File size: 22,663 Bytes
416395d
 
 
 
864476a
416395d
 
 
 
 
 
 
 
 
864476a
416395d
 
 
 
 
 
 
 
 
 
 
 
e1cbb8f
416395d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cbb8f
 
 
416395d
 
 
 
 
 
 
 
 
 
864476a
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
416395d
864476a
 
 
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
 
 
e1cbb8f
864476a
416395d
 
 
 
 
 
 
 
 
 
 
 
864476a
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
416395d
864476a
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
416395d
864476a
 
 
416395d
 
 
864476a
416395d
 
 
864476a
 
 
 
 
 
 
 
 
 
 
 
416395d
e1cbb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416395d
864476a
416395d
 
e1cbb8f
416395d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cbb8f
864476a
416395d
 
 
 
 
 
864476a
416395d
 
 
864476a
416395d
 
 
 
e1cbb8f
864476a
 
 
 
 
e1cbb8f
864476a
e1cbb8f
864476a
e1cbb8f
864476a
 
 
 
 
e1cbb8f
864476a
e1cbb8f
864476a
e1cbb8f
864476a
 
 
 
 
e1cbb8f
864476a
e1cbb8f
864476a
 
 
 
 
 
 
 
 
 
 
416395d
e1cbb8f
 
 
 
 
 
 
 
 
 
 
416395d
 
 
 
 
 
e1cbb8f
416395d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cbb8f
 
 
416395d
 
 
 
 
 
 
 
 
 
864476a
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
416395d
864476a
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
416395d
864476a
 
 
e1cbb8f
864476a
416395d
 
 
864476a
 
 
 
 
 
 
 
e1cbb8f
864476a
416395d
 
 
 
 
 
 
 
 
 
 
 
864476a
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
 
 
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
416395d
864476a
 
 
416395d
 
864476a
 
 
 
416395d
864476a
 
416395d
864476a
 
 
416395d
 
 
864476a
416395d
 
 
864476a
 
 
 
 
 
 
 
 
 
 
 
416395d
e1cbb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416395d
864476a
416395d
 
e1cbb8f
416395d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1cbb8f
416395d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "DATA_DIR = \"../data\"\n",
    "PROCESSED_DIR = \"../processed/\"\n",
    "FACET_DIR = \"new_constructions/\"\n",
    "FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n",
    "FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "processing Metro_new_con_sales_count_raw_uc_condo_month.csv\n",
      "processing Metro_new_con_median_sale_price_per_sqft_uc_sfr_month.csv\n",
      "processing Metro_new_con_sales_count_raw_uc_sfr_month.csv\n",
      "processing Metro_new_con_median_sale_price_uc_sfrcondo_month.csv\n",
      "processing Metro_new_con_median_sale_price_per_sqft_uc_condo_month.csv\n",
      "processing Metro_new_con_sales_count_raw_uc_sfrcondo_month.csv\n",
      "processing Metro_new_con_median_sale_price_uc_condo_month.csv\n",
      "processing Metro_new_con_median_sale_price_uc_sfr_month.csv\n",
      "processing Metro_new_con_median_sale_price_per_sqft_uc_sfrcondo_month.csv\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>RegionID</th>\n",
       "      <th>SizeRank</th>\n",
       "      <th>RegionName</th>\n",
       "      <th>RegionType</th>\n",
       "      <th>StateName</th>\n",
       "      <th>Home Type</th>\n",
       "      <th>Date</th>\n",
       "      <th>Median Sale Price per Sqft</th>\n",
       "      <th>Median Sale Price</th>\n",
       "      <th>Sales Count</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>137.412316</td>\n",
       "      <td>309000.0</td>\n",
       "      <td>33940.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>140.504620</td>\n",
       "      <td>314596.0</td>\n",
       "      <td>37135.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>condo/co-op only</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>238.300000</td>\n",
       "      <td>388250.0</td>\n",
       "      <td>3195.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2018-02-28</td>\n",
       "      <td>137.199170</td>\n",
       "      <td>309072.5</td>\n",
       "      <td>33304.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2018-02-28</td>\n",
       "      <td>140.304966</td>\n",
       "      <td>314608.0</td>\n",
       "      <td>36493.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49482</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-09-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>26.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49483</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2023-10-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>24.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49484</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-10-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>24.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49485</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2023-11-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>16.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49486</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-11-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>16.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>49487 rows × 10 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       RegionID  SizeRank     RegionName RegionType StateName  \\\n",
       "0        102001         0  United States    country       NaN   \n",
       "1        102001         0  United States    country       NaN   \n",
       "2        102001         0  United States    country       NaN   \n",
       "3        102001         0  United States    country       NaN   \n",
       "4        102001         0  United States    country       NaN   \n",
       "...         ...       ...            ...        ...       ...   \n",
       "49482    845162       535   Granbury, TX        msa        TX   \n",
       "49483    845162       535   Granbury, TX        msa        TX   \n",
       "49484    845162       535   Granbury, TX        msa        TX   \n",
       "49485    845162       535   Granbury, TX        msa        TX   \n",
       "49486    845162       535   Granbury, TX        msa        TX   \n",
       "\n",
       "              Home Type        Date  Median Sale Price per Sqft  \\\n",
       "0                   SFR  2018-01-31                  137.412316   \n",
       "1             all homes  2018-01-31                  140.504620   \n",
       "2      condo/co-op only  2018-01-31                  238.300000   \n",
       "3                   SFR  2018-02-28                  137.199170   \n",
       "4             all homes  2018-02-28                  140.304966   \n",
       "...                 ...         ...                         ...   \n",
       "49482         all homes  2023-09-30                         NaN   \n",
       "49483               SFR  2023-10-31                         NaN   \n",
       "49484         all homes  2023-10-31                         NaN   \n",
       "49485               SFR  2023-11-30                         NaN   \n",
       "49486         all homes  2023-11-30                         NaN   \n",
       "\n",
       "       Median Sale Price  Sales Count  \n",
       "0               309000.0      33940.0  \n",
       "1               314596.0      37135.0  \n",
       "2               388250.0       3195.0  \n",
       "3               309072.5      33304.0  \n",
       "4               314608.0      36493.0  \n",
       "...                  ...          ...  \n",
       "49482                NaN         26.0  \n",
       "49483                NaN         24.0  \n",
       "49484                NaN         24.0  \n",
       "49485                NaN         16.0  \n",
       "49486                NaN         16.0  \n",
       "\n",
       "[49487 rows x 10 columns]"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
    "\n",
    "exclude_columns = [\n",
    "    \"RegionID\",\n",
    "    \"SizeRank\",\n",
    "    \"RegionName\",\n",
    "    \"RegionType\",\n",
    "    \"StateName\",\n",
    "    \"Home Type\",\n",
    "]\n",
    "\n",
    "batches = {\"median_sale_price_per_sqft\": [], \"median_sale_price\": [], \"sales_count\": []}\n",
    "\n",
    "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
    "    if filename.endswith(\".csv\"):\n",
    "        print(\"processing \" + filename)\n",
    "        cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n",
    "\n",
    "        if \"sfrcondo\" in filename:\n",
    "            cur_df[\"Home Type\"] = \"all homes\"\n",
    "        elif \"sfr\" in filename:\n",
    "            cur_df[\"Home Type\"] = \"SFR\"\n",
    "        elif \"condo\" in filename:\n",
    "            cur_df[\"Home Type\"] = \"condo/co-op only\"\n",
    "\n",
    "        # Identify columns to pivot\n",
    "        columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
    "\n",
    "        if \"median_sale_price_per_sqft\" in filename:\n",
    "            cur_df = pd.melt(\n",
    "                cur_df,\n",
    "                id_vars=exclude_columns,\n",
    "                value_vars=columns_to_pivot,\n",
    "                var_name=\"Date\",\n",
    "                value_name=\"Median Sale Price per Sqft\",\n",
    "            )\n",
    "            batches[\"median_sale_price_per_sqft\"].append(cur_df)\n",
    "\n",
    "        elif \"median_sale_price\" in filename:\n",
    "            cur_df = pd.melt(\n",
    "                cur_df,\n",
    "                id_vars=exclude_columns,\n",
    "                value_vars=columns_to_pivot,\n",
    "                var_name=\"Date\",\n",
    "                value_name=\"Median Sale Price\",\n",
    "            )\n",
    "            batches[\"median_sale_price\"].append(cur_df)\n",
    "\n",
    "        elif \"sales_count\" in filename:\n",
    "            cur_df = pd.melt(\n",
    "                cur_df,\n",
    "                id_vars=exclude_columns,\n",
    "                value_vars=columns_to_pivot,\n",
    "                var_name=\"Date\",\n",
    "                value_name=\"Sales Count\",\n",
    "            )\n",
    "            batches[\"sales_count\"].append(cur_df)\n",
    "\n",
    "\n",
    "matching_cols = [\n",
    "    \"RegionID\",\n",
    "    \"Date\",\n",
    "    \"SizeRank\",\n",
    "    \"RegionName\",\n",
    "    \"RegionType\",\n",
    "    \"StateName\",\n",
    "    \"Home Type\",\n",
    "]\n",
    "\n",
    "combined_batches = [pd.concat(cur_batch) for cur_batch in batches.values()]\n",
    "\n",
    "if len(combined_batches) > 0:\n",
    "    combined_df = combined_batches[0]\n",
    "    for batch in combined_batches[1:]:\n",
    "        combined_df = pd.merge(\n",
    "            combined_df,\n",
    "            batch,\n",
    "            on=matching_cols,\n",
    "            how=\"outer\",\n",
    "        )\n",
    "\n",
    "combined_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Region ID</th>\n",
       "      <th>Size Rank</th>\n",
       "      <th>Region</th>\n",
       "      <th>Region Type</th>\n",
       "      <th>State</th>\n",
       "      <th>Home Type</th>\n",
       "      <th>Date</th>\n",
       "      <th>Median Sale Price per Sqft</th>\n",
       "      <th>Median Sale Price</th>\n",
       "      <th>Sales Count</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>137.412316</td>\n",
       "      <td>309000.0</td>\n",
       "      <td>33940.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>140.504620</td>\n",
       "      <td>314596.0</td>\n",
       "      <td>37135.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>condo/co-op only</td>\n",
       "      <td>2018-01-31</td>\n",
       "      <td>238.300000</td>\n",
       "      <td>388250.0</td>\n",
       "      <td>3195.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2018-02-28</td>\n",
       "      <td>137.199170</td>\n",
       "      <td>309072.5</td>\n",
       "      <td>33304.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>102001</td>\n",
       "      <td>0</td>\n",
       "      <td>United States</td>\n",
       "      <td>country</td>\n",
       "      <td>NaN</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2018-02-28</td>\n",
       "      <td>140.304966</td>\n",
       "      <td>314608.0</td>\n",
       "      <td>36493.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49482</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-09-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>26.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49483</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2023-10-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>24.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49484</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-10-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>24.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49485</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>SFR</td>\n",
       "      <td>2023-11-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>16.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>49486</th>\n",
       "      <td>845162</td>\n",
       "      <td>535</td>\n",
       "      <td>Granbury, TX</td>\n",
       "      <td>msa</td>\n",
       "      <td>TX</td>\n",
       "      <td>all homes</td>\n",
       "      <td>2023-11-30</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>16.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>49487 rows × 10 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "       Region ID  Size Rank         Region Region Type State  \\\n",
       "0         102001          0  United States     country   NaN   \n",
       "1         102001          0  United States     country   NaN   \n",
       "2         102001          0  United States     country   NaN   \n",
       "3         102001          0  United States     country   NaN   \n",
       "4         102001          0  United States     country   NaN   \n",
       "...          ...        ...            ...         ...   ...   \n",
       "49482     845162        535   Granbury, TX         msa    TX   \n",
       "49483     845162        535   Granbury, TX         msa    TX   \n",
       "49484     845162        535   Granbury, TX         msa    TX   \n",
       "49485     845162        535   Granbury, TX         msa    TX   \n",
       "49486     845162        535   Granbury, TX         msa    TX   \n",
       "\n",
       "              Home Type        Date  Median Sale Price per Sqft  \\\n",
       "0                   SFR  2018-01-31                  137.412316   \n",
       "1             all homes  2018-01-31                  140.504620   \n",
       "2      condo/co-op only  2018-01-31                  238.300000   \n",
       "3                   SFR  2018-02-28                  137.199170   \n",
       "4             all homes  2018-02-28                  140.304966   \n",
       "...                 ...         ...                         ...   \n",
       "49482         all homes  2023-09-30                         NaN   \n",
       "49483               SFR  2023-10-31                         NaN   \n",
       "49484         all homes  2023-10-31                         NaN   \n",
       "49485               SFR  2023-11-30                         NaN   \n",
       "49486         all homes  2023-11-30                         NaN   \n",
       "\n",
       "       Median Sale Price  Sales Count  \n",
       "0               309000.0      33940.0  \n",
       "1               314596.0      37135.0  \n",
       "2               388250.0       3195.0  \n",
       "3               309072.5      33304.0  \n",
       "4               314608.0      36493.0  \n",
       "...                  ...          ...  \n",
       "49482                NaN         26.0  \n",
       "49483                NaN         24.0  \n",
       "49484                NaN         24.0  \n",
       "49485                NaN         16.0  \n",
       "49486                NaN         16.0  \n",
       "\n",
       "[49487 rows x 10 columns]"
      ]
     },
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "final_df = combined_df\n",
    "final_df = final_df.rename(\n",
    "    columns={\n",
    "        \"RegionID\": \"Region ID\",\n",
    "        \"SizeRank\": \"Size Rank\",\n",
    "        \"RegionName\": \"Region\",\n",
    "        \"RegionType\": \"Region Type\",\n",
    "        \"StateName\": \"State\",\n",
    "    }\n",
    ")\n",
    "\n",
    "final_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [],
   "source": [
    "if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
    "    os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
    "\n",
    "final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}