File size: 15,330 Bytes
2150692
 
 
 
ebc591b
2150692
ebc591b
2150692
 
 
 
 
 
 
 
8f53421
2150692
 
 
ebc591b
3355ad5
 
8f53421
ebc591b
 
 
8f53421
 
ebc591b
 
 
8f53421
 
ebc591b
 
8f53421
 
 
2150692
 
 
 
ebc591b
8f53421
 
 
 
 
 
ebc591b
 
 
 
 
2150692
337cc9e
 
 
ebc591b
337cc9e
 
 
 
 
 
 
 
 
 
 
ebc591b
 
 
337cc9e
 
ebc591b
337cc9e
 
 
 
 
 
 
 
 
 
ebc591b
337cc9e
 
 
 
 
 
 
 
6c39add
337cc9e
 
 
 
 
 
 
 
 
 
 
6c39add
 
 
 
337cc9e
 
6c39add
337cc9e
 
 
 
 
 
 
2150692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# !pip install datasets\n",
    "\n",
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "days_on_market\n"
     ]
    },
    {
     "ename": "UnboundLocalError",
     "evalue": "cannot access local variable 'features' where it is not associated with a value",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mUnboundLocalError\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[14], line 12\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m config \u001b[38;5;129;01min\u001b[39;00m configs:\n\u001b[1;32m     11\u001b[0m     \u001b[38;5;28mprint\u001b[39m(config)\n\u001b[0;32m---> 12\u001b[0m     dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2548\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m   2543\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m   2544\u001b[0m     (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m   2545\u001b[0m )\n\u001b[1;32m   2547\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 2548\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   2549\u001b[0m \u001b[43m    \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2550\u001b[0m \u001b[43m    \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2551\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2552\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2553\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2554\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2555\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2556\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2557\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2558\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2559\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2560\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2561\u001b[0m \u001b[43m    \u001b[49m\u001b[43m_require_default_config_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m   2562\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2563\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2565\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m   2566\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
      "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2257\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\u001b[0m\n\u001b[1;32m   2255\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m get_dataset_builder_class(dataset_module, dataset_name\u001b[38;5;241m=\u001b[39mdataset_name)\n\u001b[1;32m   2256\u001b[0m \u001b[38;5;66;03m# Instantiate the dataset builder\u001b[39;00m\n\u001b[0;32m-> 2257\u001b[0m builder_instance: DatasetBuilder \u001b[38;5;241m=\u001b[39m \u001b[43mbuilder_cls\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   2258\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2259\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2260\u001b[0m \u001b[43m    \u001b[49m\u001b[43mconfig_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2261\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2262\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2263\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43mhash\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdataset_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2264\u001b[0m \u001b[43m    \u001b[49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2265\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2266\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2267\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2268\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbuilder_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2269\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   2270\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2271\u001b[0m builder_instance\u001b[38;5;241m.\u001b[39m_use_legacy_cache_dir_if_possible(dataset_module)\n\u001b[1;32m   2273\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m builder_instance\n",
      "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:382\u001b[0m, in \u001b[0;36mDatasetBuilder.__init__\u001b[0;34m(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)\u001b[0m\n\u001b[1;32m    379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m info \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m    380\u001b[0m     \u001b[38;5;66;03m# TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense\u001b[39;00m\n\u001b[1;32m    381\u001b[0m     info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_exported_dataset_info()\n\u001b[0;32m--> 382\u001b[0m     info\u001b[38;5;241m.\u001b[39mupdate(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m    383\u001b[0m info\u001b[38;5;241m.\u001b[39mbuilder_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname\n\u001b[1;32m    384\u001b[0m info\u001b[38;5;241m.\u001b[39mdataset_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset_name\n",
      "File \u001b[0;32m~/.cache/huggingface/modules/datasets_modules/datasets/misikoff--zillow/d642880e153f01354c57f69b68ea9e02d46260977e73b26b4c4853d95d4fccac/zillow.py:266\u001b[0m, in \u001b[0;36mNewDataset._info\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    234\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhome_values\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m    235\u001b[0m     features \u001b[38;5;241m=\u001b[39m datasets\u001b[38;5;241m.\u001b[39mFeatures(\n\u001b[1;32m    236\u001b[0m         {\n\u001b[1;32m    237\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m: datasets\u001b[38;5;241m.\u001b[39mValue(dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstring\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    260\u001b[0m         }\n\u001b[1;32m    261\u001b[0m     )\n\u001b[1;32m    262\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m datasets\u001b[38;5;241m.\u001b[39mDatasetInfo(\n\u001b[1;32m    263\u001b[0m     \u001b[38;5;66;03m# This is the description that will appear on the datasets page.\u001b[39;00m\n\u001b[1;32m    264\u001b[0m     description\u001b[38;5;241m=\u001b[39m_DESCRIPTION,\n\u001b[1;32m    265\u001b[0m     \u001b[38;5;66;03m# This defines the different columns of the dataset and their types\u001b[39;00m\n\u001b[0;32m--> 266\u001b[0m     features\u001b[38;5;241m=\u001b[39m\u001b[43mfeatures\u001b[49m,  \u001b[38;5;66;03m# Here we define them above because they are different between the two configurations\u001b[39;00m\n\u001b[1;32m    267\u001b[0m     \u001b[38;5;66;03m# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and\u001b[39;00m\n\u001b[1;32m    268\u001b[0m     \u001b[38;5;66;03m# specify them. They'll be used if as_supervised=True in builder.as_dataset.\u001b[39;00m\n\u001b[1;32m    269\u001b[0m     \u001b[38;5;66;03m# supervised_keys=(\"sentence\", \"label\"),\u001b[39;00m\n\u001b[1;32m    270\u001b[0m     \u001b[38;5;66;03m# Homepage of the dataset for documentation\u001b[39;00m\n\u001b[1;32m    271\u001b[0m     homepage\u001b[38;5;241m=\u001b[39m_HOMEPAGE,\n\u001b[1;32m    272\u001b[0m     \u001b[38;5;66;03m# License for the dataset if available\u001b[39;00m\n\u001b[1;32m    273\u001b[0m     license\u001b[38;5;241m=\u001b[39m_LICENSE,\n\u001b[1;32m    274\u001b[0m     \u001b[38;5;66;03m# Citation for the dataset\u001b[39;00m\n\u001b[1;32m    275\u001b[0m     citation\u001b[38;5;241m=\u001b[39m_CITATION,\n\u001b[1;32m    276\u001b[0m )\n",
      "\u001b[0;31mUnboundLocalError\u001b[0m: cannot access local variable 'features' where it is not associated with a value"
     ]
    }
   ],
   "source": [
    "configs = [\n",
    "    # \"home_value_forecasts\",\n",
    "    # \"new_constructions\",\n",
    "    # \"for_sale_listings\",\n",
    "    # \"rentals\",\n",
    "    # \"sales\",\n",
    "    # \"home_values\",\n",
    "    \"days_on_market\",\n",
    "]\n",
    "for config in configs:\n",
    "    print(config)\n",
    "    dataset = load_dataset(\"misikoff/zillow\", config, trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Region ID': '102001',\n",
       " 'Size Rank': 0,\n",
       " 'Region': 'United States',\n",
       " 'Region Type': 'country',\n",
       " 'State': None,\n",
       " 'Home Type': 'SFR',\n",
       " 'Date': '2015-01-31',\n",
       " 'Rent (Smoothed)': 1251.1195068359375,\n",
       " 'Rent (Smoothed) (Seasonally Adjusted)': 1253.3807373046875}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "next(iter((dataset[\"train\"])))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "gen = iter((dataset[\"train\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'Region ID': '102001',\n",
       " 'Size Rank': 0,\n",
       " 'Region': 'United States',\n",
       " 'Region Type': 'country',\n",
       " 'State': None,\n",
       " 'Home Type': 'condo/co-op only',\n",
       " 'Date': '2018-03-31',\n",
       " 'Sale Price': 386700.0,\n",
       " 'Sale Price per Sqft': 238.31776428222656,\n",
       " 'Count': 4267}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "next(gen)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "sta663",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}