|
--- |
|
license: mit |
|
task_categories: |
|
- summarization |
|
language: |
|
- de |
|
tags: |
|
- wikipedia |
|
- wikidata |
|
- Relation Extraction |
|
- REBEL |
|
pretty_name: German REBEL Dataset |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# Dataset Card for German REBEL Dataset |
|
|
|
### Dataset Summary |
|
|
|
This dataset is the German version of Babelscape/rebel-dataset. It has been generated using [CROCODILE](https://github.com/Babelscape/crocodile). |
|
The Wikipedia Version is from November 2022. |
|
|
|
### Languages |
|
|
|
- German |
|
|
|
## Dataset Structure |
|
|
|
``` |
|
{"docid": "9400003", |
|
"title": "Odin-Gletscher", |
|
"uri": "Q7077818", |
|
"text": "Der Odin-Gletscher ist ein kleiner Gletscher im ostantarktischen Viktorialand. Er fließt von den Westhängen des Mount Odin in der Asgard Range.\n\nDas New Zealand Antarctic Place-Names Committee benannte ihn in Anlehnung an die Benennung des Mount Odin nach Odin, Göttervater, Kriegs- und Totengott der nordischen Mythologie.", |
|
"entities": [{"uri": "Q35666", "boundaries": [35, 44], "surfaceform": "Gletscher", "annotator": "Me"}, ... ], |
|
"triples": [{"subject": {"uri": "Q7077818", "boundaries": [4, 18], "surfaceform": "Odin-Gletscher", "annotator": "Me"}, |
|
"predicate": {"uri": "P31", "boundaries": null, "surfaceform": "ist ein(e)", "annotator": "NoSubject-Triple-aligner"}, |
|
"object": {"uri": "Q35666", "boundaries": [35, 44], "surfaceform": "Gletscher", "annotator": "Me"}, "sentence_id": 0, |
|
"dependency_path": null, |
|
"confidence": 0.99560546875, |
|
"annotator": "NoSubject-Triple-aligner"}, ...] |
|
} |
|
``` |
|
|
|
### Data Instances |
|
|
|
|
|
The dataset is 1.1GB if unpacked on the system. 195MB if zipped. |
|
|
|
### Data Fields |
|
|
|
"docid": "9644601", |
|
"title": Wikipedia Title |
|
"uri": "Q4290759", |
|
"text": Wikipedia Abstract |
|
"entities": A list of Entities |
|
- uri: Wikidata URI |
|
- boundaries: Tuple of indices of the entity in the abstract |
|
- surfaceform: text form of entity |
|
- annotator: different annotator classes |
|
"triples": List of Triples as dictionaries |
|
- sentence_id: Sentence number the triple appears in. |
|
- "confidence": float, the confidence of the NLI Model |
|
- subject |
|
- uri: Wikidata Entity URI |
|
- boundaries |
|
- surfaceform |
|
- annotator |
|
- predicate |
|
- uri: Wikidata Relation URI |
|
- boundaries: always null, |
|
- surfaceform: Wikidata Relation Name |
|
- annotator |
|
- object: |
|
- uri: Wikidata Entity URI |
|
- boundaries |
|
- surfaceform |
|
- annotator |
|
|
|
|
|
|
|
### Data Splits |
|
|
|
No splits are provided for now since the relation classes are quite imbalanced. |
|
To read the dataset you can adapt the function provided by https://github.com/Babelscape/rebel |
|
|
|
``` |
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logging.info("generating examples from = %s", filepath) |
|
relations_df = pd.read_csv(self.config.data_files['relations'], header = None, sep='\t') |
|
relations = list(relations_df[0]) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
article = json.loads(row) |
|
prev_len = 0 |
|
if len(article['triples']) == 0: |
|
continue |
|
count = 0 |
|
for text_paragraph in article['text'].split('\n'): |
|
if len(text_paragraph) == 0: |
|
continue |
|
sentences = re.split(r'(?<=[.])\s', text_paragraph) |
|
text = '' |
|
for sentence in sentences: |
|
text += sentence + ' ' |
|
if any([entity['boundaries'][0] < len(text) + prev_len < entity['boundaries'][1] for entity in article['entities']]): |
|
continue |
|
entities = sorted([entity for entity in article['entities'] if prev_len < entity['boundaries'][1] <= len(text)+prev_len], key=lambda tup: tup['boundaries'][0]) |
|
decoder_output = '<triplet> ' |
|
for int_ent, entity in enumerate(entities): |
|
triplets = sorted([triplet for triplet in article['triples'] if triplet['subject'] == entity and prev_len< triplet['subject']['boundaries'][1]<=len(text) + prev_len and prev_len< triplet['object']['boundaries'][1]<=len(text)+ prev_len and triplet['predicate']['surfaceform'] in relations], key=lambda tup: tup['object']['boundaries'][0]) |
|
if len(triplets) == 0: |
|
continue |
|
decoder_output += entity['surfaceform'] + ' <subj> ' |
|
for triplet in triplets: |
|
decoder_output += triplet['object']['surfaceform'] + ' <obj> ' + triplet['predicate']['surfaceform'] + ' <subj> ' |
|
decoder_output = decoder_output[:-len(' <subj> ')] |
|
decoder_output += ' <triplet> ' |
|
decoder_output = decoder_output[:-len(' <triplet> ')] |
|
count += 1 |
|
prev_len += len(text) |
|
|
|
if len(decoder_output) == 0: |
|
text = '' |
|
continue |
|
|
|
text = re.sub('([\[\].,!?()])', r' \1 ', text.replace('()', '')) |
|
text = re.sub('\s{2,}', ' ', text) |
|
|
|
yield article['uri'] + '-' + str(count), { |
|
"title": article['title'], |
|
"context": text, |
|
"id": article['uri'] + '-' + str(count), |
|
"triplets": decoder_output, |
|
} |
|
text = '' |
|
``` |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
This dataset was created to enable the training of a german BART based model as pre-training phase for Relation Extraction. |
|
|
|
### Source Data |
|
|
|
|
|
#### Who are the source language producers? |
|
|
|
Any Wikipedia and Wikidata contributor. |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
The dataset extraction pipeline cRocoDiLe: Automatic Relation Extraction Dataset with NLI filtering. |
|
|
|
#### Who are the annotators? |
|
|
|
Automatic annottations |
|
|
|
### Personal and Sensitive Information |
|
|
|
All text is from Wikipedia, any Personal or Sensitive Information there may be present in this dataset. |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
The dataset serves as a pre-training step for Relation Extraction models. It is distantly annotated, hence it should only be used as such. A model trained solely on this dataset may produce allucinations coming from the silver nature of the dataset. |
|
|
|
### Discussion of Biases |
|
|
|
Since the dataset was automatically created from Wikipedia and Wikidata, it may reflect the biases withing those sources. |
|
|
|
For Wikipedia text, see for example Dinan et al 2020 on biases in Wikipedia (esp. Table 1), or Blodgett et al 2020 for a more general discussion of the topic. |
|
|
|
For Wikidata, there are class imbalances, also resulting from Wikipedia. |
|
|
|
### Other Known Limitations |
|
|
|
Not for now |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
Me |
|
|
|
### Licensing Information |
|
|
|
Since anyone can create the dataset on their own using the linked GitHub Repository, I am going to use the MIT Licence. |
|
|
|
### Citation Information |
|
|
|
Inspiration by: |
|
``` |
|
@inproceedings{huguet-cabot-navigli-2021-rebel, |
|
title = "REBEL: Relation Extraction By End-to-end Language generation", |
|
author = "Huguet Cabot, Pere-Llu{\'\i}s and |
|
Navigli, Roberto", |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf", |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
None for now |