to allow a correct response to the interview question.
;Reference:
Youtube video on the Russian 1895 Nagant revolver [[https://www.youtube.com/watch?v=Dh1mojMaEtM]]
| package main
import (
"fmt"
"math/rand"
"strings"
"time"
)
var cylinder = [6]bool{}
func rshift() {
t := cylinder[5]
for i := 4; i >= 0; i-- {
cylinder[i+1] = cylinder[i]
}
cylinder[0] = t
}
func unload() {
for i := 0; i < 6; i++ {
cylinder[i] = false
}
}
func load() {
for cylinder[0] {
rshift()
}
cylinder[0] = true
rshift()
}
func spin() {
var lim = 1 + rand.Intn(6)
for i := 1; i < lim; i++ {
rshift()
}
}
func fire() bool {
shot := cylinder[0]
rshift()
return shot
}
func method(s string) int {
unload()
for _, c := range s {
switch c {
case 'L':
load()
case 'S':
spin()
case 'F':
if fire() {
return 1
}
}
}
return 0
}
func mstring(s string) string {
var l []string
for _, c := range s {
switch c {
case 'L':
l = append(l, "load")
case 'S':
l = append(l, "spin")
case 'F':
l = append(l, "fire")
}
}
return strings.Join(l, ", ")
}
func main() {
rand.Seed(time.Now().UnixNano())
tests := 100000
for _, m := range []string{"LSLSFSF", "LSLSFF", "LLSFSF", "LLSFF"} {
sum := 0
for t := 1; t <= tests; t++ {
sum += method(m)
}
pc := float64(sum) * 100 / float64(tests)
fmt.Printf("%-40s produces %6.3f%% deaths.\n", mstring(m), pc)
}
} |
UPC | Go | Goal:
Convert UPC bar codes to decimal.
Specifically:
The UPC standard is actually a collection of standards -- physical standards, data format standards, product reference standards...
Here, in this task, we will focus on some of the data format standards, with an imaginary physical+electrical implementation which converts physical UPC bar codes to ASCII (with spaces and '''#''' characters representing the presence or absence of ink).
;Sample input:
Below, we have a representation of ten different UPC-A bar codes read by our imaginary bar code reader:
# # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # #
# # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # #
# # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # #
# # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # #
# # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # #
# # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # #
# # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # #
# # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # #
# # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # #
# # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # #
Some of these were entered upside down, and one entry has a timing error.
;Task:
Implement code to find the corresponding decimal representation of each, rejecting the error.
Extra credit for handling the rows entered upside down (the other option is to reject them).
;Notes:
Each digit is represented by 7 bits:
0: 0 0 0 1 1 0 1
1: 0 0 1 1 0 0 1
2: 0 0 1 0 0 1 1
3: 0 1 1 1 1 0 1
4: 0 1 0 0 0 1 1
5: 0 1 1 0 0 0 1
6: 0 1 0 1 1 1 1
7: 0 1 1 1 0 1 1
8: 0 1 1 0 1 1 1
9: 0 0 0 1 0 1 1
On the left hand side of the bar code a space represents a '''0''' and a '''#''' represents a '''1'''.
On the right hand side of the bar code, a '''#''' represents a '''0''' and a space represents a '''1'''
Alternatively (for the above): spaces always represent zeros and '''#''' characters always represent ones, but the representation is logically negated -- '''1'''s and '''0'''s are flipped -- on the right hand side of the bar code.
;The UPC-A bar code structure:
::* It begins with at least 9 spaces (which our imaginary bar code reader unfortunately doesn't always reproduce properly),
::* then has a ''' # # ''' sequence marking the start of the sequence,
::* then has the six "left hand" digits,
::* then has a ''' # # ''' sequence in the middle,
::* then has the six "right hand digits",
::* then has another ''' # # ''' (end sequence), and finally,
::* then ends with nine trailing spaces (which might be eaten by wiki edits, and in any event, were not quite captured correctly by our imaginary bar code reader).
Finally, the last digit is a checksum digit which may be used to help detect errors.
;Verification:
Multiply each digit in the represented 12 digit sequence by the corresponding number in (3,1,3,1,3,1,3,1,3,1,3,1) and add the products.
The sum (mod 10) must be '''0''' (must have a zero as its last digit) if the UPC number has been read correctly.
| package main
import (
"fmt"
"regexp"
)
var bits = []string{
"0 0 0 1 1 0 1 ",
"0 0 1 1 0 0 1 ",
"0 0 1 0 0 1 1 ",
"0 1 1 1 1 0 1 ",
"0 1 0 0 0 1 1 ",
"0 1 1 0 0 0 1 ",
"0 1 0 1 1 1 1 ",
"0 1 1 1 0 1 1 ",
"0 1 1 0 1 1 1 ",
"0 0 0 1 0 1 1 ",
}
var (
lhs = make(map[string]int)
rhs = make(map[string]int)
)
var weights = []int{3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1}
const (
s = "# #"
m = " # # "
e = "# #"
d = "(?:#| ){7}"
)
func init() {
for i := 0; i <= 9; i++ {
lt := make([]byte, 7)
rt := make([]byte, 7)
for j := 0; j < 14; j += 2 {
if bits[i][j] == '1' {
lt[j/2] = '#'
rt[j/2] = ' '
} else {
lt[j/2] = ' '
rt[j/2] = '#'
}
}
lhs[string(lt)] = i
rhs[string(rt)] = i
}
}
func reverse(s string) string {
b := []byte(s)
for i, j := 0, len(b)-1; i < j; i, j = i+1, j-1 {
b[i], b[j] = b[j], b[i]
}
return string(b)
}
func main() {
barcodes := []string{
" # # # ## # ## # ## ### ## ### ## #### # # # ## ## # # ## ## ### # ## ## ### # # # ",
" # # # ## ## # #### # # ## # ## # ## # # # ### # ### ## ## ### # # ### ### # # # ",
" # # # # # ### # # # # # # # # # # ## # ## # ## # ## # # #### ### ## # # ",
" # # ## ## ## ## # # # # ### # ## ## # # # ## ## # ### ## ## # # #### ## # # # ",
" # # ### ## # ## ## ### ## # ## # # ## # # ### # ## ## # # ### # ## ## # # # ",
" # # # # ## ## # # # # ## ## # # # # # #### # ## # #### #### # # ## # #### # # ",
" # # # ## ## # # ## ## # ### ## ## # # # # # # # # ### # # ### # # # # # ",
" # # # # ## ## # # ## ## ### # # # # # ### ## ## ### ## ### ### ## # ## ### ## # # ",
" # # ### ## ## # # #### # ## # #### # #### # # # # # ### # # ### # # # ### # # # ",
" # # # #### ## # #### # # ## ## ### #### # # # # ### # ### ### # # ### # # # ### # # ",
}
// Regular expression to check validity of a barcode and extract digits. However we accept any number
// of spaces at the beginning or end i.e. we don't enforce a minimum of 9.
expr := fmt.Sprintf(`^\s*%s(%s)(%s)(%s)(%s)(%s)(%s)%s(%s)(%s)(%s)(%s)(%s)(%s)%s\s*$`,
s, d, d, d, d, d, d, m, d, d, d, d, d, d, e)
rx := regexp.MustCompile(expr)
fmt.Println("UPC-A barcodes:")
for i, bc := range barcodes {
for j := 0; j <= 1; j++ {
if !rx.MatchString(bc) {
fmt.Printf("%2d: Invalid format\n", i+1)
break
}
codes := rx.FindStringSubmatch(bc)
digits := make([]int, 12)
var invalid, ok bool // False by default.
for i := 1; i <= 6; i++ {
digits[i-1], ok = lhs[codes[i]]
if !ok {
invalid = true
}
digits[i+5], ok = rhs[codes[i+6]]
if !ok {
invalid = true
}
}
if invalid { // Contains at least one invalid digit.
if j == 0 { // Try reversing.
bc = reverse(bc)
continue
} else {
fmt.Printf("%2d: Invalid digit(s)\n", i+1)
break
}
}
sum := 0
for i, d := range digits {
sum += weights[i] * d
}
if sum%10 != 0 {
fmt.Printf("%2d: Checksum error\n", i+1)
break
} else {
ud := ""
if j == 1 {
ud = "(upside down)"
}
fmt.Printf("%2d: %v %s\n", i+1, digits, ud)
break
}
}
}
} |
URL decoding | Go | This task (the reverse of [[URL encoding]] and distinct from [[URL parser]]) is to provide a function
or mechanism to convert an URL-encoded string into its original unencoded form.
;Test cases:
* The encoded string "http%3A%2F%2Ffoo%20bar%2F" should be reverted to the unencoded form "http://foo bar/".
* The encoded string "google.com/search?q=%60Abdu%27l-Bah%C3%A1" should revert to the unencoded form "google.com/search?q=`Abdu'l-Baha".
* The encoded string "%25%32%35" should revert to the unencoded form "%25" and '''not''' "%".
| package main
import (
"fmt"
"log"
"net/url"
)
func main() {
for _, escaped := range []string{
"http%3A%2F%2Ffoo%20bar%2F",
"google.com/search?q=%60Abdu%27l-Bah%C3%A1",
} {
u, err := url.QueryUnescape(escaped)
if err != nil {
log.Println(err)
continue
}
fmt.Println(u)
}
} |
URL encoding | Go | Provide a function or mechanism to convert a provided string into URL encoding representation.
In URL encoding, special characters, control characters and extended characters
are converted into a percent symbol followed by a two digit hexadecimal code,
So a space character encodes into %20 within the string.
For the purposes of this task, every character except 0-9, A-Z and a-z requires conversion, so the following characters all require conversion by default:
* ASCII control codes (Character ranges 00-1F hex (0-31 decimal) and 7F (127 decimal).
* ASCII symbols (Character ranges 32-47 decimal (20-2F hex))
* ASCII symbols (Character ranges 58-64 decimal (3A-40 hex))
* ASCII symbols (Character ranges 91-96 decimal (5B-60 hex))
* ASCII symbols (Character ranges 123-126 decimal (7B-7E hex))
* Extended characters with character codes of 128 decimal (80 hex) and above.
;Example:
The string "http://foo bar/" would be encoded as "http%3A%2F%2Ffoo%20bar%2F".
;Variations:
* Lowercase escapes are legal, as in "http%3a%2f%2ffoo%20bar%2f".
* Special characters have different encodings for different standards:
** RFC 3986, ''Uniform Resource Identifier (URI): Generic Syntax'', section 2.3, says to preserve "-._~".
** HTML 5, section 4.10.22.5 URL-encoded form data, says to preserve "-._*", and to encode space " " to "+".
** encodeURI function in Javascript will preserve "-._~" (RFC 3986) and ";,/?:@&=+$!*'()#".
;Options:
It is permissible to use an exception string (containing a set of symbols
that do not need to be converted).
However, this is an optional feature and is not a requirement of this task.
;Related tasks:
* [[URL decoding]]
* [[URL parser]]
| package main
import (
"fmt"
"net/url"
)
func main() {
fmt.Println(url.QueryEscape("http://foo bar/"))
} |
URL parser | Go | URLs are strings with a simple syntax:
scheme://[username:password@]domain[:port]/path?query_string#fragment_id
;Task:
Parse a well-formed URL to retrieve the relevant information: '''scheme''', '''domain''', '''path''', ...
Note: this task has nothing to do with [[URL encoding]] or [[URL decoding]].
According to the standards, the characters:
:::: ! * ' ( ) ; : @ & = + $ , / ? % # [ ]
only need to be percent-encoded ('''%''') in case of possible confusion.
Also note that the '''path''', '''query''' and '''fragment''' are case sensitive, even if the '''scheme''' and '''domain''' are not.
The way the returned information is provided (set of variables, array, structured, record, object,...)
is language-dependent and left to the programmer, but the code should be clear enough to reuse.
Extra credit is given for clear error diagnostics.
* Here is the official standard: https://tools.ietf.org/html/rfc3986,
* and here is a simpler BNF: http://www.w3.org/Addressing/URL/5_URI_BNF.html.
;Test cases:
According to T. Berners-Lee
'''foo://example.com:8042/over/there?name=ferret#nose''' should parse into:
::* scheme = foo
::* domain = example.com
::* port = :8042
::* path = over/there
::* query = name=ferret
::* fragment = nose
'''urn:example:animal:ferret:nose''' should parse into:
::* scheme = urn
::* path = example:animal:ferret:nose
'''other URLs that must be parsed include:'''
:* jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true
:* ftp://ftp.is.co.za/rfc/rfc1808.txt
:* http://www.ietf.org/rfc/rfc2396.txt#header1
:* ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two
:* mailto:[email protected]
:* news:comp.infosystems.www.servers.unix
:* tel:+1-816-555-1212
:* telnet://192.0.2.16:80/
:* urn:oasis:names:specification:docbook:dtd:xml:4.1.2
| package main
import (
"fmt"
"log"
"net"
"net/url"
)
func main() {
for _, in := range []string{
"foo://example.com:8042/over/there?name=ferret#nose",
"urn:example:animal:ferret:nose",
"jdbc:mysql://test_user:ouupppssss@localhost:3306/sakila?profileSQL=true",
"ftp://ftp.is.co.za/rfc/rfc1808.txt",
"http://www.ietf.org/rfc/rfc2396.txt#header1",
"ldap://[2001:db8::7]/c=GB?objectClass=one&objectClass=two",
"mailto:[email protected]",
"news:comp.infosystems.www.servers.unix",
"tel:+1-816-555-1212",
"telnet://192.0.2.16:80/",
"urn:oasis:names:specification:docbook:dtd:xml:4.1.2",
"ssh://[email protected]",
"https://bob:[email protected]/place",
"http://example.com/?a=1&b=2+2&c=3&c=4&d=%65%6e%63%6F%64%65%64",
} {
fmt.Println(in)
u, err := url.Parse(in)
if err != nil {
log.Println(err)
continue
}
if in != u.String() {
fmt.Printf("Note: reassmebles as %q\n", u)
}
printURL(u)
}
}
func printURL(u *url.URL) {
fmt.Println(" Scheme:", u.Scheme)
if u.Opaque != "" {
fmt.Println(" Opaque:", u.Opaque)
}
if u.User != nil {
fmt.Println(" Username:", u.User.Username())
if pwd, ok := u.User.Password(); ok {
fmt.Println(" Password:", pwd)
}
}
if u.Host != "" {
if host, port, err := net.SplitHostPort(u.Host); err == nil {
fmt.Println(" Host:", host)
fmt.Println(" Port:", port)
} else {
fmt.Println(" Host:", u.Host)
}
}
if u.Path != "" {
fmt.Println(" Path:", u.Path)
}
if u.RawQuery != "" {
fmt.Println(" RawQuery:", u.RawQuery)
m, err := url.ParseQuery(u.RawQuery)
if err == nil {
for k, v := range m {
fmt.Printf(" Key: %q Values: %q\n", k, v)
}
}
}
if u.Fragment != "" {
fmt.Println(" Fragment:", u.Fragment)
}
} |
UTF-8 encode and decode | Go | As described in Wikipedia, UTF-8 is a popular encoding of (multi-byte) [[Unicode]] code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1-4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1-4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex)
---------------------------------------------------------------------------------
A LATIN CAPITAL LETTER A U+0041 41
o LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6
Zh CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96
EUR EURO SIGN U+20AC E2 82 AC
MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
| package main
import (
"bytes"
"encoding/hex"
"fmt"
"log"
"strings"
)
var testCases = []struct {
rune
string
}{
{'A', "41"},
{'ö', "C3 B6"},
{'Ж', "D0 96"},
{'€', "E2 82 AC"},
{'𝄞', "F0 9D 84 9E"},
}
func main() {
for _, tc := range testCases {
// derive some things from test data
u := fmt.Sprintf("U+%04X", tc.rune)
b, err := hex.DecodeString(strings.Replace(tc.string, " ", "", -1))
if err != nil {
log.Fatal("bad test data")
}
// exercise encoder and decoder on test data
e := encodeUTF8(tc.rune)
d := decodeUTF8(b)
// show function return values
fmt.Printf("%c %-7s %X\n", d, u, e)
// validate return values against test data
if !bytes.Equal(e, b) {
log.Fatal("encodeUTF8 wrong")
}
if d != tc.rune {
log.Fatal("decodeUTF8 wrong")
}
}
}
const (
// first byte of a 2-byte encoding starts 110 and carries 5 bits of data
b2Lead = 0xC0 // 1100 0000
b2Mask = 0x1F // 0001 1111
// first byte of a 3-byte encoding starts 1110 and carries 4 bits of data
b3Lead = 0xE0 // 1110 0000
b3Mask = 0x0F // 0000 1111
// first byte of a 4-byte encoding starts 11110 and carries 3 bits of data
b4Lead = 0xF0 // 1111 0000
b4Mask = 0x07 // 0000 0111
// non-first bytes start 10 and carry 6 bits of data
mbLead = 0x80 // 1000 0000
mbMask = 0x3F // 0011 1111
)
func encodeUTF8(r rune) []byte {
switch i := uint32(r); {
case i <= 1<<7-1: // max code point that encodes into a single byte
return []byte{byte(r)}
case i <= 1<<11-1: // into two bytes
return []byte{
b2Lead | byte(r>>6),
mbLead | byte(r)&mbMask}
case i <= 1<<16-1: // three
return []byte{
b3Lead | byte(r>>12),
mbLead | byte(r>>6)&mbMask,
mbLead | byte(r)&mbMask}
default:
return []byte{
b4Lead | byte(r>>18),
mbLead | byte(r>>12)&mbMask,
mbLead | byte(r>>6)&mbMask,
mbLead | byte(r)&mbMask}
}
}
func decodeUTF8(b []byte) rune {
switch b0 := b[0]; {
case b0 < 0x80:
return rune(b0)
case b0 < 0xE0:
return rune(b0&b2Mask)<<6 |
rune(b[1]&mbMask)
case b0 < 0xF0:
return rune(b0&b3Mask)<<12 |
rune(b[1]&mbMask)<<6 |
rune(b[2]&mbMask)
default:
return rune(b0&b4Mask)<<18 |
rune(b[1]&mbMask)<<12 |
rune(b[2]&mbMask)<<6 |
rune(b[3]&mbMask)
}
} |
Ukkonen’s suffix tree construction | Go | Suffix Trees are very useful in numerous string processing and computational biology problems.
The task is to create a function which implements Ukkonen's algorithm to create a useful Suffix Tree as described:
Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Using [[Arithmetic-geometric mean/Calculate Pi]] generate the first 1000, 10000, and 100000 decimal places of pi. Using your implementation with an alphabet of 0 through 9 (plus $ say to make the tree explicit) find the longest repeated string in each list. Time your results and demonstrate that your implementation is linear (i.e. that 10000 takes approx. 10 times as long as 1000). You may vary the size of the lists of decimal places of pi to give reasonable answers.
| package main
import (
"fmt"
"math/big"
"time"
)
var maxChar = 128
type Node struct {
children []*Node
suffixLink *Node
start int
end *int
suffixIndex int
}
var (
text string
root *Node
lastNewNode *Node
activeNode *Node
activeEdge = -1
activeLength = 0
remainingSuffixCount = 0
leafEnd = -1
rootEnd *int
splitEnd *int
size = -1
)
func newNode(start int, end *int) *Node {
node := new(Node)
node.children = make([]*Node, maxChar)
node.suffixLink = root
node.start = start
node.end = end
node.suffixIndex = -1
return node
}
func edgeLength(n *Node) int {
if n == root {
return 0
}
return *(n.end) - n.start + 1
}
func walkDown(currNode *Node) bool {
if activeLength >= edgeLength(currNode) {
activeEdge += edgeLength(currNode)
activeLength -= edgeLength(currNode)
activeNode = currNode
return true
}
return false
}
func extendSuffixTree(pos int) {
leafEnd = pos
remainingSuffixCount++
lastNewNode = nil
for remainingSuffixCount > 0 {
if activeLength == 0 {
activeEdge = pos
}
if activeNode.children[text[activeEdge]] == nil {
activeNode.children[text[activeEdge]] = newNode(pos, &leafEnd)
if lastNewNode != nil {
lastNewNode.suffixLink = activeNode
lastNewNode = nil
}
} else {
next := activeNode.children[text[activeEdge]]
if walkDown(next) {
continue
}
if text[next.start+activeLength] == text[pos] {
if lastNewNode != nil && activeNode != root {
lastNewNode.suffixLink = activeNode
lastNewNode = nil
}
activeLength++
break
}
temp := next.start + activeLength - 1
splitEnd = &temp
split := newNode(next.start, splitEnd)
activeNode.children[text[activeEdge]] = split
split.children[text[pos]] = newNode(pos, &leafEnd)
next.start += activeLength
split.children[text[next.start]] = next
if lastNewNode != nil {
lastNewNode.suffixLink = split
}
lastNewNode = split
}
remainingSuffixCount--
if activeNode == root && activeLength > 0 {
activeLength--
activeEdge = pos - remainingSuffixCount + 1
} else if activeNode != root {
activeNode = activeNode.suffixLink
}
}
}
func setSuffixIndexByDFS(n *Node, labelHeight int) {
if n == nil {
return
}
if n.start != -1 {
// Uncomment line below to print suffix tree
// fmt.Print(text[n.start: *(n.end) +1])
}
leaf := 1
for i := 0; i < maxChar; i++ {
if n.children[i] != nil {
// Uncomment the 3 lines below to print suffix index
//if leaf == 1 && n.start != -1 {
// fmt.Printf(" [%d]\n", n.suffixIndex)
//}
leaf = 0
setSuffixIndexByDFS(n.children[i], labelHeight+edgeLength(n.children[i]))
}
}
if leaf == 1 {
n.suffixIndex = size - labelHeight
// Uncomment line below to print suffix index
//fmt.Printf(" [%d]\n", n.suffixIndex)
}
}
func buildSuffixTree() {
size = len(text)
temp := -1
rootEnd = &temp
root = newNode(-1, rootEnd)
activeNode = root
for i := 0; i < size; i++ {
extendSuffixTree(i)
}
labelHeight := 0
setSuffixIndexByDFS(root, labelHeight)
}
func doTraversal(n *Node, labelHeight int, maxHeight, substringStartIndex *int) {
if n == nil {
return
}
if n.suffixIndex == -1 {
for i := 0; i < maxChar; i++ {
if n.children[i] != nil {
doTraversal(n.children[i], labelHeight+edgeLength(n.children[i]),
maxHeight, substringStartIndex)
}
}
} else if n.suffixIndex > -1 && (*maxHeight < labelHeight-edgeLength(n)) {
*maxHeight = labelHeight - edgeLength(n)
*substringStartIndex = n.suffixIndex
}
}
func getLongestRepeatedSubstring(s string) {
maxHeight := 0
substringStartIndex := 0
doTraversal(root, 0, &maxHeight, &substringStartIndex)
// Uncomment line below to print maxHeight and substringStartIndex
// fmt.Printf("maxHeight %d, substringStartIndex %d\n", maxHeight, substringStartIndex)
if s == "" {
fmt.Printf(" %s is: ", text)
} else {
fmt.Printf(" %s is: ", s)
}
k := 0
for ; k < maxHeight; k++ {
fmt.Printf("%c", text[k+substringStartIndex])
}
if k == 0 {
fmt.Print("No repeated substring")
}
fmt.Println()
}
func calculatePi() *big.Float {
one := big.NewFloat(1)
two := big.NewFloat(2)
four := big.NewFloat(4)
prec := uint(325 * 1024) // enough to calculate Pi to 100,182 decimal digits
a := big.NewFloat(1).SetPrec(prec)
g := new(big.Float).SetPrec(prec)
// temporary variables
t := new(big.Float).SetPrec(prec)
u := new(big.Float).SetPrec(prec)
g.Quo(a, t.Sqrt(two))
sum := new(big.Float)
pow := big.NewFloat(2)
for a.Cmp(g) != 0 {
t.Add(a, g)
t.Quo(t, two)
g.Sqrt(u.Mul(a, g))
a.Set(t)
pow.Mul(pow, two)
t.Sub(t.Mul(a, a), u.Mul(g, g))
sum.Add(sum, t.Mul(t, pow))
}
t.Mul(a, a)
t.Mul(t, four)
pi := t.Quo(t, u.Sub(one, sum))
return pi
}
func main() {
tests := []string{
"GEEKSFORGEEKS$",
"AAAAAAAAAA$",
"ABCDEFG$",
"ABABABA$",
"ATCGATCGA$",
"banana$",
"abcpqrabpqpq$",
"pqrpqpqabab$",
}
fmt.Println("Longest Repeated Substring in:\n")
for _, test := range tests {
text = test
buildSuffixTree()
getLongestRepeatedSubstring("")
}
fmt.Println()
pi := calculatePi()
piStr := fmt.Sprintf("%v", pi)
piStr = piStr[2:] // remove initial 3.
numbers := []int{1e3, 1e4, 1e5}
maxChar = 58
for _, number := range numbers {
start := time.Now()
text = piStr[0:number] + "$"
buildSuffixTree()
getLongestRepeatedSubstring(fmt.Sprintf("first %d d.p. of Pi", number))
elapsed := time.Now().Sub(start)
fmt.Printf(" (this took %s)\n\n", elapsed)
}
} |
Unbias a random generator | Go | Given a weighted one-bit generator of random numbers where the probability of a one occurring, P_1, is not the same as P_0, the probability of a zero occurring, the probability of the occurrence of a one followed by a zero is P_1 x P_0, assuming independence. This is the same as the probability of a zero followed by a one: P_0 x P_1.
;Task details:
* Use your language's random number generator to create a function/method/subroutine/... '''randN''' that returns a one or a zero, but with one occurring, on average, 1 out of N times, where N is an integer from the range 3 to 6 inclusive.
* Create a function '''unbiased''' that uses only randN as its source of randomness to become an unbiased generator of random ones and zeroes.
* For N over its range, generate and show counts of the outputs of randN and unbiased(randN).
The actual unbiasing should be done by generating two numbers at a time from randN and only returning a 1 or 0 if they are different. As long as you always return the first number or always return the second number, the probabilities discussed above should take over the biased probability of randN.
This task is an implementation of Von Neumann debiasing, first described in a 1951 paper.
| package main
import (
"fmt"
"math/rand"
)
const samples = 1e6
func main() {
fmt.Println("Generator 1 count 0 count % 1 count")
for n := 3; n <= 6; n++ {
// function randN, per task description
randN := func() int {
if rand.Intn(n) == 0 {
return 1
}
return 0
}
var b [2]int
for x := 0; x < samples; x++ {
b[randN()]++
}
fmt.Printf("randN(%d) %7d %7d %5.2f%%\n",
n, b[1], b[0], float64(b[1])*100/samples)
// function unbiased, per task description
unbiased := func() (b int) {
for b = randN(); b == randN(); b = randN() {
}
return
}
var u [2]int
for x := 0; x < samples; x++ {
u[unbiased()]++
}
fmt.Printf("unbiased %7d %7d %5.2f%%\n",
u[1], u[0], float64(u[1])*100/samples)
}
} |
Unicode strings | Go | As the world gets smaller each day, internationalization becomes more and more important. For handling multiple languages, [[Unicode]] is your best friend.
It is a very capable tool, but also quite complex compared to older single- and double-byte character encodings.
How well prepared is your programming language for Unicode?
;Task:
Discuss and demonstrate its unicode awareness and capabilities.
Some suggested topics:
:* How easy is it to present Unicode strings in source code?
:* Can Unicode literals be written directly, or be part of identifiers/keywords/etc?
:* How well can the language communicate with the rest of the world?
:* Is it good at input/output with Unicode?
:* Is it convenient to manipulate Unicode strings in the language?
:* How broad/deep does the language support Unicode?
:* What encodings (e.g. UTF-8, UTF-16, etc) can be used?
:* Does it support normalization?
;Note:
This task is a bit unusual in that it encourages general discussion rather than clever coding.
;See also:
* [[Unicode variable names]]
* [[Terminal control/Display an extended character]]
| var i int
var u rune
for i, u = range "voilà" {
fmt.Println(i, u)
} |
Universal Turing machine | Go | One of the foundational mathematical constructs behind computer science
is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936-1937.)
Indeed one way to definitively prove that a language
is turing-complete
is to implement a universal Turing machine in it.
;Task:
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
'''Simple incrementer'''
* '''States:''' q0, qf
* '''Initial state:''' q0
* '''Terminating states:''' qf
* '''Permissible symbols:''' B, 1
* '''Blank symbol:''' B
* '''Rules:'''
** (q0, 1, 1, right, q0)
** (q0, B, 1, stay, qf)
The input for this machine should be a tape of 1 1 1
'''Three-state busy beaver'''
* '''States:''' a, b, c, halt
* '''Initial state:''' a
* '''Terminating states:''' halt
* '''Permissible symbols:''' 0, 1
* '''Blank symbol:''' 0
* '''Rules:'''
** (a, 0, 1, right, b)
** (a, 1, 1, left, c)
** (b, 0, 1, left, a)
** (b, 1, 1, right, b)
** (c, 0, 1, left, b)
** (c, 1, 1, stay, halt)
The input for this machine should be an empty tape.
'''Bonus:'''
'''5-state, 2-symbol probable Busy Beaver machine from Wikipedia'''
* '''States:''' A, B, C, D, E, H
* '''Initial state:''' A
* '''Terminating states:''' H
* '''Permissible symbols:''' 0, 1
* '''Blank symbol:''' 0
* '''Rules:'''
** (A, 0, 1, right, B)
** (A, 1, 1, left, C)
** (B, 0, 1, right, C)
** (B, 1, 1, right, B)
** (C, 0, 1, right, D)
** (C, 1, 0, left, E)
** (D, 0, 1, left, A)
** (D, 1, 1, left, D)
** (E, 0, 1, stay, H)
** (E, 1, 0, left, A)
The input for this machine should be an empty tape.
This machine runs for more than 47 millions steps.
| package turing
type Symbol byte
type Motion byte
const (
Left Motion = 'L'
Right Motion = 'R'
Stay Motion = 'N'
)
type Tape struct {
data []Symbol
pos, left int
blank Symbol
}
// NewTape returns a new tape filled with 'data' and position set to 'start'.
// 'start' does not need to be range, the tape will be extended if required.
func NewTape(blank Symbol, start int, data []Symbol) *Tape {
t := &Tape{
data: data,
blank: blank,
}
if start < 0 {
t.Left(-start)
}
t.Right(start)
return t
}
func (t *Tape) Stay() {}
func (t *Tape) Data() []Symbol { return t.data[t.left:] }
func (t *Tape) Read() Symbol { return t.data[t.pos] }
func (t *Tape) Write(s Symbol) { t.data[t.pos] = s }
func (t *Tape) Dup() *Tape {
t2 := &Tape{
data: make([]Symbol, len(t.Data())),
blank: t.blank,
}
copy(t2.data, t.Data())
t2.pos = t.pos - t.left
return t2
}
func (t *Tape) String() string {
s := ""
for i := t.left; i < len(t.data); i++ {
b := t.data[i]
if i == t.pos {
s += "[" + string(b) + "]"
} else {
s += " " + string(b) + " "
}
}
return s
}
func (t *Tape) Move(a Motion) {
switch a {
case Left:
t.Left(1)
case Right:
t.Right(1)
case Stay:
t.Stay()
}
}
const minSz = 16
func (t *Tape) Left(n int) {
t.pos -= n
if t.pos < 0 {
// Extend left
var sz int
for sz = minSz; cap(t.data[t.left:])-t.pos >= sz; sz <<= 1 {
}
newd := make([]Symbol, sz)
newl := len(newd) - cap(t.data[t.left:])
n := copy(newd[newl:], t.data[t.left:])
t.data = newd[:newl+n]
t.pos += newl - t.left
t.left = newl
}
if t.pos < t.left {
if t.blank != 0 {
for i := t.pos; i < t.left; i++ {
t.data[i] = t.blank
}
}
t.left = t.pos
}
}
func (t *Tape) Right(n int) {
t.pos += n
if t.pos >= cap(t.data) {
// Extend right
var sz int
for sz = minSz; t.pos >= sz; sz <<= 1 {
}
newd := make([]Symbol, sz)
n := copy(newd[t.left:], t.data[t.left:])
t.data = newd[:t.left+n]
}
if i := len(t.data); t.pos >= i {
t.data = t.data[:t.pos+1]
if t.blank != 0 {
for ; i < len(t.data); i++ {
t.data[i] = t.blank
}
}
}
}
type State string
type Rule struct {
State
Symbol
Write Symbol
Motion
Next State
}
func (i *Rule) key() key { return key{i.State, i.Symbol} }
func (i *Rule) action() action { return action{i.Write, i.Motion, i.Next} }
type key struct {
State
Symbol
}
type action struct {
write Symbol
Motion
next State
}
type Machine struct {
tape *Tape
start, state State
transition map[key]action
l func(string, ...interface{}) // XXX
}
func NewMachine(rules []Rule) *Machine {
m := &Machine{transition: make(map[key]action, len(rules))}
if len(rules) > 0 {
m.start = rules[0].State
}
for _, r := range rules {
m.transition[r.key()] = r.action()
}
return m
}
func (m *Machine) Run(input *Tape) (int, *Tape) {
m.tape = input.Dup()
m.state = m.start
for cnt := 0; ; cnt++ {
if m.l != nil {
m.l("%3d %4s: %v\n", cnt, m.state, m.tape)
}
sym := m.tape.Read()
act, ok := m.transition[key{m.state, sym}]
if !ok {
return cnt, m.tape
}
m.tape.Write(act.write)
m.tape.Move(act.Motion)
m.state = act.next
}
} |
Unix/ls | Go | Write a program that will list everything in the current folder, similar to:
:::* the Unix utility "ls" [http://man7.org/linux/man-pages/man1/ls.1.html] or
:::* the Windows terminal command "DIR"
The output must be sorted, but printing extended details and producing multi-column output is not required.
;Example output
For the list of paths:
/foo/bar
/foo/bar/1
/foo/bar/2
/foo/bar/a
/foo/bar/b
When the program is executed in `/foo`, it should print:
bar
and when the program is executed in `/foo/bar`, it should print:
1
2
a
b
| package main
import (
"fmt"
"log"
"os"
"sort"
)
func main() {
f, err := os.Open(".")
if err != nil {
log.Fatal(err)
}
files, err := f.Readdirnames(0)
f.Close()
if err != nil {
log.Fatal(err)
}
sort.Strings(files)
for _, n := range files {
fmt.Println(n)
}
} |
Validate International Securities Identification Number | Go | An International Securities Identification Number (ISIN) is a unique international identifier for a financial security such as a stock or bond.
;Task:
Write a function or program that takes a string as input, and checks whether it is a valid ISIN.
It is only valid if it has the correct format, ''and'' the embedded checksum is correct.
Demonstrate that your code passes the test-cases listed below.
;Details:
The format of an ISIN is as follows:
+------------- a 2-character ISO country code (A-Z)
| +----------- a 9-character security code (A-Z, 0-9)
| | +-- a checksum digit (0-9)
AU0000XVGZA3
For this task, you may assume that any 2-character alphabetic sequence is a valid country code.
The checksum can be validated as follows:
# '''Replace letters with digits''', by converting each character from base 36 to base 10, e.g. AU0000XVGZA3 -1030000033311635103.
# '''Perform the Luhn test on this base-10 number.'''There is a separate task for this test: ''[[Luhn test of credit card numbers]]''.You don't have to replicate the implementation of this test here --- you can just call the existing function from that task. (Add a comment stating if you did this.)
;Test cases:
:::: {| class="wikitable"
! ISIN
! Validity
! Comment
|-
| US0378331005 || valid ||
|-
| US0373831005 || not valid || The transposition typo is caught by the checksum constraint.
|-
| U50378331005 || not valid || The substitution typo is caught by the format constraint.
|-
| US03378331005 || not valid || The duplication typo is caught by the format constraint.
|-
| AU0000XVGZA3 || valid ||
|-
| AU0000VXGZA3 || valid || Unfortunately, not ''all'' transposition typos are caught by the checksum constraint.
|-
| FR0000988040 || valid ||
|}
(The comments are just informational. Your function should simply return a Boolean result. See [[#Raku]] for a reference solution.)
Related task:
* [[Luhn test of credit card numbers]]
;Also see:
* Interactive online ISIN validator
* Wikipedia article: International Securities Identification Number
| package main
import "testing"
func TestValidISIN(t *testing.T) {
testcases := []struct {
isin string
valid bool
}{
{"US0378331005", true},
{"US0373831005", false},
{"U50378331005", false},
{"US03378331005", false},
{"AU0000XVGZA3", true},
{"AU0000VXGZA3", true},
{"FR0000988040", true},
}
for _, testcase := range testcases {
actual := ValidISIN(testcase.isin)
if actual != testcase.valid {
t.Errorf("expected %v for %q, got %v",
testcase.valid, testcase.isin, actual)
}
}
} |
Van Eck sequence | Go | The sequence is generated by following this pseudo-code:
A: The first term is zero.
Repeatedly apply:
If the last term is *new* to the sequence so far then:
B: The next term is zero.
Otherwise:
C: The next term is how far back this last term occured previously.
;Example:
Using A:
:0
Using B:
:0 0
Using C:
:0 0 1
Using B:
:0 0 1 0
Using C: (zero last occurred two steps back - before the one)
:0 0 1 0 2
Using B:
:0 0 1 0 2 0
Using C: (two last occurred two steps back - before the zero)
:0 0 1 0 2 0 2 2
Using C: (two last occurred one step back)
:0 0 1 0 2 0 2 2 1
Using C: (one last appeared six steps back)
:0 0 1 0 2 0 2 2 1 6
...
;Task:
# Create a function/procedure/method/subroutine/... to generate the Van Eck sequence of numbers.
# Use it to display here, on this page:
:# The first ten terms of the sequence.
:# Terms 991 - to - 1000 of the sequence.
;References:
* Don't Know (the Van Eck Sequence) - Numberphile video.
* Wikipedia Article: Van Eck's Sequence.
* OEIS sequence: A181391.
| package main
import "fmt"
func main() {
const max = 1000
a := make([]int, max) // all zero by default
for n := 0; n < max-1; n++ {
for m := n - 1; m >= 0; m-- {
if a[m] == a[n] {
a[n+1] = n - m
break
}
}
}
fmt.Println("The first ten terms of the Van Eck sequence are:")
fmt.Println(a[:10])
fmt.Println("\nTerms 991 to 1000 of the sequence are:")
fmt.Println(a[990:])
} |
Van der Corput sequence | Go | When counting integers in binary, if you put a (binary) point to the right of the count then the column immediately to the left denotes a digit with a multiplier of 2^0; the digit in the next column to the left has a multiplier of 2^1; and so on.
So in the following table:
0.
1.
10.
11.
...
the binary number "10" is 1 \times 2^1 + 0 \times 2^0.
You can also have binary digits to the right of the "point", just as in the decimal number system. In that case, the digit in the place immediately to the right of the point has a weight of 2^{-1}, or 1/2.
The weight for the second column to the right of the point is 2^{-2} or 1/4. And so on.
If you take the integer binary count of the first table, and ''reflect'' the digits about the binary point, you end up with '''the van der Corput sequence of numbers in base 2'''.
.0
.1
.01
.11
...
The third member of the sequence, binary 0.01, is therefore 0 \times 2^{-1} + 1 \times 2^{-2} or 1/4.
Monte Carlo simulations.
This sequence is also a superset of the numbers representable by the "fraction" field of an old IEEE floating point standard. In that standard, the "fraction" field represented the fractional part of a binary number beginning with "1." e.g. 1.101001101.
'''Hint'''
A ''hint'' at a way to generate members of the sequence is to modify a routine used to change the base of an integer:
>>> def base10change(n, base):
digits = []
while n:
n,remainder = divmod(n, base)
digits.insert(0, remainder)
return digits
>>> base10change(11, 2)
[1, 0, 1, 1]
the above showing that 11 in decimal is 1\times 2^3 + 0\times 2^2 + 1\times 2^1 + 1\times 2^0.
Reflected this would become .1101 or 1\times 2^{-1} + 1\times 2^{-2} + 0\times 2^{-3} + 1\times 2^{-4}
;Task description:
* Create a function/method/routine that given ''n'', generates the ''n'''th term of the van der Corput sequence in base 2.
* Use the function to compute ''and display'' the first ten members of the sequence. (The first member of the sequence is for ''n''=0).
* As a stretch goal/extra credit, compute and show members of the sequence for bases other than 2.
;See also:
* The Basic Low Discrepancy Sequences
* [[Non-decimal radices/Convert]]
* Van der Corput sequence
| package main
import "fmt"
func v2(n uint) (r float64) {
p := .5
for n > 0 {
if n&1 == 1 {
r += p
}
p *= .5
n >>= 1
}
return
}
func newV(base uint) func(uint) float64 {
invb := 1 / float64(base)
return func(n uint) (r float64) {
p := invb
for n > 0 {
r += p * float64(n%base)
p *= invb
n /= base
}
return
}
}
func main() {
fmt.Println("Base 2:")
for i := uint(0); i < 10; i++ {
fmt.Println(i, v2(i))
}
fmt.Println("Base 3:")
v3 := newV(3)
for i := uint(0); i < 10; i++ {
fmt.Println(i, v3(i))
}
} |
Variable declaration reset | Go | A decidely non-challenging task to highlight a potential difference between programming languages.
Using a straightforward longhand loop as in the JavaScript and Phix examples below, show the locations of elements which are identical to the immediately preceding element in {1,2,2,3,4,4,5}. The (non-blank) results may be 2,5 for zero-based or 3,6 if one-based.
The purpose is to determine whether variable declaration (in block scope) resets the contents on every iteration.
There is no particular judgement of right or wrong here, just a plain-speaking statement of subtle differences.
Should your first attempt bomb with "unassigned variable" exceptions, feel free to code it as (say)
// int prev // crashes with unassigned variable
int prev = -1 // predictably no output
If your programming language does not support block scope (eg assembly) it should be omitted from this task.
| package main
import "fmt"
func main() {
s := []int{1, 2, 2, 3, 4, 4, 5}
// There is no output as 'prev' is created anew each time
// around the loop and set implicitly to zero.
for i := 0; i < len(s); i++ {
curr := s[i]
var prev int
if i > 0 && curr == prev {
fmt.Println(i)
}
prev = curr
}
// Now 'prev' is created only once and reassigned
// each time around the loop producing the desired output.
var prev int
for i := 0; i < len(s); i++ {
curr := s[i]
if i > 0 && curr == prev {
fmt.Println(i)
}
prev = curr
}
} |
Vector products | Go | A vector is defined as having three dimensions as being represented by an ordered collection of three numbers: (X, Y, Z).
If you imagine a graph with the '''x''' and '''y''' axis being at right angles to each other and having a third, '''z''' axis coming out of the page, then a triplet of numbers, (X, Y, Z) would represent a point in the region, and a vector from the origin to the point.
Given the vectors:
A = (a1, a2, a3)
B = (b1, b2, b3)
C = (c1, c2, c3)
then the following common vector products are defined:
* '''The dot product''' (a scalar quantity)
:::: A * B = a1b1 + a2b2 + a3b3
* '''The cross product''' (a vector quantity)
:::: A x B = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)
* '''The scalar triple product''' (a scalar quantity)
:::: A * (B x C)
* '''The vector triple product''' (a vector quantity)
:::: A x (B x C)
;Task:
Given the three vectors:
a = ( 3, 4, 5)
b = ( 4, 3, 5)
c = (-5, -12, -13)
# Create a named function/subroutine/method to compute the dot product of two vectors.
# Create a function to compute the cross product of two vectors.
# Optionally create a function to compute the scalar triple product of three vectors.
# Optionally create a function to compute the vector triple product of three vectors.
# Compute and display: a * b
# Compute and display: a x b
# Compute and display: a * (b x c), the scalar triple product.
# Compute and display: a x (b x c), the vector triple product.
;References:
* A starting page on Wolfram MathWorld is {{Wolfram|Vector|Multiplication}}.
* Wikipedia dot product.
* Wikipedia cross product.
* Wikipedia triple product.
;Related tasks:
* [[Dot product]]
* [[Quaternion type]]
| package main
import "fmt"
type vector struct {
x, y, z float64
}
var (
a = vector{3, 4, 5}
b = vector{4, 3, 5}
c = vector{-5, -12, -13}
)
func dot(a, b vector) float64 {
return a.x*b.x + a.y*b.y + a.z*b.z
}
func cross(a, b vector) vector {
return vector{a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x}
}
func s3(a, b, c vector) float64 {
return dot(a, cross(b, c))
}
func v3(a, b, c vector) vector {
return cross(a, cross(b, c))
}
func main() {
fmt.Println(dot(a, b))
fmt.Println(cross(a, b))
fmt.Println(s3(a, b, c))
fmt.Println(v3(a, b, c))
} |
Verhoeff algorithm | Go from Wren | Description
The Verhoeff algorithm is a checksum formula for error detection developed by the Dutch mathematician Jacobus Verhoeff and first published in 1969. It was the first decimal check digit algorithm which detects all single-digit errors, and all transposition errors involving two adjacent digits, which was at the time thought impossible with such a code.
As the workings of the algorithm are clearly described in the linked Wikipedia article they will not be repeated here.
;Task:
Write routines, methods, procedures etc. in your language to generate a Verhoeff checksum digit for non-negative integers of any length and to validate the result. A combined routine is also acceptable.
The more mathematically minded may prefer to generate the 3 tables required from the description provided rather than to hard-code them.
Write your routines in such a way that they can optionally display digit by digit calculations as in the Wikipedia example.
Use your routines to calculate check digits for the integers: '''236''', '''12345''' and '''123456789012''' and then validate them. Also attempt to validate the same integers if the check digits in all cases were '''9''' rather than what they actually are.
Display digit by digit calculations for the first two integers but not for the third.
;Related task:
* [[Damm algorithm]]
| package main
import "fmt"
var d = [][]int{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 0, 6, 7, 8, 9, 5},
{2, 3, 4, 0, 1, 7, 8, 9, 5, 6},
{3, 4, 0, 1, 2, 8, 9, 5, 6, 7},
{4, 0, 1, 2, 3, 9, 5, 6, 7, 8},
{5, 9, 8, 7, 6, 0, 4, 3, 2, 1},
{6, 5, 9, 8, 7, 1, 0, 4, 3, 2},
{7, 6, 5, 9, 8, 2, 1, 0, 4, 3},
{8, 7, 6, 5, 9, 3, 2, 1, 0, 4},
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
}
var inv = []int{0, 4, 3, 2, 1, 5, 6, 7, 8, 9}
var p = [][]int{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 5, 7, 6, 2, 8, 3, 0, 9, 4},
{5, 8, 0, 3, 7, 9, 6, 1, 4, 2},
{8, 9, 1, 6, 0, 4, 3, 5, 2, 7},
{9, 4, 5, 3, 1, 2, 6, 8, 7, 0},
{4, 2, 8, 6, 5, 7, 3, 9, 0, 1},
{2, 7, 9, 3, 8, 0, 6, 4, 1, 5},
{7, 0, 4, 6, 9, 1, 3, 2, 5, 8},
}
func verhoeff(s string, validate, table bool) interface{} {
if table {
t := "Check digit"
if validate {
t = "Validation"
}
fmt.Printf("%s calculations for '%s':\n\n", t, s)
fmt.Println(" i nᵢ p[i,nᵢ] c")
fmt.Println("------------------")
}
if !validate {
s = s + "0"
}
c := 0
le := len(s) - 1
for i := le; i >= 0; i-- {
ni := int(s[i] - 48)
pi := p[(le-i)%8][ni]
c = d[c][pi]
if table {
fmt.Printf("%2d %d %d %d\n", le-i, ni, pi, c)
}
}
if table && !validate {
fmt.Printf("\ninv[%d] = %d\n", c, inv[c])
}
if !validate {
return inv[c]
}
return c == 0
}
func main() {
ss := []string{"236", "12345", "123456789012"}
ts := []bool{true, true, false, true}
for i, s := range ss {
c := verhoeff(s, false, ts[i]).(int)
fmt.Printf("\nThe check digit for '%s' is '%d'\n\n", s, c)
for _, sc := range []string{s + string(c+48), s + "9"} {
v := verhoeff(sc, true, ts[i]).(bool)
ans := "correct"
if !v {
ans = "incorrect"
}
fmt.Printf("\nThe validation for '%s' is %s\n\n", sc, ans)
}
}
} |
Visualize a tree | Go | A tree structure (i.e. a rooted, connected acyclic graph) is often used in programming.
It's often helpful to visually examine such a structure.
There are many ways to represent trees to a reader, such as:
:::* indented text (a la unix tree command)
:::* nested HTML tables
:::* hierarchical GUI widgets
:::* 2D or 3D images
:::* etc.
;Task:
Write a program to produce a visual representation of some tree.
The content of the tree doesn't matter, nor does the output format, the only requirement being that the output is human friendly.
Make do with the vague term "friendly" the best you can.
| package main
import (
"encoding/json"
"fmt"
"log"
)
type Node struct {
Name string
Children []*Node
}
func main() {
tree := &Node{"root", []*Node{
&Node{"a", []*Node{
&Node{"d", nil},
&Node{"e", []*Node{
&Node{"f", nil},
}}}},
&Node{"b", nil},
&Node{"c", nil},
}}
b, err := json.MarshalIndent(tree, "", " ")
if err != nil {
log.Fatal(err)
}
fmt.Println(string(b))
} |
Vogel's approximation method | Go from Kotlin | Vogel's Approximation Method (VAM) is a technique for finding a good initial feasible solution to an allocation problem.
The powers that be have identified 5 tasks that need to be solved urgently. Being imaginative chaps, they have called them "A", "B", "C", "D", and "E". They estimate that:
* A will require 30 hours of work,
* B will require 20 hours of work,
* C will require 70 hours of work,
* D will require 30 hours of work, and
* E will require 60 hours of work.
They have identified 4 contractors willing to do the work, called "W", "X", "Y", and "Z".
* W has 50 hours available to commit to working,
* X has 60 hours available,
* Y has 50 hours available, and
* Z has 50 hours available.
The cost per hour for each contractor for each task is summarized by the following table:
A B C D E
W 16 16 13 22 17
X 14 14 13 19 15
Y 19 19 20 23 50
Z 50 12 50 15 11
The task is to use VAM to allocate contractors to tasks. It scales to large problems, so ideally keep sorts out of the iterative cycle. It works as follows:
:Step 1: Balance the given transportation problem if either (total supply>total demand) or (total supply
A B C D E W X Y Z
1 2 2 0 4 4 3 1 0 1 E-Z(50)
Determine the largest difference (D or E above). In the case of ties I shall choose the one with the lowest price (in this case E because the lowest price for D is Z=15, whereas for E it is Z=11). For your choice determine the minimum cost (chosen E above so Z=11 is chosen now). Allocate as much as possible from Z to E (50 in this case limited by Z's supply).
Adjust the supply and demand accordingly. If demand or supply becomes 0 for a given task or contractor it plays no further part. In this case Z is out of it. If you choose arbitrarily, and chose D see here for the working.
Repeat until all supply and demand is met:
2 2 2 0 3 2 3 1 0 - C-W(50)
3 5 5 7 4 35 - 1 0 - E-X(10)
4 5 5 7 4 - - 1 0 - C-X(20)
5 5 5 - 4 - - 0 0 - A-X(30)
6 - 19 - 23 - - - 4 - D-Y(30)
- - - - - - - - - B-Y(20)
Finally calculate the cost of your solution. In the example given it is PS3100:
A B C D E
W 50
X 30 20 10
Y 20 30
Z 50
The optimal solution determined by GLPK is PS3100:
A B C D E
W 50
X 10 20 20 10
Y 20 30
Z 50
;Cf.
* Transportation problem
| package main
import (
"fmt"
"math"
)
var supply = []int{50, 60, 50, 50}
var demand = []int{30, 20, 70, 30, 60}
var costs = make([][]int, 4)
var nRows = len(supply)
var nCols = len(demand)
var rowDone = make([]bool, nRows)
var colDone = make([]bool, nCols)
var results = make([][]int, nRows)
func init() {
costs[0] = []int{16, 16, 13, 22, 17}
costs[1] = []int{14, 14, 13, 19, 15}
costs[2] = []int{19, 19, 20, 23, 50}
costs[3] = []int{50, 12, 50, 15, 11}
for i := 0; i < len(results); i++ {
results[i] = make([]int, nCols)
}
}
func nextCell() []int {
res1 := maxPenalty(nRows, nCols, true)
res2 := maxPenalty(nCols, nRows, false)
switch {
case res1[3] == res2[3]:
if res1[2] < res2[2] {
return res1
} else {
return res2
}
case res1[3] > res2[3]:
return res2
default:
return res1
}
}
func diff(j, l int, isRow bool) []int {
min1 := math.MaxInt32
min2 := min1
minP := -1
for i := 0; i < l; i++ {
var done bool
if isRow {
done = colDone[i]
} else {
done = rowDone[i]
}
if done {
continue
}
var c int
if isRow {
c = costs[j][i]
} else {
c = costs[i][j]
}
if c < min1 {
min2, min1, minP = min1, c, i
} else if c < min2 {
min2 = c
}
}
return []int{min2 - min1, min1, minP}
}
func maxPenalty(len1, len2 int, isRow bool) []int {
md := math.MinInt32
pc, pm, mc := -1, -1, -1
for i := 0; i < len1; i++ {
var done bool
if isRow {
done = rowDone[i]
} else {
done = colDone[i]
}
if done {
continue
}
res := diff(i, len2, isRow)
if res[0] > md {
md = res[0] // max diff
pm = i // pos of max diff
mc = res[1] // min cost
pc = res[2] // pos of min cost
}
}
if isRow {
return []int{pm, pc, mc, md}
}
return []int{pc, pm, mc, md}
}
func main() {
supplyLeft := 0
for i := 0; i < len(supply); i++ {
supplyLeft += supply[i]
}
totalCost := 0
for supplyLeft > 0 {
cell := nextCell()
r, c := cell[0], cell[1]
q := demand[c]
if q > supply[r] {
q = supply[r]
}
demand[c] -= q
if demand[c] == 0 {
colDone[c] = true
}
supply[r] -= q
if supply[r] == 0 {
rowDone[r] = true
}
results[r][c] = q
supplyLeft -= q
totalCost += q * costs[r][c]
}
fmt.Println(" A B C D E")
for i, result := range results {
fmt.Printf("%c", 'W' + i)
for _, item := range result {
fmt.Printf(" %2d", item)
}
fmt.Println()
}
fmt.Println("\nTotal cost =", totalCost)
} |
Voronoi diagram | Go | A Voronoi diagram is a diagram consisting of a number of sites.
Each Voronoi site ''s'' also has a Voronoi cell consisting of all points closest to ''s''.
;Task:
Demonstrate how to generate and display a Voroni diagram.
See algo [[K-means++ clustering]].
| package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/png"
"math/rand"
"os"
"time"
)
const (
imageWidth = 300
imageHeight = 200
nSites = 10
)
func main() {
writePngFile(generateVoronoi(randomSites()))
}
func generateVoronoi(sx, sy []int) image.Image {
// generate a random color for each site
sc := make([]color.NRGBA, nSites)
for i := range sx {
sc[i] = color.NRGBA{uint8(rand.Intn(256)), uint8(rand.Intn(256)),
uint8(rand.Intn(256)), 255}
}
// generate diagram by coloring each pixel with color of nearest site
img := image.NewNRGBA(image.Rect(0, 0, imageWidth, imageHeight))
for x := 0; x < imageWidth; x++ {
for y := 0; y < imageHeight; y++ {
dMin := dot(imageWidth, imageHeight)
var sMin int
for s := 0; s < nSites; s++ {
if d := dot(sx[s]-x, sy[s]-y); d < dMin {
sMin = s
dMin = d
}
}
img.SetNRGBA(x, y, sc[sMin])
}
}
// mark each site with a black box
black := image.NewUniform(color.Black)
for s := 0; s < nSites; s++ {
draw.Draw(img, image.Rect(sx[s]-2, sy[s]-2, sx[s]+2, sy[s]+2),
black, image.ZP, draw.Src)
}
return img
}
func dot(x, y int) int {
return x*x + y*y
}
func randomSites() (sx, sy []int) {
rand.Seed(time.Now().Unix())
sx = make([]int, nSites)
sy = make([]int, nSites)
for i := range sx {
sx[i] = rand.Intn(imageWidth)
sy[i] = rand.Intn(imageHeight)
}
return
}
func writePngFile(img image.Image) {
f, err := os.Create("voronoi.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, img); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
} |
War card game | Go from Wren | War Card Game
Simulate the card game War. Use the Bicycle playing card manufacturer's rules. Show a game as played. User input is optional.
References:
:* Bicycle card company: War game site
:* Wikipedia: War (card game)
Related tasks:
* [[Playing cards]]
* [[Card shuffles]]
* [[Deal cards for FreeCell]]
* [[Poker hand_analyser]]
* [[Go Fish]]
| package main
import (
"fmt"
"math/rand"
"time"
)
var suits = []string{"♣", "♦", "♥", "♠"}
var faces = []string{"2", "3", "4", "5", "6", "7", "8", "9", "T", "J", "Q", "K", "A"}
var cards = make([]string, 52)
var ranks = make([]int, 52)
func init() {
for i := 0; i < 52; i++ {
cards[i] = fmt.Sprintf("%s%s", faces[i%13], suits[i/13])
ranks[i] = i % 13
}
}
func war() {
deck := make([]int, 52)
for i := 0; i < 52; i++ {
deck[i] = i
}
rand.Shuffle(52, func(i, j int) {
deck[i], deck[j] = deck[j], deck[i]
})
hand1 := make([]int, 26, 52)
hand2 := make([]int, 26, 52)
for i := 0; i < 26; i++ {
hand1[25-i] = deck[2*i]
hand2[25-i] = deck[2*i+1]
}
for len(hand1) > 0 && len(hand2) > 0 {
card1 := hand1[0]
copy(hand1[0:], hand1[1:])
hand1[len(hand1)-1] = 0
hand1 = hand1[0 : len(hand1)-1]
card2 := hand2[0]
copy(hand2[0:], hand2[1:])
hand2[len(hand2)-1] = 0
hand2 = hand2[0 : len(hand2)-1]
played1 := []int{card1}
played2 := []int{card2}
numPlayed := 2
for {
fmt.Printf("%s\t%s\t", cards[card1], cards[card2])
if ranks[card1] > ranks[card2] {
hand1 = append(hand1, played1...)
hand1 = append(hand1, played2...)
fmt.Printf("Player 1 takes the %d cards. Now has %d.\n", numPlayed, len(hand1))
break
} else if ranks[card1] < ranks[card2] {
hand2 = append(hand2, played2...)
hand2 = append(hand2, played1...)
fmt.Printf("Player 2 takes the %d cards. Now has %d.\n", numPlayed, len(hand2))
break
} else {
fmt.Println("War!")
if len(hand1) < 2 {
fmt.Println("Player 1 has insufficient cards left.")
hand2 = append(hand2, played2...)
hand2 = append(hand2, played1...)
hand2 = append(hand2, hand1...)
hand1 = hand1[0:0]
break
}
if len(hand2) < 2 {
fmt.Println("Player 2 has insufficient cards left.")
hand1 = append(hand1, played1...)
hand1 = append(hand1, played2...)
hand1 = append(hand1, hand2...)
hand2 = hand2[0:0]
break
}
fdCard1 := hand1[0] // face down card
card1 = hand1[1] // face up card
copy(hand1[0:], hand1[2:])
hand1[len(hand1)-1] = 0
hand1[len(hand1)-2] = 0
hand1 = hand1[0 : len(hand1)-2]
played1 = append(played1, fdCard1, card1)
fdCard2 := hand2[0] // face down card
card2 = hand2[1] // face up card
copy(hand2[0:], hand2[2:])
hand2[len(hand2)-1] = 0
hand2[len(hand2)-2] = 0
hand2 = hand2[0 : len(hand2)-2]
played2 = append(played2, fdCard2, card2)
numPlayed += 4
fmt.Println("? \t? \tFace down cards.")
}
}
}
if len(hand1) == 52 {
fmt.Println("Player 1 wins the game!")
} else {
fmt.Println("Player 2 wins the game!")
}
}
func main() {
rand.Seed(time.Now().UnixNano())
war()
} |
Water collected between towers | Go | In a two-dimensional world, we begin with any bar-chart (or row of close-packed 'towers', each of unit width), and then it rains,
completely filling all convex enclosures in the chart with water.
9 ## 9 ##
8 ## 8 ##
7 ## ## 7 ####
6 ## ## ## 6 ######
5 ## ## ## #### 5 ##########
4 ## ## ######## 4 ############
3 ###### ######## 3 ##############
2 ################ ## 2 ##################
1 #################### 1 ####################
In the example above, a bar chart representing the values [5, 3, 7, 2, 6, 4, 5, 9, 1, 2] has filled, collecting 14 units of water.
Write a function, in your language, from a given array of heights, to the number of water units that can be held in this way, by a corresponding bar chart.
Calculate the number of water units that could be collected by bar charts representing each of the following seven series:
[[1, 5, 3, 7, 2],
[5, 3, 7, 2, 6, 4, 5, 9, 1, 2],
[2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1],
[5, 5, 5, 5],
[5, 6, 7, 8],
[8, 7, 7, 6],
[6, 7, 10, 7, 6]]
See, also:
* Four Solutions to a Trivial Problem - a Google Tech Talk by Guy Steele
* Water collected between towers on Stack Overflow, from which the example above is taken)
* An interesting Haskell solution, using the Tardis monad, by Phil Freeman in a Github gist.
| package main
import "fmt"
func maxl(hm []int ) []int{
res := make([]int,len(hm))
max := 1
for i := 0; i < len(hm);i++{
if(hm[i] > max){
max = hm[i]
}
res[i] = max;
}
return res
}
func maxr(hm []int ) []int{
res := make([]int,len(hm))
max := 1
for i := len(hm) - 1 ; i >= 0;i--{
if(hm[i] > max){
max = hm[i]
}
res[i] = max;
}
return res
}
func min(a,b []int) []int {
res := make([]int,len(a))
for i := 0; i < len(a);i++{
if a[i] >= b[i]{
res[i] = b[i]
}else {
res[i] = a[i]
}
}
return res
}
func diff(hm, min []int) []int {
res := make([]int,len(hm))
for i := 0; i < len(hm);i++{
if min[i] > hm[i]{
res[i] = min[i] - hm[i]
}
}
return res
}
func sum(a []int) int {
res := 0
for i := 0; i < len(a);i++{
res += a[i]
}
return res
}
func waterCollected(hm []int) int {
maxr := maxr(hm)
maxl := maxl(hm)
min := min(maxr,maxl)
diff := diff(hm,min)
sum := sum(diff)
return sum
}
func main() {
fmt.Println(waterCollected([]int{1, 5, 3, 7, 2}))
fmt.Println(waterCollected([]int{5, 3, 7, 2, 6, 4, 5, 9, 1, 2}))
fmt.Println(waterCollected([]int{2, 6, 3, 5, 2, 8, 1, 4, 2, 2, 5, 3, 5, 7, 4, 1}))
fmt.Println(waterCollected([]int{5, 5, 5, 5}))
fmt.Println(waterCollected([]int{5, 6, 7, 8}))
fmt.Println(waterCollected([]int{8, 7, 7, 6}))
fmt.Println(waterCollected([]int{6, 7, 10, 7, 6}))
} |
Weird numbers | Go | In number theory, a perfect either).
In other words, the sum of the proper divisors of the number (divisors including 1 but not itself) is greater than the number itself (the number is ''abundant''), but no subset of those divisors sums to the number itself (the number is not ''semiperfect'').
For example:
* '''12''' is ''not'' a weird number.
** It is abundant; its proper divisors '''1, 2, 3, 4, 6''' sum to '''16''' (which ''is'' > 12),
** but it ''is'' semiperfect, e.g.: '''6 + 4 + 2 == 12'''.
* '''70''' ''is'' a weird number.
** It is abundant; its proper divisors '''1, 2, 5, 7, 10, 14, 35''' sum to '''74''' (which ''is'' > 70),
** and there is no subset of proper divisors that sum to '''70'''.
;Task:
Find and display, here on this page, the first '''25''' weird numbers.
;Related tasks:
:* Abundant, deficient and perfect number classifications
:* Proper divisors
;See also:
:* OEIS: A006037 weird numbers
:* Wikipedia: weird number
:* MathWorld: weird number
| package main
import "fmt"
func divisors(n int) []int {
divs := []int{1}
divs2 := []int{}
for i := 2; i*i <= n; i++ {
if n%i == 0 {
j := n / i
divs = append(divs, i)
if i != j {
divs2 = append(divs2, j)
}
}
}
for i := len(divs) - 1; i >= 0; i-- {
divs2 = append(divs2, divs[i])
}
return divs2
}
func abundant(n int, divs []int) bool {
sum := 0
for _, div := range divs {
sum += div
}
return sum > n
}
func semiperfect(n int, divs []int) bool {
le := len(divs)
if le > 0 {
h := divs[0]
t := divs[1:]
if n < h {
return semiperfect(n, t)
} else {
return n == h || semiperfect(n-h, t) || semiperfect(n, t)
}
} else {
return false
}
}
func sieve(limit int) []bool {
// false denotes abundant and not semi-perfect.
// Only interested in even numbers >= 2
w := make([]bool, limit)
for i := 2; i < limit; i += 2 {
if w[i] {
continue
}
divs := divisors(i)
if !abundant(i, divs) {
w[i] = true
} else if semiperfect(i, divs) {
for j := i; j < limit; j += i {
w[j] = true
}
}
}
return w
}
func main() {
w := sieve(17000)
count := 0
const max = 25
fmt.Println("The first 25 weird numbers are:")
for n := 2; count < max; n += 2 {
if !w[n] {
fmt.Printf("%d ", n)
count++
}
}
fmt.Println()
} |
Word frequency | Go from Kotlin | Given a text file and an integer '''n''', print/display the '''n''' most
common words in the file (and the number of their occurrences) in decreasing frequency.
For the purposes of this task:
* A word is a sequence of one or more contiguous letters.
* You are free to define what a ''letter'' is.
* Underscores, accented letters, apostrophes, hyphens, and other special characters can be handled at your discretion.
* You may treat a compound word like '''well-dressed''' as either one word or two.
* The word '''it's''' could also be one or two words as you see fit.
* You may also choose not to support non US-ASCII characters.
* Assume words will not span multiple lines.
* Don't worry about normalization of word spelling differences.
* Treat '''color''' and '''colour''' as two distinct words.
* Uppercase letters are considered equivalent to their lowercase counterparts.
* Words of equal frequency can be listed in any order.
* Feel free to explicitly state the thoughts behind the program decisions.
Show example output using Les Miserables from Project Gutenberg as the text file input and display the top '''10''' most used words.
;History:
This task was originally taken from programming pearls from Communications of the ACM June 1986 Volume 29 Number 6
where this problem is solved by Donald Knuth using literate programming and then critiqued by Doug McIlroy,
demonstrating solving the problem in a 6 line Unix shell script (provided as an example below).
;References:
*McIlroy's program
| package main
import (
"fmt"
"io/ioutil"
"log"
"regexp"
"sort"
"strings"
)
type keyval struct {
key string
val int
}
func main() {
reg := regexp.MustCompile(`\p{Ll}+`)
bs, err := ioutil.ReadFile("135-0.txt")
if err != nil {
log.Fatal(err)
}
text := strings.ToLower(string(bs))
matches := reg.FindAllString(text, -1)
groups := make(map[string]int)
for _, match := range matches {
groups[match]++
}
var keyvals []keyval
for k, v := range groups {
keyvals = append(keyvals, keyval{k, v})
}
sort.Slice(keyvals, func(i, j int) bool {
return keyvals[i].val > keyvals[j].val
})
fmt.Println("Rank Word Frequency")
fmt.Println("==== ==== =========")
for rank := 1; rank <= 10; rank++ {
word := keyvals[rank-1].key
freq := keyvals[rank-1].val
fmt.Printf("%2d %-4s %5d\n", rank, word, freq)
}
} |
Subsets and Splits