File size: 4,492 Bytes
2150692
 
 
 
e10c179
2150692
ebc591b
2150692
 
 
 
 
 
 
 
e10c179
2150692
 
e10c179
 
 
 
a1911c7
e10c179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150692
ebc591b
3355ad5
 
8f53421
ebc591b
 
 
e10c179
 
 
 
2150692
 
 
 
ebc591b
a1911c7
 
e10c179
 
 
 
ebc591b
 
 
 
 
2150692
337cc9e
 
 
ebc591b
337cc9e
 
 
 
 
 
 
 
 
 
 
ebc591b
 
 
337cc9e
 
ebc591b
337cc9e
 
 
 
 
 
 
 
 
 
ebc591b
337cc9e
 
 
 
 
 
 
 
6c39add
337cc9e
 
 
 
 
 
 
 
 
 
 
6c39add
 
 
 
337cc9e
 
6c39add
337cc9e
 
 
 
 
 
 
2150692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# !pip install datasets\n",
    "\n",
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "home_values_forecasts\n",
      "new_constructions\n",
      "for_sale_listings\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 215M/215M [00:05<00:00, 37.3MB/s] \n",
      "Generating train split: 693661 examples [00:20, 34052.02 examples/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "rentals\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 413M/413M [00:12<00:00, 34.2MB/s] \n",
      "Generating train split: 1258740 examples [00:28, 44715.39 examples/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sales\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 280M/280M [00:06<00:00, 41.1MB/s] \n",
      "Generating train split: 504608 examples [00:19, 25569.29 examples/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "home_values\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 47.3M/47.3M [00:01<00:00, 29.7MB/s]\n",
      "Generating train split: 117912 examples [00:03, 35540.83 examples/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "days_on_market\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Generating train split: 586714 examples [00:16, 34768.33 examples/s]\n"
     ]
    }
   ],
   "source": [
    "configs = [\n",
    "    \"home_values_forecasts\",\n",
    "    \"new_construction\",\n",
    "    \"for_sale_listings\",\n",
    "    \"rentals\",\n",
    "    \"sales\",\n",
    "    \"home_values\",\n",
    "    \"days_on_market\",\n",
    "]\n",
    "for config in configs:\n",
    "    print(config)\n",
    "    dataset = load_dataset(\"misikoff/zillow\", config, trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Region ID': '102001',\n",
       " 'Size Rank': 0,\n",
       " 'Region': 'United States',\n",
       " 'Region Type': 'country',\n",
       " 'State': None,\n",
       " 'Home Type': 'SFR',\n",
       " 'Date': '2015-01-31',\n",
       " 'Rent (Smoothed)': 1251.1195068359375,\n",
       " 'Rent (Smoothed) (Seasonally Adjusted)': 1253.3807373046875}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "next(iter((dataset[\"train\"])))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen = iter((dataset[\"train\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Region ID': '102001',\n",
       " 'Size Rank': 0,\n",
       " 'Region': 'United States',\n",
       " 'Region Type': 'country',\n",
       " 'State': None,\n",
       " 'Home Type': 'condo/co-op only',\n",
       " 'Date': '2018-03-31',\n",
       " 'Sale Price': 386700.0,\n",
       " 'Sale Price per Sqft': 238.31776428222656,\n",
       " 'Count': 4267}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "next(gen)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "sta663",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}