misikoff commited on
Commit
6ff5b63
·
1 Parent(s): f2c7521
process_home_value_forecasts.ipynb → processors/process_home_value_forecasts.ipynb RENAMED
File without changes
zillow.py CHANGED
@@ -48,7 +48,7 @@ _LICENSE = ""
48
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
49
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
50
  # _URLS = {
51
- # "first_domain": "https://files.zillowstatic.com/research/public_csvs/zhvf_growth/Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv",
52
  # # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
53
  # }
54
 
@@ -68,11 +68,11 @@ class NewDataset(datasets.GeneratorBasedBuilder):
68
  # BUILDER_CONFIG_CLASS = MyBuilderConfig
69
 
70
  # You will be able to load one or the other configurations in the following list with
71
- # data = datasets.load_dataset('my_dataset', 'first_domain')
72
  # data = datasets.load_dataset('my_dataset', 'second_domain')
73
  BUILDER_CONFIGS = [
74
  datasets.BuilderConfig(
75
- name="first_domain",
76
  version=VERSION,
77
  description="This part of my dataset covers a first domain",
78
  ),
@@ -83,12 +83,12 @@ class NewDataset(datasets.GeneratorBasedBuilder):
83
  # ),
84
  ]
85
 
86
- DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
87
 
88
  def _info(self):
89
  # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
90
  if (
91
- self.config.name == "first_domain"
92
  ): # This is the name of the configuration selected in BUILDER_CONFIGS above
93
  features = datasets.Features(
94
  {
@@ -111,7 +111,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
111
  # These are the features of your dataset like images, labels ...
112
  }
113
  )
114
- # else: # This is an example to show how to have different features for "first_domain" and "second_domain"
115
  # features = datasets.Features(
116
  # {
117
  # "sentence": datasets.Value("string"),
@@ -147,7 +147,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
147
  # urls = _URLS[self.config.name]
148
  # data_dir = dl_manager.download_and_extract(urls)
149
  # file_train = dl_manager.download(os.path.join('./data/home_value_forecasts', "Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv"))
150
- file_path = os.path.join('processed/home_value_forecasts', "final.jsonl")
151
  # print('*********************')
152
  # print(file_path)
153
 
@@ -188,7 +188,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
188
  with open(filepath, encoding="utf-8") as f:
189
  for key, row in enumerate(f):
190
  data = json.loads(row)
191
- if self.config.name == "first_domain":
192
  # Yields examples as (key, example) tuples
193
  yield key, {
194
  "RegionID": data["RegionID"],
 
48
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
49
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
50
  # _URLS = {
51
+ # "home_value_forecasts": "https://files.zillowstatic.com/research/public_csvs/zhvf_growth/Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv",
52
  # # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
53
  # }
54
 
 
68
  # BUILDER_CONFIG_CLASS = MyBuilderConfig
69
 
70
  # You will be able to load one or the other configurations in the following list with
71
+ # data = datasets.load_dataset('my_dataset', 'home_value_forecasts')
72
  # data = datasets.load_dataset('my_dataset', 'second_domain')
73
  BUILDER_CONFIGS = [
74
  datasets.BuilderConfig(
75
+ name="home_value_forecasts",
76
  version=VERSION,
77
  description="This part of my dataset covers a first domain",
78
  ),
 
83
  # ),
84
  ]
85
 
86
+ DEFAULT_CONFIG_NAME = "home_value_forecasts" # It's not mandatory to have a default configuration. Just use one if it make sense.
87
 
88
  def _info(self):
89
  # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
90
  if (
91
+ self.config.name == "home_value_forecasts"
92
  ): # This is the name of the configuration selected in BUILDER_CONFIGS above
93
  features = datasets.Features(
94
  {
 
111
  # These are the features of your dataset like images, labels ...
112
  }
113
  )
114
+ # else: # This is an example to show how to have different features for "home_value_forecasts" and "second_domain"
115
  # features = datasets.Features(
116
  # {
117
  # "sentence": datasets.Value("string"),
 
147
  # urls = _URLS[self.config.name]
148
  # data_dir = dl_manager.download_and_extract(urls)
149
  # file_train = dl_manager.download(os.path.join('./data/home_value_forecasts', "Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv"))
150
+ file_path = os.path.join('processed', self.config.name, "final.jsonl")
151
  # print('*********************')
152
  # print(file_path)
153
 
 
188
  with open(filepath, encoding="utf-8") as f:
189
  for key, row in enumerate(f):
190
  data = json.loads(row)
191
+ if self.config.name == "home_value_forecasts":
192
  # Yields examples as (key, example) tuples
193
  yield key, {
194
  "RegionID": data["RegionID"],